mirror of
https://github.com/OpenFOAM/ThirdParty-6.git
synced 2025-12-08 06:57:43 +00:00
612 lines
20 KiB
C++
612 lines
20 KiB
C++
/*************************************************************************
|
||
Copyright (c) 2005-2007, Sergey Bochkanov (ALGLIB project).
|
||
|
||
Redistribution and use in source and binary forms, with or without
|
||
modification, are permitted provided that the following conditions are
|
||
met:
|
||
|
||
- Redistributions of source code must retain the above copyright
|
||
notice, this list of conditions and the following disclaimer.
|
||
|
||
- Redistributions in binary form must reproduce the above copyright
|
||
notice, this list of conditions and the following disclaimer listed
|
||
in this license in the documentation and/or other materials
|
||
provided with the distribution.
|
||
|
||
- Neither the name of the copyright holders nor the names of its
|
||
contributors may be used to endorse or promote products derived from
|
||
this software without specific prior written permission.
|
||
|
||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
*************************************************************************/
|
||
|
||
#include "alglib/svd.h"
|
||
|
||
/*************************************************************************
|
||
Singular value decomposition of a rectangular matrix.
|
||
|
||
The algorithm calculates the singular value decomposition of a matrix of
|
||
size MxN: A = U * S * V^T
|
||
|
||
The algorithm finds the singular values and, optionally, matrices U and V^T.
|
||
The algorithm can find both first min(M,N) columns of matrix U and rows of
|
||
matrix V^T (singular vectors), and matrices U and V^T wholly (of sizes MxM
|
||
and NxN respectively).
|
||
|
||
Take into account that the subroutine does not return matrix V but V^T.
|
||
|
||
Input parameters:
|
||
A - matrix to be decomposed.
|
||
Array whose indexes range within [0..M-1, 0..N-1].
|
||
M - number of rows in matrix A.
|
||
N - number of columns in matrix A.
|
||
UNeeded - 0, 1 or 2. See the description of the parameter U.
|
||
VTNeeded - 0, 1 or 2. See the description of the parameter VT.
|
||
AdditionalMemory -
|
||
If the parameter:
|
||
* equals 0, the algorithm doesn<73>t use additional
|
||
memory (lower requirements, lower performance).
|
||
* equals 1, the algorithm uses additional
|
||
memory of size min(M,N)*min(M,N) of real numbers.
|
||
It often speeds up the algorithm.
|
||
* equals 2, the algorithm uses additional
|
||
memory of size M*min(M,N) of real numbers.
|
||
It allows to get a maximum performance.
|
||
The recommended value of the parameter is 2.
|
||
|
||
Output parameters:
|
||
W - contains singular values in descending order.
|
||
U - if UNeeded=0, U isn't changed, the left singular vectors
|
||
are not calculated.
|
||
if Uneeded=1, U contains left singular vectors (first
|
||
min(M,N) columns of matrix U). Array whose indexes range
|
||
within [0..M-1, 0..Min(M,N)-1].
|
||
if UNeeded=2, U contains matrix U wholly. Array whose
|
||
indexes range within [0..M-1, 0..M-1].
|
||
VT - if VTNeeded=0, VT isn<73>t changed, the right singular vectors
|
||
are not calculated.
|
||
if VTNeeded=1, VT contains right singular vectors (first
|
||
min(M,N) rows of matrix V^T). Array whose indexes range
|
||
within [0..min(M,N)-1, 0..N-1].
|
||
if VTNeeded=2, VT contains matrix V^T wholly. Array whose
|
||
indexes range within [0..N-1, 0..N-1].
|
||
|
||
-- ALGLIB --
|
||
Copyright 2005 by Bochkanov Sergey
|
||
*************************************************************************/
|
||
bool rmatrixsvd(ap::real_2d_array a,
|
||
int m,
|
||
int n,
|
||
int uneeded,
|
||
int vtneeded,
|
||
int additionalmemory,
|
||
ap::real_1d_array& w,
|
||
ap::real_2d_array& u,
|
||
ap::real_2d_array& vt)
|
||
{
|
||
bool result;
|
||
ap::real_1d_array tauq;
|
||
ap::real_1d_array taup;
|
||
ap::real_1d_array tau;
|
||
ap::real_1d_array e;
|
||
ap::real_1d_array work;
|
||
ap::real_2d_array t2;
|
||
bool isupper;
|
||
int minmn;
|
||
int ncu;
|
||
int nrvt;
|
||
int nru;
|
||
int ncvt;
|
||
int i;
|
||
int j;
|
||
|
||
result = true;
|
||
if( m==0||n==0 )
|
||
{
|
||
return result;
|
||
}
|
||
ap::ap_error::make_assertion(uneeded>=0&&uneeded<=2, "SVDDecomposition: wrong parameters!");
|
||
ap::ap_error::make_assertion(vtneeded>=0&&vtneeded<=2, "SVDDecomposition: wrong parameters!");
|
||
ap::ap_error::make_assertion(additionalmemory>=0&&additionalmemory<=2, "SVDDecomposition: wrong parameters!");
|
||
|
||
//
|
||
// initialize
|
||
//
|
||
minmn = ap::minint(m, n);
|
||
w.setbounds(1, minmn);
|
||
ncu = 0;
|
||
nru = 0;
|
||
if( uneeded==1 )
|
||
{
|
||
nru = m;
|
||
ncu = minmn;
|
||
u.setbounds(0, nru-1, 0, ncu-1);
|
||
}
|
||
if( uneeded==2 )
|
||
{
|
||
nru = m;
|
||
ncu = m;
|
||
u.setbounds(0, nru-1, 0, ncu-1);
|
||
}
|
||
nrvt = 0;
|
||
ncvt = 0;
|
||
if( vtneeded==1 )
|
||
{
|
||
nrvt = minmn;
|
||
ncvt = n;
|
||
vt.setbounds(0, nrvt-1, 0, ncvt-1);
|
||
}
|
||
if( vtneeded==2 )
|
||
{
|
||
nrvt = n;
|
||
ncvt = n;
|
||
vt.setbounds(0, nrvt-1, 0, ncvt-1);
|
||
}
|
||
|
||
//
|
||
// M much larger than N
|
||
// Use bidiagonal reduction with QR-decomposition
|
||
//
|
||
if( m>1.6*n )
|
||
{
|
||
if( uneeded==0 )
|
||
{
|
||
|
||
//
|
||
// No left singular vectors to be computed
|
||
//
|
||
rmatrixqr(a, m, n, tau);
|
||
for(i = 0; i <= n-1; i++)
|
||
{
|
||
for(j = 0; j <= i-1; j++)
|
||
{
|
||
a(i,j) = 0;
|
||
}
|
||
}
|
||
rmatrixbd(a, n, n, tauq, taup);
|
||
rmatrixbdunpackpt(a, n, n, taup, nrvt, vt);
|
||
rmatrixbdunpackdiagonals(a, n, n, isupper, w, e);
|
||
result = rmatrixbdsvd(w, e, n, isupper, false, u, 0, a, 0, vt, ncvt);
|
||
return result;
|
||
}
|
||
else
|
||
{
|
||
|
||
//
|
||
// Left singular vectors (may be full matrix U) to be computed
|
||
//
|
||
rmatrixqr(a, m, n, tau);
|
||
rmatrixqrunpackq(a, m, n, tau, ncu, u);
|
||
for(i = 0; i <= n-1; i++)
|
||
{
|
||
for(j = 0; j <= i-1; j++)
|
||
{
|
||
a(i,j) = 0;
|
||
}
|
||
}
|
||
rmatrixbd(a, n, n, tauq, taup);
|
||
rmatrixbdunpackpt(a, n, n, taup, nrvt, vt);
|
||
rmatrixbdunpackdiagonals(a, n, n, isupper, w, e);
|
||
if( additionalmemory<1 )
|
||
{
|
||
|
||
//
|
||
// No additional memory can be used
|
||
//
|
||
rmatrixbdmultiplybyq(a, n, n, tauq, u, m, n, true, false);
|
||
result = rmatrixbdsvd(w, e, n, isupper, false, u, m, a, 0, vt, ncvt);
|
||
}
|
||
else
|
||
{
|
||
|
||
//
|
||
// Large U. Transforming intermediate matrix T2
|
||
//
|
||
work.setbounds(1, ap::maxint(m, n));
|
||
rmatrixbdunpackq(a, n, n, tauq, n, t2);
|
||
copymatrix(u, 0, m-1, 0, n-1, a, 0, m-1, 0, n-1);
|
||
inplacetranspose(t2, 0, n-1, 0, n-1, work);
|
||
result = rmatrixbdsvd(w, e, n, isupper, false, u, 0, t2, n, vt, ncvt);
|
||
matrixmatrixmultiply(a, 0, m-1, 0, n-1, false, t2, 0, n-1, 0, n-1, true, 1.0, u, 0, m-1, 0, n-1, 0.0, work);
|
||
}
|
||
return result;
|
||
}
|
||
}
|
||
|
||
//
|
||
// N much larger than M
|
||
// Use bidiagonal reduction with LQ-decomposition
|
||
//
|
||
if( n>1.6*m )
|
||
{
|
||
if( vtneeded==0 )
|
||
{
|
||
|
||
//
|
||
// No right singular vectors to be computed
|
||
//
|
||
rmatrixlq(a, m, n, tau);
|
||
for(i = 0; i <= m-1; i++)
|
||
{
|
||
for(j = i+1; j <= m-1; j++)
|
||
{
|
||
a(i,j) = 0;
|
||
}
|
||
}
|
||
rmatrixbd(a, m, m, tauq, taup);
|
||
rmatrixbdunpackq(a, m, m, tauq, ncu, u);
|
||
rmatrixbdunpackdiagonals(a, m, m, isupper, w, e);
|
||
work.setbounds(1, m);
|
||
inplacetranspose(u, 0, nru-1, 0, ncu-1, work);
|
||
result = rmatrixbdsvd(w, e, m, isupper, false, a, 0, u, nru, vt, 0);
|
||
inplacetranspose(u, 0, nru-1, 0, ncu-1, work);
|
||
return result;
|
||
}
|
||
else
|
||
{
|
||
|
||
//
|
||
// Right singular vectors (may be full matrix VT) to be computed
|
||
//
|
||
rmatrixlq(a, m, n, tau);
|
||
rmatrixlqunpackq(a, m, n, tau, nrvt, vt);
|
||
for(i = 0; i <= m-1; i++)
|
||
{
|
||
for(j = i+1; j <= m-1; j++)
|
||
{
|
||
a(i,j) = 0;
|
||
}
|
||
}
|
||
rmatrixbd(a, m, m, tauq, taup);
|
||
rmatrixbdunpackq(a, m, m, tauq, ncu, u);
|
||
rmatrixbdunpackdiagonals(a, m, m, isupper, w, e);
|
||
work.setbounds(1, ap::maxint(m, n));
|
||
inplacetranspose(u, 0, nru-1, 0, ncu-1, work);
|
||
if( additionalmemory<1 )
|
||
{
|
||
|
||
//
|
||
// No additional memory available
|
||
//
|
||
rmatrixbdmultiplybyp(a, m, m, taup, vt, m, n, false, true);
|
||
result = rmatrixbdsvd(w, e, m, isupper, false, a, 0, u, nru, vt, n);
|
||
}
|
||
else
|
||
{
|
||
|
||
//
|
||
// Large VT. Transforming intermediate matrix T2
|
||
//
|
||
rmatrixbdunpackpt(a, m, m, taup, m, t2);
|
||
result = rmatrixbdsvd(w, e, m, isupper, false, a, 0, u, nru, t2, m);
|
||
copymatrix(vt, 0, m-1, 0, n-1, a, 0, m-1, 0, n-1);
|
||
matrixmatrixmultiply(t2, 0, m-1, 0, m-1, false, a, 0, m-1, 0, n-1, false, 1.0, vt, 0, m-1, 0, n-1, 0.0, work);
|
||
}
|
||
inplacetranspose(u, 0, nru-1, 0, ncu-1, work);
|
||
return result;
|
||
}
|
||
}
|
||
|
||
//
|
||
// M<=N
|
||
// We can use inplace transposition of U to get rid of columnwise operations
|
||
//
|
||
if( m<=n )
|
||
{
|
||
rmatrixbd(a, m, n, tauq, taup);
|
||
rmatrixbdunpackq(a, m, n, tauq, ncu, u);
|
||
rmatrixbdunpackpt(a, m, n, taup, nrvt, vt);
|
||
rmatrixbdunpackdiagonals(a, m, n, isupper, w, e);
|
||
work.setbounds(1, m);
|
||
inplacetranspose(u, 0, nru-1, 0, ncu-1, work);
|
||
result = rmatrixbdsvd(w, e, minmn, isupper, false, a, 0, u, nru, vt, ncvt);
|
||
inplacetranspose(u, 0, nru-1, 0, ncu-1, work);
|
||
return result;
|
||
}
|
||
|
||
//
|
||
// Simple bidiagonal reduction
|
||
//
|
||
rmatrixbd(a, m, n, tauq, taup);
|
||
rmatrixbdunpackq(a, m, n, tauq, ncu, u);
|
||
rmatrixbdunpackpt(a, m, n, taup, nrvt, vt);
|
||
rmatrixbdunpackdiagonals(a, m, n, isupper, w, e);
|
||
if( additionalmemory<2||uneeded==0 )
|
||
{
|
||
|
||
//
|
||
// We cant use additional memory or there is no need in such operations
|
||
//
|
||
result = rmatrixbdsvd(w, e, minmn, isupper, false, u, nru, a, 0, vt, ncvt);
|
||
}
|
||
else
|
||
{
|
||
|
||
//
|
||
// We can use additional memory
|
||
//
|
||
t2.setbounds(0, minmn-1, 0, m-1);
|
||
copyandtranspose(u, 0, m-1, 0, minmn-1, t2, 0, minmn-1, 0, m-1);
|
||
result = rmatrixbdsvd(w, e, minmn, isupper, false, u, 0, t2, m, vt, ncvt);
|
||
copyandtranspose(t2, 0, minmn-1, 0, m-1, u, 0, m-1, 0, minmn-1);
|
||
}
|
||
return result;
|
||
}
|
||
|
||
|
||
/*************************************************************************
|
||
Obsolete 1-based subroutine.
|
||
See RMatrixSVD for 0-based replacement.
|
||
*************************************************************************/
|
||
bool svddecomposition(ap::real_2d_array a,
|
||
int m,
|
||
int n,
|
||
int uneeded,
|
||
int vtneeded,
|
||
int additionalmemory,
|
||
ap::real_1d_array& w,
|
||
ap::real_2d_array& u,
|
||
ap::real_2d_array& vt)
|
||
{
|
||
bool result;
|
||
ap::real_1d_array tauq;
|
||
ap::real_1d_array taup;
|
||
ap::real_1d_array tau;
|
||
ap::real_1d_array e;
|
||
ap::real_1d_array work;
|
||
ap::real_2d_array t2;
|
||
bool isupper;
|
||
int minmn;
|
||
int ncu;
|
||
int nrvt;
|
||
int nru;
|
||
int ncvt;
|
||
int i;
|
||
int j;
|
||
|
||
result = true;
|
||
if( m==0||n==0 )
|
||
{
|
||
return result;
|
||
}
|
||
ap::ap_error::make_assertion(uneeded>=0&&uneeded<=2, "SVDDecomposition: wrong parameters!");
|
||
ap::ap_error::make_assertion(vtneeded>=0&&vtneeded<=2, "SVDDecomposition: wrong parameters!");
|
||
ap::ap_error::make_assertion(additionalmemory>=0&&additionalmemory<=2, "SVDDecomposition: wrong parameters!");
|
||
|
||
//
|
||
// initialize
|
||
//
|
||
minmn = ap::minint(m, n);
|
||
w.setbounds(1, minmn);
|
||
ncu = 0;
|
||
nru = 0;
|
||
if( uneeded==1 )
|
||
{
|
||
nru = m;
|
||
ncu = minmn;
|
||
u.setbounds(1, nru, 1, ncu);
|
||
}
|
||
if( uneeded==2 )
|
||
{
|
||
nru = m;
|
||
ncu = m;
|
||
u.setbounds(1, nru, 1, ncu);
|
||
}
|
||
nrvt = 0;
|
||
ncvt = 0;
|
||
if( vtneeded==1 )
|
||
{
|
||
nrvt = minmn;
|
||
ncvt = n;
|
||
vt.setbounds(1, nrvt, 1, ncvt);
|
||
}
|
||
if( vtneeded==2 )
|
||
{
|
||
nrvt = n;
|
||
ncvt = n;
|
||
vt.setbounds(1, nrvt, 1, ncvt);
|
||
}
|
||
|
||
//
|
||
// M much larger than N
|
||
// Use bidiagonal reduction with QR-decomposition
|
||
//
|
||
if( m>1.6*n )
|
||
{
|
||
if( uneeded==0 )
|
||
{
|
||
|
||
//
|
||
// No left singular vectors to be computed
|
||
//
|
||
qrdecomposition(a, m, n, tau);
|
||
for(i = 2; i <= n; i++)
|
||
{
|
||
for(j = 1; j <= i-1; j++)
|
||
{
|
||
a(i,j) = 0;
|
||
}
|
||
}
|
||
tobidiagonal(a, n, n, tauq, taup);
|
||
unpackptfrombidiagonal(a, n, n, taup, nrvt, vt);
|
||
unpackdiagonalsfrombidiagonal(a, n, n, isupper, w, e);
|
||
result = bidiagonalsvddecomposition(w, e, n, isupper, false, u, 0, a, 0, vt, ncvt);
|
||
return result;
|
||
}
|
||
else
|
||
{
|
||
|
||
//
|
||
// Left singular vectors (may be full matrix U) to be computed
|
||
//
|
||
qrdecomposition(a, m, n, tau);
|
||
unpackqfromqr(a, m, n, tau, ncu, u);
|
||
for(i = 2; i <= n; i++)
|
||
{
|
||
for(j = 1; j <= i-1; j++)
|
||
{
|
||
a(i,j) = 0;
|
||
}
|
||
}
|
||
tobidiagonal(a, n, n, tauq, taup);
|
||
unpackptfrombidiagonal(a, n, n, taup, nrvt, vt);
|
||
unpackdiagonalsfrombidiagonal(a, n, n, isupper, w, e);
|
||
if( additionalmemory<1 )
|
||
{
|
||
|
||
//
|
||
// No additional memory can be used
|
||
//
|
||
multiplybyqfrombidiagonal(a, n, n, tauq, u, m, n, true, false);
|
||
result = bidiagonalsvddecomposition(w, e, n, isupper, false, u, m, a, 0, vt, ncvt);
|
||
}
|
||
else
|
||
{
|
||
|
||
//
|
||
// Large U. Transforming intermediate matrix T2
|
||
//
|
||
work.setbounds(1, ap::maxint(m, n));
|
||
unpackqfrombidiagonal(a, n, n, tauq, n, t2);
|
||
copymatrix(u, 1, m, 1, n, a, 1, m, 1, n);
|
||
inplacetranspose(t2, 1, n, 1, n, work);
|
||
result = bidiagonalsvddecomposition(w, e, n, isupper, false, u, 0, t2, n, vt, ncvt);
|
||
matrixmatrixmultiply(a, 1, m, 1, n, false, t2, 1, n, 1, n, true, 1.0, u, 1, m, 1, n, 0.0, work);
|
||
}
|
||
return result;
|
||
}
|
||
}
|
||
|
||
//
|
||
// N much larger than M
|
||
// Use bidiagonal reduction with LQ-decomposition
|
||
//
|
||
if( n>1.6*m )
|
||
{
|
||
if( vtneeded==0 )
|
||
{
|
||
|
||
//
|
||
// No right singular vectors to be computed
|
||
//
|
||
lqdecomposition(a, m, n, tau);
|
||
for(i = 1; i <= m-1; i++)
|
||
{
|
||
for(j = i+1; j <= m; j++)
|
||
{
|
||
a(i,j) = 0;
|
||
}
|
||
}
|
||
tobidiagonal(a, m, m, tauq, taup);
|
||
unpackqfrombidiagonal(a, m, m, tauq, ncu, u);
|
||
unpackdiagonalsfrombidiagonal(a, m, m, isupper, w, e);
|
||
work.setbounds(1, m);
|
||
inplacetranspose(u, 1, nru, 1, ncu, work);
|
||
result = bidiagonalsvddecomposition(w, e, m, isupper, false, a, 0, u, nru, vt, 0);
|
||
inplacetranspose(u, 1, nru, 1, ncu, work);
|
||
return result;
|
||
}
|
||
else
|
||
{
|
||
|
||
//
|
||
// Right singular vectors (may be full matrix VT) to be computed
|
||
//
|
||
lqdecomposition(a, m, n, tau);
|
||
unpackqfromlq(a, m, n, tau, nrvt, vt);
|
||
for(i = 1; i <= m-1; i++)
|
||
{
|
||
for(j = i+1; j <= m; j++)
|
||
{
|
||
a(i,j) = 0;
|
||
}
|
||
}
|
||
tobidiagonal(a, m, m, tauq, taup);
|
||
unpackqfrombidiagonal(a, m, m, tauq, ncu, u);
|
||
unpackdiagonalsfrombidiagonal(a, m, m, isupper, w, e);
|
||
work.setbounds(1, ap::maxint(m, n));
|
||
inplacetranspose(u, 1, nru, 1, ncu, work);
|
||
if( additionalmemory<1 )
|
||
{
|
||
|
||
//
|
||
// No additional memory available
|
||
//
|
||
multiplybypfrombidiagonal(a, m, m, taup, vt, m, n, false, true);
|
||
result = bidiagonalsvddecomposition(w, e, m, isupper, false, a, 0, u, nru, vt, n);
|
||
}
|
||
else
|
||
{
|
||
|
||
//
|
||
// Large VT. Transforming intermediate matrix T2
|
||
//
|
||
unpackptfrombidiagonal(a, m, m, taup, m, t2);
|
||
result = bidiagonalsvddecomposition(w, e, m, isupper, false, a, 0, u, nru, t2, m);
|
||
copymatrix(vt, 1, m, 1, n, a, 1, m, 1, n);
|
||
matrixmatrixmultiply(t2, 1, m, 1, m, false, a, 1, m, 1, n, false, 1.0, vt, 1, m, 1, n, 0.0, work);
|
||
}
|
||
inplacetranspose(u, 1, nru, 1, ncu, work);
|
||
return result;
|
||
}
|
||
}
|
||
|
||
//
|
||
// M<=N
|
||
// We can use inplace transposition of U to get rid of columnwise operations
|
||
//
|
||
if( m<=n )
|
||
{
|
||
tobidiagonal(a, m, n, tauq, taup);
|
||
unpackqfrombidiagonal(a, m, n, tauq, ncu, u);
|
||
unpackptfrombidiagonal(a, m, n, taup, nrvt, vt);
|
||
unpackdiagonalsfrombidiagonal(a, m, n, isupper, w, e);
|
||
work.setbounds(1, m);
|
||
inplacetranspose(u, 1, nru, 1, ncu, work);
|
||
result = bidiagonalsvddecomposition(w, e, minmn, isupper, false, a, 0, u, nru, vt, ncvt);
|
||
inplacetranspose(u, 1, nru, 1, ncu, work);
|
||
return result;
|
||
}
|
||
|
||
//
|
||
// Simple bidiagonal reduction
|
||
//
|
||
tobidiagonal(a, m, n, tauq, taup);
|
||
unpackqfrombidiagonal(a, m, n, tauq, ncu, u);
|
||
unpackptfrombidiagonal(a, m, n, taup, nrvt, vt);
|
||
unpackdiagonalsfrombidiagonal(a, m, n, isupper, w, e);
|
||
if( additionalmemory<2||uneeded==0 )
|
||
{
|
||
|
||
//
|
||
// We cant use additional memory or there is no need in such operations
|
||
//
|
||
result = bidiagonalsvddecomposition(w, e, minmn, isupper, false, u, nru, a, 0, vt, ncvt);
|
||
}
|
||
else
|
||
{
|
||
|
||
//
|
||
// We can use additional memory
|
||
//
|
||
t2.setbounds(1, minmn, 1, m);
|
||
copyandtranspose(u, 1, m, 1, minmn, t2, 1, minmn, 1, m);
|
||
result = bidiagonalsvddecomposition(w, e, minmn, isupper, false, u, 0, t2, m, vt, ncvt);
|
||
copyandtranspose(t2, 1, minmn, 1, m, u, 1, m, 1, minmn);
|
||
}
|
||
return result;
|
||
}
|
||
|
||
|
||
|