Files
ThirdParty-6/ParaView-5.0.1/VTK/Parallel/MPI4Py/Testing/Python/TestParallelNumpy.py

279 lines
9.6 KiB
Python

""" Test for various numpy_interface modules. Main goal is to test
parallel algorithms in vtk.numpy_interface.algorithms."""
from __future__ import print_function
import sys
try:
import numpy
except ImportError:
print("Numpy (http://numpy.scipy.org) not found.", end=' ')
print("This test requires numpy!")
sys.exit(0)
import vtk
from vtk.test import Testing
import vtk.numpy_interface.dataset_adapter as dsa
import vtk.numpy_interface.algorithms as algs
from mpi4py import MPI
c = vtk.vtkMPIController()
#c.SetGlobalController(None)
rank = c.GetLocalProcessId()
size = c.GetNumberOfProcesses()
def PRINT(text, values):
if values is dsa.NoneArray:
values = numpy.array(0, dtype=numpy.float64)
else:
values = numpy.array(numpy.sum(values)).astype(numpy.float64)
res = numpy.array(values)
MPI.COMM_WORLD.Allreduce([values, MPI.DOUBLE], [res, MPI.DOUBLE], MPI.SUM)
assert numpy.abs(res) < 1E-5
if rank == 0:
print(text, res)
def testArrays(rtData, rtData2, grad, grad2, total_npts):
" Test various parallel algorithms."
if rank == 0:
print('-----------------------')
PRINT( "SUM ones:", algs.sum(rtData / rtData) - total_npts )
PRINT( "SUM sin:", (algs.sum(algs.sin(rtData) + 1) - numpy.sum(numpy.sin(rtData2) + 1)) / numpy.sum(numpy.sin(rtData2) + 1) )
PRINT( "rtData min:", algs.min(rtData) - numpy.min(rtData2) )
PRINT( "rtData max:", algs.max(rtData) - numpy.max(rtData2) )
PRINT( "rtData sum:", (algs.sum(rtData) - numpy.sum(rtData2)) / (2*numpy.sum(rtData2)) )
PRINT( "rtData mean:", (algs.mean(rtData) - numpy.mean(rtData2)) / (2*numpy.mean(rtData2)) )
PRINT( "rtData var:", (algs.var(rtData) - numpy.var(rtData2)) / numpy.var(rtData2) )
PRINT( "rtData std:", (algs.std(rtData) - numpy.std(rtData2)) / numpy.std(rtData2) )
PRINT( "grad min:", algs.min(grad) - numpy.min(grad2) )
PRINT( "grad max:", algs.max(grad) - numpy.max(grad2) )
PRINT( "grad min 0:", algs.min(grad, 0) - numpy.min(grad2, 0) )
PRINT( "grad max 0:", algs.max(grad, 0) - numpy.max(grad2, 0) )
PRINT( "grad min 1:", algs.sum(algs.min(grad, 1)) - numpy.sum(numpy.min(grad2, 1)) )
PRINT( "grad max 1:", algs.sum(algs.max(grad, 1)) - numpy.sum(numpy.max(grad2, 1)) )
PRINT( "grad sum 1:", algs.sum(algs.sum(grad, 1)) - numpy.sum(numpy.sum(grad2, 1)) )
PRINT( "grad var:", (algs.var(grad) - numpy.var(grad2)) / numpy.var(grad2) )
PRINT( "grad var 0:", (algs.var(grad, 0) - numpy.var(grad2, 0)) / numpy.var(grad2, 0) )
w = vtk.vtkRTAnalyticSource()
w.UpdateInformation()
# Update with ghost level because gradient needs it
# to be piece independent
w.SetUpdateExtent(rank, size, 1)
w.Update()
# The parallel arrays that we care about
ds = dsa.WrapDataObject(w.GetOutput())
rtData = ds.PointData['RTData']
grad = algs.gradient(rtData)
ds.PointData.append(grad, 'gradient')
# Crop the any ghost points out
org_ext = w.GetOutput().GetExtent()
ext = list(org_ext)
wext = w.GetOutputInformation(0).Get(vtk.vtkStreamingDemandDrivenPipeline.WHOLE_EXTENT())
for i in range(3):
if ext[2*i] != wext[2*i]:
ext[2*i] = ext[2*i] + 2
if ext[2*i+1] != wext[2*i+1]:
ext[2*i+1] = ext[2*i+1] - 1
if ext != list(org_ext):
w.GetOutput().Crop(ext)
# Croppped arrays
rtData = ds.PointData['RTData']
grad = ds.PointData['gradient']
# The whole dataset so that we can compare
# against parallel algorithms.
w2 = vtk.vtkRTAnalyticSource()
w2.Update()
ds2 = dsa.WrapDataObject(w2.GetOutput())
rtData2 = ds2.PointData['RTData']
grad2 = algs.gradient(rtData2)
npts = numpy.array(numpy.int32(ds.GetNumberOfPoints()))
total_npts = numpy.array(npts)
MPI.COMM_WORLD.Allreduce([npts, MPI.INT], [total_npts, MPI.INT], MPI.SUM)
# Test simple distributed data.
testArrays(rtData, rtData2, grad, grad2, total_npts)
# Check that we can disable parallelism by using a dummy controller
# even when a global controller is set
assert algs.sum(rtData / rtData, controller=vtk.vtkDummyController()) != total_npts
# Test where arrays are NoneArray on one of the ranks.
if size > 1:
if rank == 0:
rtData3 = rtData2
grad3 = grad2
else:
rtData3 = dsa.NoneArray
grad3 = dsa.NoneArray
testArrays(rtData3, rtData2, grad3, grad2, total_npts)
# Test composite arrays
rtData3 = dsa.VTKCompositeDataArray([rtData, dsa.NoneArray])
grad3 = dsa.VTKCompositeDataArray([dsa.NoneArray, grad])
testArrays(rtData3, rtData2, grad3, grad2, total_npts)
# Test where arrays are NoneArray on one of the ranks
# and composite on others.
if size > 1:
if rank == 1:
rtData3 = dsa.VTKCompositeDataArray([rtData2])
grad3 = dsa.VTKCompositeDataArray([grad2])
else:
rtData3 = dsa.NoneArray
grad3 = dsa.NoneArray
testArrays(rtData3, rtData2, grad3, grad2, total_npts)
# Test composite arrays with multiple blocks.
# Split the local image to 2.
datasets = []
for i in range(2):
image = vtk.vtkImageData()
image.ShallowCopy(w.GetOutput())
t = vtk.vtkExtentTranslator()
wext = image.GetExtent()
t.SetWholeExtent(wext)
t.SetPiece(i)
t.SetNumberOfPieces(2)
t.PieceToExtent()
ext = list(t.GetExtent())
# Crop the any ghost points out
for i in range(3):
if ext[2*i] != wext[2*i]:
ext[2*i] = ext[2*i] + 1
if ext != list(org_ext):
image.Crop(ext)
datasets.append(dsa.WrapDataObject(image))
rtData3 = dsa.VTKCompositeDataArray([datasets[0].PointData['RTData'], datasets[1].PointData['RTData']])
grad3 = dsa.VTKCompositeDataArray([datasets[0].PointData['gradient'], datasets[1].PointData['gradient']])
testArrays(rtData3, rtData2, grad3, grad2, total_npts)
# Test min/max per block
NUM_BLOCKS = 10
w = vtk.vtkRTAnalyticSource()
w.SetWholeExtent(0, 10, 0, 10, 0, 10)
w.Update()
c = vtk.vtkMultiBlockDataSet()
c.SetNumberOfBlocks(size*NUM_BLOCKS)
if rank == 0:
start = 0
end = NUM_BLOCKS
else:
start = rank*NUM_BLOCKS - 3
end = start + NUM_BLOCKS
for i in range(start, end):
a = vtk.vtkImageData()
a.ShallowCopy(w.GetOutput())
c.SetBlock(i, a)
if rank == 0:
c.SetBlock(NUM_BLOCKS - 1, vtk.vtkPolyData())
cdata = dsa.WrapDataObject(c)
rtdata = cdata.PointData['RTData']
rtdata = algs.abs(rtdata)
g = algs.gradient(rtdata)
g2 = algs.gradient(g)
res = True
dummy = vtk.vtkDummyController()
for axis in [None, 0]:
for array in [rtdata, g, g2]:
if rank == 0:
array2 = array/2
min = algs.min_per_block(array2, axis=axis)
res &= numpy.all(min.Arrays[NUM_BLOCKS - 1] == numpy.min(array, axis=axis))
all_min = algs.min(min, controller=dummy)
all_min_true = numpy.min([algs.min(array, controller=dummy), algs.min(array2, controller=dummy)])
res &= all_min == all_min_true
max = algs.max_per_block(array2, axis=axis)
res &= numpy.all(max.Arrays[NUM_BLOCKS - 1] == numpy.max(array, axis=axis))
all_max = algs.max(max, controller=dummy)
all_max_true = numpy.max([algs.max(array, controller=dummy), algs.max(array2, controller=dummy)])
res &= all_max == all_max_true
sum = algs.sum_per_block(array2, axis=axis)
sum_true = numpy.sum(array2.Arrays[0]) * (NUM_BLOCKS-1)
sum_true += numpy.sum(array.Arrays[0]) * 3
res &= numpy.sum(algs.sum(sum, controller=dummy) - algs.sum(sum_true, controller=dummy)) == 0
mean = algs.mean_per_block(array2, axis=axis)
res &= numpy.sum(mean.Arrays[0] - numpy.mean(array2.Arrays[0], axis=axis)) < 1E-6
if len(array.Arrays[0].shape) == 1:
stk = numpy.hstack
else:
stk = numpy.vstack
res &= numpy.sum(mean.Arrays[NUM_BLOCKS-2] - numpy.mean(stk((array.Arrays[0], array2.Arrays[0])), axis=axis)) < 1E-4
elif rank == 2:
min = algs.min_per_block(dsa.NoneArray, axis=axis)
max = algs.max_per_block(dsa.NoneArray, axis=axis)
sum = algs.sum_per_block(dsa.NoneArray, axis=axis)
mean = algs.mean_per_block(dsa.NoneArray, axis=axis)
else:
min = algs.min_per_block(array, axis=axis)
max = algs.max_per_block(array, axis=axis)
sum = algs.sum_per_block(array, axis=axis)
mean = algs.mean_per_block(array, axis=axis)
if array is g and axis == 0:
ug = algs.unstructured_from_composite_arrays(mean, [(mean, 'mean')])
if mean is dsa.NoneArray:
res &= ug.GetNumberOfPoints() == 0
else:
_array = ug.GetPointData().GetArray('mean')
ntuples = _array.GetNumberOfTuples()
for i in range(ntuples):
if rank == 1:
idx = i+3
else:
idx = i
res &= _array.GetTuple(i) == tuple(mean.Arrays[idx])
res &= algs.min_per_block(dsa.NoneArray) is dsa.NoneArray
if rank == 0:
min = algs.min_per_block(rtdata.Arrays[0]/2)
elif rank == 2:
min = algs.min_per_block(dsa.NoneArray)
res &= min is dsa.NoneArray
else:
min = algs.min_per_block(rtdata.Arrays[0])
if rank == 0:
min = algs.min(rtdata.Arrays[0])
res &= min == numpy.min(rtdata.Arrays[0])
else:
min = algs.min(dsa.NoneArray)
res &= min is dsa.NoneArray
res &= algs.min(dsa.NoneArray) is dsa.NoneArray
if rank == 0:
res &= numpy.all(algs.min(g2, axis=0) == numpy.min(g2.Arrays[0], axis=0))
else:
res &= algs.min(dsa.NoneArray, axis=0) is dsa.NoneArray
res = numpy.array(res, dtype=numpy.bool)
all_res = numpy.array(res)
mpitype = algs._lookup_mpi_type(numpy.bool)
MPI.COMM_WORLD.Allreduce([res, mpitype], [all_res, mpitype], MPI.LAND)
assert all_res