Files
ThirdParty-6/ParaView-5.0.1/VTK/Common/ExecutionModel/vtkSimpleScalarTree.h

156 lines
6.1 KiB
C++

/*=========================================================================
Program: Visualization Toolkit
Module: vtkSimpleScalarTree.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
// .NAME vtkSimpleScalarTree - organize data according to scalar values (used to accelerate contouring operations)
// .SECTION Description
// vtkSimpleScalarTree creates a pointerless binary tree that helps search
// for cells that lie within a particular scalar range. This object is used
// to accelerate some contouring (and other scalar-based techniques).
//
// The tree consists of an array of (min,max) scalar range pairs per
// node in the tree. The (min,max) range is determined from looking at
// the range of the children of the tree node. If the node is a leaf,
// then the range is determined by scanning the range of scalar data
// in n cells in the dataset. The n cells are determined by arbitrary
// selecting cell ids from id(i) to id(i+n), and where n is specified
// using the BranchingFactor ivar. Note that leaf node i=0 contains
// the scalar range computed from cell ids (0,n-1); leaf node i=1
// contains the range from cell ids (n,2n-1); and so on. The
// implication is that there are no direct lists of cell ids per leaf
// node, instead the cell ids are implicitly known. Despite the
// arbitrary grouping of cells, in practice this scalar tree actually
// performs quite well due to spatial/data coherence.
//
// This class has an API that supports both serial and parallel
// operation. The parallel API enables the using class to grab arrays
// (or batches) of cells that potentially intersect the
// isocontour. These batches can then be processed in separate
// threads.
// .SECTION See Also
// vtkSpanSpace
#ifndef vtkSimpleScalarTree_h
#define vtkSimpleScalarTree_h
#include "vtkCommonExecutionModelModule.h" // For export macro
#include "vtkScalarTree.h"
//BTX
class vtkScalarNode;
//ETX
class VTKCOMMONEXECUTIONMODEL_EXPORT vtkSimpleScalarTree : public vtkScalarTree
{
public:
// Description:
// Instantiate scalar tree with maximum level of 20 and branching
// factor of three.
static vtkSimpleScalarTree *New();
// Description:
// Standard type related macros and PrintSelf() method.
vtkTypeMacro(vtkSimpleScalarTree,vtkScalarTree);
void PrintSelf(ostream& os, vtkIndent indent);
// Description:
// Set the branching factor for the tree. This is the number of
// children per tree node. Smaller values (minimum is 2) mean deeper
// trees and more memory overhead. Larger values mean shallower
// trees, less memory usage, but worse performance.
vtkSetClampMacro(BranchingFactor,int,2,VTK_INT_MAX);
vtkGetMacro(BranchingFactor,int);
// Description:
// Get the level of the scalar tree. This value may change each time the
// scalar tree is built and the branching factor changes.
vtkGetMacro(Level,int);
// Description:
// Set the maximum allowable level for the tree.
vtkSetClampMacro(MaxLevel,int,1,VTK_INT_MAX);
vtkGetMacro(MaxLevel,int);
// Description:
// Construct the scalar tree from the dataset provided. Checks build times
// and modified time from input and reconstructs the tree if necessary.
virtual void BuildTree();
// Description:
// Initialize locator. Frees memory and resets object as appropriate.
virtual void Initialize();
// Description:
// Begin to traverse the cells based on a scalar value. Returned cells
// will likely have scalar values that span the scalar value specified.
virtual void InitTraversal(double scalarValue);
// Description:
// Return the next cell that may contain scalar value specified to
// initialize traversal. The value NULL is returned if the list is
// exhausted. Make sure that InitTraversal() has been invoked first or
// you'll get erratic behavior.
virtual vtkCell *GetNextCell(vtkIdType &cellId, vtkIdList* &ptIds,
vtkDataArray *cellScalars);
// The following methods supports parallel (threaded)
// applications. Basically batches of cells (which represent a
// portion of the whole dataset) are available for processing in a
// parallel For() operation.
// Description:
// Get the number of cell batches available for processing. Note
// that this methods should be called after InitTraversal(). This is
// because the number of batches available is typically a function
// of the isocontour value. Note that the cells found in
// [0...(NumberOfCellBatches-1)] will contain all the cells
// potentially containing the isocontour.
virtual vtkIdType GetNumberOfCellBatches();
// Description:
// Return the array of cell ids in the specified batch. The method
// also returns the number of cell ids in the array. Make sure to
// call InitTraversal() beforehand.
virtual const vtkIdType* GetCellBatch(vtkIdType batchNum,
vtkIdType& numCells);
protected:
vtkSimpleScalarTree();
~vtkSimpleScalarTree();
int MaxLevel;
int Level;
int BranchingFactor; //number of children per node
vtkScalarNode *Tree; //pointerless scalar range tree
int TreeSize; //allocated size of tree
vtkIdType LeafOffset; //offset to leaf nodes of tree
private:
vtkIdType NumCells; //the number of cells in this dataset
vtkIdType TreeIndex; //traversal location within tree
int ChildNumber; //current child in traversal
vtkIdType CellId; //current cell id being examined
int FindStartLeaf(vtkIdType index, int level);
int FindNextLeaf(vtkIdType index,int level);
vtkIdType *CandidateCells; //to support parallel computing
vtkIdType NumCandidates;
private:
vtkSimpleScalarTree(const vtkSimpleScalarTree&); // Not implemented.
void operator=(const vtkSimpleScalarTree&); // Not implemented.
};
#endif