Files
ThirdParty-6/ParaView-5.0.1/VTK/Geovis/Core/vtkGeoArcs.cxx

177 lines
5.8 KiB
C++

/*=========================================================================
Program: Visualization Toolkit
Module: vtkGeoArcs.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/*-------------------------------------------------------------------------
Copyright 2008 Sandia Corporation.
Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
the U.S. Government retains certain rights in this software.
-------------------------------------------------------------------------*/
#include "vtkGeoArcs.h"
#include "vtkCellArray.h"
#include "vtkCellData.h"
#include "vtkFloatArray.h"
#include "vtkGeoMath.h"
#include "vtkGlobeSource.h"
#include "vtkMath.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkObjectFactory.h"
#include "vtkPointData.h"
vtkStandardNewMacro(vtkGeoArcs);
vtkGeoArcs::vtkGeoArcs()
{
this->GlobeRadius = vtkGeoMath::EarthRadiusMeters();
this->ExplodeFactor = 0.2;
this->NumberOfSubdivisions = 20;
}
int vtkGeoArcs::RequestData(
vtkInformation *vtkNotUsed(request),
vtkInformationVector **inputVector,
vtkInformationVector *outputVector)
{
// get the info objects
vtkInformation *inInfo = inputVector[0]->GetInformationObject(0);
vtkInformation *outInfo = outputVector->GetInformationObject(0);
// get the input and output
vtkPolyData *input = vtkPolyData::SafeDownCast(
inInfo->Get(vtkDataObject::DATA_OBJECT()));
vtkPolyData *output = vtkPolyData::SafeDownCast(
outInfo->Get(vtkDataObject::DATA_OBJECT()));
// Prepare to copy cell data
output->GetCellData()->CopyAllocate(input->GetCellData());
// Traverse input lines, adding a circle for each line segment.
vtkCellArray* lines = input->GetLines();
vtkCellArray* newLines = vtkCellArray::New();
vtkPoints* newPoints = vtkPoints::New();
newPoints->DeepCopy(input->GetPoints());
lines->InitTraversal();
for (vtkIdType i = 0; i < lines->GetNumberOfCells(); i++)
{
vtkIdType npts=0; // to remove warning
vtkIdType* pts=0; // to remove warning
lines->GetNextCell(npts, pts);
double lastPoint[3];
newPoints->GetPoint(pts[0], lastPoint);
for (vtkIdType p = 1; p < npts; ++p)
{
// Create the new cell
vtkIdType cellId = newLines->InsertNextCell(this->NumberOfSubdivisions);
output->GetCellData()->CopyData(input->GetCellData(), i, cellId);
double curPoint[3];
newPoints->GetPoint(pts[p], curPoint);
// Find w, a unit vector pointing from the center of the
// earth directly inbetween the two endpoints.
double w[3];
for (int c = 0; c < 3; ++c)
{
w[c] = (lastPoint[c] + curPoint[c])/2.0;
}
vtkMath::Normalize(w);
// The center of the circle used to draw the arc is a
// point along the vector w scaled by the explode factor.
double center[3];
for (int c = 0; c < 3; ++c)
{
center[c] = this->ExplodeFactor * this->GlobeRadius * w[c];
}
// The vectors u and x are unit vectors pointing from the
// center of the circle to the two endpoints of the arc,
// lastPoint and curPoint, respectively.
double u[3], x[3];
for (int c = 0; c < 3; ++c)
{
u[c] = lastPoint[c] - center[c];
x[c] = curPoint[c] - center[c];
}
double radius = vtkMath::Norm(u);
vtkMath::Normalize(u);
vtkMath::Normalize(x);
// Find the angle that the arc spans.
double theta = acos(vtkMath::Dot(u, x));
// If the vectors u, x point toward the center of the earth, take
// the larger angle between the vectors.
// We determine whether u points toward the center of the earth
// by checking whether the dot product of u and w is negative.
if (vtkMath::Dot(w, u) < 0)
{
theta = 2.0*vtkMath::Pi() - theta;
}
// We need two perpendicular vectors on the plane of the circle
// in order to draw the circle. First we calculate n, a vector
// normal to the circle, by crossing u and w. Next, we cross
// n and u in order to get a vector v in the plane of the circle
// that is perpendicular to u.
double n[3];
vtkMath::Cross(u, w, n);
vtkMath::Normalize(n);
double v[3];
vtkMath::Cross(n, u, v);
vtkMath::Normalize(v);
// Use the general equation for a circle in three dimensions
// to draw an arc from the last point to the current point.
for (int s = 0; s < this->NumberOfSubdivisions; ++s)
{
double angle = s * theta / (this->NumberOfSubdivisions - 1.0);
double circlePt[3];
for (int c = 0; c < 3; ++c)
{
circlePt[c] = center[c] + radius*cos(angle)*u[c] + radius*sin(angle)*v[c];
}
vtkIdType newPt = newPoints->InsertNextPoint(circlePt);
newLines->InsertCellPoint(newPt);
}
for (int c = 0; c < 3; ++c)
{
lastPoint[c] = curPoint[c];
}
}
}
// Send the data to output.
output->SetLines(newLines);
output->SetPoints(newPoints);
// Clean up.
newLines->Delete();
newPoints->Delete();
return 1;
}
void vtkGeoArcs::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os,indent);
os << indent << "GlobeRadius: " << this->GlobeRadius << endl;
os << indent << "ExplodeFactor: " << this->ExplodeFactor << endl;
os << indent << "NumberOfSubdivisions: " << this->NumberOfSubdivisions << endl;
}