mirror of
https://github.com/OpenFOAM/ThirdParty-6.git
synced 2025-12-08 06:57:43 +00:00
177 lines
5.8 KiB
C++
177 lines
5.8 KiB
C++
/*=========================================================================
|
|
|
|
Program: Visualization Toolkit
|
|
Module: vtkGeoArcs.cxx
|
|
|
|
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
|
|
All rights reserved.
|
|
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
|
|
|
|
This software is distributed WITHOUT ANY WARRANTY; without even
|
|
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
|
|
PURPOSE. See the above copyright notice for more information.
|
|
|
|
=========================================================================*/
|
|
/*-------------------------------------------------------------------------
|
|
Copyright 2008 Sandia Corporation.
|
|
Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
|
|
the U.S. Government retains certain rights in this software.
|
|
-------------------------------------------------------------------------*/
|
|
#include "vtkGeoArcs.h"
|
|
|
|
#include "vtkCellArray.h"
|
|
#include "vtkCellData.h"
|
|
#include "vtkFloatArray.h"
|
|
#include "vtkGeoMath.h"
|
|
#include "vtkGlobeSource.h"
|
|
#include "vtkMath.h"
|
|
#include "vtkInformation.h"
|
|
#include "vtkInformationVector.h"
|
|
#include "vtkObjectFactory.h"
|
|
#include "vtkPointData.h"
|
|
|
|
vtkStandardNewMacro(vtkGeoArcs);
|
|
|
|
vtkGeoArcs::vtkGeoArcs()
|
|
{
|
|
this->GlobeRadius = vtkGeoMath::EarthRadiusMeters();
|
|
this->ExplodeFactor = 0.2;
|
|
this->NumberOfSubdivisions = 20;
|
|
}
|
|
|
|
int vtkGeoArcs::RequestData(
|
|
vtkInformation *vtkNotUsed(request),
|
|
vtkInformationVector **inputVector,
|
|
vtkInformationVector *outputVector)
|
|
{
|
|
// get the info objects
|
|
vtkInformation *inInfo = inputVector[0]->GetInformationObject(0);
|
|
vtkInformation *outInfo = outputVector->GetInformationObject(0);
|
|
|
|
// get the input and output
|
|
vtkPolyData *input = vtkPolyData::SafeDownCast(
|
|
inInfo->Get(vtkDataObject::DATA_OBJECT()));
|
|
vtkPolyData *output = vtkPolyData::SafeDownCast(
|
|
outInfo->Get(vtkDataObject::DATA_OBJECT()));
|
|
|
|
// Prepare to copy cell data
|
|
output->GetCellData()->CopyAllocate(input->GetCellData());
|
|
|
|
// Traverse input lines, adding a circle for each line segment.
|
|
vtkCellArray* lines = input->GetLines();
|
|
vtkCellArray* newLines = vtkCellArray::New();
|
|
vtkPoints* newPoints = vtkPoints::New();
|
|
newPoints->DeepCopy(input->GetPoints());
|
|
lines->InitTraversal();
|
|
for (vtkIdType i = 0; i < lines->GetNumberOfCells(); i++)
|
|
{
|
|
vtkIdType npts=0; // to remove warning
|
|
vtkIdType* pts=0; // to remove warning
|
|
lines->GetNextCell(npts, pts);
|
|
|
|
double lastPoint[3];
|
|
newPoints->GetPoint(pts[0], lastPoint);
|
|
|
|
for (vtkIdType p = 1; p < npts; ++p)
|
|
{
|
|
// Create the new cell
|
|
vtkIdType cellId = newLines->InsertNextCell(this->NumberOfSubdivisions);
|
|
output->GetCellData()->CopyData(input->GetCellData(), i, cellId);
|
|
|
|
double curPoint[3];
|
|
newPoints->GetPoint(pts[p], curPoint);
|
|
|
|
// Find w, a unit vector pointing from the center of the
|
|
// earth directly inbetween the two endpoints.
|
|
double w[3];
|
|
for (int c = 0; c < 3; ++c)
|
|
{
|
|
w[c] = (lastPoint[c] + curPoint[c])/2.0;
|
|
}
|
|
vtkMath::Normalize(w);
|
|
|
|
// The center of the circle used to draw the arc is a
|
|
// point along the vector w scaled by the explode factor.
|
|
double center[3];
|
|
for (int c = 0; c < 3; ++c)
|
|
{
|
|
center[c] = this->ExplodeFactor * this->GlobeRadius * w[c];
|
|
}
|
|
|
|
// The vectors u and x are unit vectors pointing from the
|
|
// center of the circle to the two endpoints of the arc,
|
|
// lastPoint and curPoint, respectively.
|
|
double u[3], x[3];
|
|
for (int c = 0; c < 3; ++c)
|
|
{
|
|
u[c] = lastPoint[c] - center[c];
|
|
x[c] = curPoint[c] - center[c];
|
|
}
|
|
double radius = vtkMath::Norm(u);
|
|
vtkMath::Normalize(u);
|
|
vtkMath::Normalize(x);
|
|
|
|
// Find the angle that the arc spans.
|
|
double theta = acos(vtkMath::Dot(u, x));
|
|
|
|
// If the vectors u, x point toward the center of the earth, take
|
|
// the larger angle between the vectors.
|
|
// We determine whether u points toward the center of the earth
|
|
// by checking whether the dot product of u and w is negative.
|
|
if (vtkMath::Dot(w, u) < 0)
|
|
{
|
|
theta = 2.0*vtkMath::Pi() - theta;
|
|
}
|
|
|
|
// We need two perpendicular vectors on the plane of the circle
|
|
// in order to draw the circle. First we calculate n, a vector
|
|
// normal to the circle, by crossing u and w. Next, we cross
|
|
// n and u in order to get a vector v in the plane of the circle
|
|
// that is perpendicular to u.
|
|
double n[3];
|
|
vtkMath::Cross(u, w, n);
|
|
vtkMath::Normalize(n);
|
|
double v[3];
|
|
vtkMath::Cross(n, u, v);
|
|
vtkMath::Normalize(v);
|
|
|
|
// Use the general equation for a circle in three dimensions
|
|
// to draw an arc from the last point to the current point.
|
|
for (int s = 0; s < this->NumberOfSubdivisions; ++s)
|
|
{
|
|
double angle = s * theta / (this->NumberOfSubdivisions - 1.0);
|
|
double circlePt[3];
|
|
for (int c = 0; c < 3; ++c)
|
|
{
|
|
circlePt[c] = center[c] + radius*cos(angle)*u[c] + radius*sin(angle)*v[c];
|
|
}
|
|
vtkIdType newPt = newPoints->InsertNextPoint(circlePt);
|
|
newLines->InsertCellPoint(newPt);
|
|
}
|
|
|
|
for (int c = 0; c < 3; ++c)
|
|
{
|
|
lastPoint[c] = curPoint[c];
|
|
}
|
|
}
|
|
}
|
|
|
|
// Send the data to output.
|
|
output->SetLines(newLines);
|
|
output->SetPoints(newPoints);
|
|
|
|
// Clean up.
|
|
newLines->Delete();
|
|
newPoints->Delete();
|
|
|
|
return 1;
|
|
}
|
|
|
|
void vtkGeoArcs::PrintSelf(ostream& os, vtkIndent indent)
|
|
{
|
|
this->Superclass::PrintSelf(os,indent);
|
|
os << indent << "GlobeRadius: " << this->GlobeRadius << endl;
|
|
os << indent << "ExplodeFactor: " << this->ExplodeFactor << endl;
|
|
os << indent << "NumberOfSubdivisions: " << this->NumberOfSubdivisions << endl;
|
|
}
|