Merge branch 'master' of ssh://noisy/home/noisy3/OpenFOAM/OpenFOAM-dev

This commit is contained in:
Henry
2010-10-07 12:43:55 +01:00
154 changed files with 1822 additions and 2391 deletions

View File

@ -12,7 +12,7 @@
);
TEqn.relax();
TEqn.solve();
TEqn.solve(mesh.solver(T.select(finalIter)));
rhok = 1.0 - beta*(T - TRef);
}

View File

@ -18,9 +18,10 @@
fvc::reconstruct
(
(
fvc::interpolate(rhok)*(g & mesh.Sf())
- fvc::snGrad(p)*mesh.magSf()
)
)
- ghf*fvc::snGrad(rhok)
- fvc::snGrad(p_rgh)
)*mesh.magSf()
),
mesh.solver(U.select(finalIter))
);
}

View File

@ -87,7 +87,7 @@ int main(int argc, char *argv[])
if (nOuterCorr != 1)
{
p.storePrevIter();
p_rgh.storePrevIter();
}
#include "UEqn.H"

View File

@ -14,12 +14,12 @@
mesh
);
Info<< "Reading field p\n" << endl;
volScalarField p
Info<< "Reading field p_rgh\n" << endl;
volScalarField p_rgh
(
IOobject
(
"p",
"p_rgh",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
@ -52,6 +52,18 @@
incompressible::RASModel::New(U, phi, laminarTransport)
);
// Kinematic density for buoyancy force
volScalarField rhok
(
IOobject
(
"rhok",
runTime.timeName(),
mesh
),
1.0 - beta*(T - TRef)
);
// kinematic turbulent thermal thermal conductivity m2/s
Info<< "Reading field kappat\n" << endl;
volScalarField kappat
@ -67,25 +79,41 @@
mesh
);
Info<< "Calculating field g.h\n" << endl;
volScalarField gh("gh", g & mesh.C());
surfaceScalarField ghf("ghf", g & mesh.Cf());
volScalarField p
(
IOobject
(
"p",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
p_rgh + rhok*gh
);
label pRefCell = 0;
scalar pRefValue = 0.0;
setRefCell
(
p,
p_rgh,
mesh.solutionDict().subDict("PIMPLE"),
pRefCell,
pRefValue
);
// Kinematic density for buoyancy force
volScalarField rhok
if (p_rgh.needReference())
{
p += dimensionedScalar
(
IOobject
(
"rhok",
runTime.timeName(),
mesh
),
1.0 - beta*(T - TRef)
"p",
p.dimensions(),
pRefValue - getRefCellValue(p, pRefCell)
);
}

View File

@ -7,22 +7,23 @@
phi = (fvc::interpolate(U) & mesh.Sf())
+ fvc::ddtPhiCorr(rUA, U, phi);
surfaceScalarField buoyancyPhi =
rUAf*fvc::interpolate(rhok)*(g & mesh.Sf());
phi += buoyancyPhi;
surfaceScalarField buoyancyPhi = rUAf*ghf*fvc::snGrad(rhok)*mesh.magSf();
phi -= buoyancyPhi;
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
{
fvScalarMatrix pEqn
fvScalarMatrix p_rghEqn
(
fvm::laplacian(rUAf, p) == fvc::div(phi)
fvm::laplacian(rUAf, p_rgh) == fvc::div(phi)
);
pEqn.solve
p_rghEqn.setReference(pRefCell, getRefCellValue(p_rgh, pRefCell));
p_rghEqn.solve
(
mesh.solver
(
p.select
p_rgh.select
(
(
finalIter
@ -36,17 +37,30 @@
if (nonOrth == nNonOrthCorr)
{
// Calculate the conservative fluxes
phi -= pEqn.flux();
phi -= p_rghEqn.flux();
// Explicitly relax pressure for momentum corrector
p.relax();
p_rgh.relax();
// Correct the momentum source with the pressure gradient flux
// calculated from the relaxed pressure
U += rUA*fvc::reconstruct((buoyancyPhi - pEqn.flux())/rUAf);
U -= rUA*fvc::reconstruct((buoyancyPhi + p_rghEqn.flux())/rUAf);
U.correctBoundaryConditions();
}
}
#include "continuityErrs.H"
p = p_rgh + rhok*gh;
if (p_rgh.needReference())
{
p += dimensionedScalar
(
"p",
p.dimensions(),
pRefValue - getRefCellValue(p, pRefCell)
);
p_rgh = p - rhok*gh;
}
}

View File

@ -96,29 +96,23 @@
p_rgh + rhok*gh
);
label p_rghRefCell = 0;
scalar p_rghRefValue = 0.0;
label pRefCell = 0;
scalar pRefValue = 0.0;
setRefCell
(
p,
p_rgh,
mesh.solutionDict().subDict("SIMPLE"),
p_rghRefCell,
p_rghRefValue
pRefCell,
pRefValue
);
scalar pRefValue = 0.0;
if (p_rgh.needReference())
{
pRefValue = readScalar
(
mesh.solutionDict().subDict("SIMPLE").lookup("pRefValue")
);
p += dimensionedScalar
(
"p",
p.dimensions(),
pRefValue - getRefCellValue(p, p_rghRefCell)
pRefValue - getRefCellValue(p, pRefCell)
);
}

View File

@ -18,17 +18,9 @@
fvm::laplacian(rUAf, p_rgh) == fvc::div(phi)
);
p_rghEqn.setReference(p_rghRefCell, p_rghRefValue);
p_rghEqn.setReference(pRefCell, getRefCellValue(p_rgh, pRefCell));
// retain the residual from the first iteration
if (nonOrth == 0)
{
p_rghEqn.solve();
}
else
{
p_rghEqn.solve();
}
if (nonOrth == nNonOrthCorr)
{
@ -55,7 +47,8 @@
(
"p",
p.dimensions(),
pRefValue - getRefCellValue(p, p_rghRefCell)
pRefValue - getRefCellValue(p, pRefCell)
);
p_rgh = p - rhok*gh;
}
}

View File

@ -17,8 +17,11 @@
==
fvc::reconstruct
(
fvc::interpolate(rho)*(g & mesh.Sf())
- fvc::snGrad(p)*mesh.magSf()
)
(
- ghf*fvc::snGrad(rho)
- fvc::snGrad(p_rgh)
)*mesh.magSf()
),
mesh.solver(U.select(finalIter))
);
}

View File

@ -80,7 +80,7 @@ int main(int argc, char *argv[])
if (nOuterCorr != 1)
{
p.storePrevIter();
p_rgh.storePrevIter();
}
#include "UEqn.H"

View File

@ -53,15 +53,30 @@
)
);
Info<< "Calculating field g.h\n" << endl;
volScalarField gh("gh", g & mesh.C());
surfaceScalarField ghf("ghf", g & mesh.Cf());
Info<< "Reading field p_rgh\n" << endl;
volScalarField p_rgh
(
IOobject
(
"p_rgh",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
// Force p_rgh to be consistent with p
p_rgh = p - rho*gh;
Info<< "Creating field DpDt\n" << endl;
volScalarField DpDt
(
"DpDt",
fvc::DDt(surfaceScalarField("phiU", phi/fvc::interpolate(rho)), p)
);
thermo.correct();
dimensionedScalar initialMass = fvc::domainIntegrate(rho);
dimensionedScalar totalVolume = sum(mesh.V());

View File

@ -9,7 +9,7 @@
);
hEqn.relax();
hEqn.solve();
hEqn.solve(mesh.solver(h.select(finalIter)));
thermo.correct();
}

View File

@ -1,11 +1,9 @@
{
bool closedVolume = p.needReference();
rho = thermo.rho();
// Thermodynamic density needs to be updated by psi*d(p) after the
// pressure solution - done in 2 parts. Part 1:
thermo.rho() -= psi*p;
thermo.rho() -= psi*p_rgh;
volScalarField rUA = 1.0/UEqn.A();
surfaceScalarField rhorUAf("(rho*(1|A(U)))", fvc::interpolate(rho*rUA));
@ -18,24 +16,23 @@
+ fvc::ddtPhiCorr(rUA, rho, U, phi)
);
surfaceScalarField buoyancyPhi =
rhorUAf*fvc::interpolate(rho)*(g & mesh.Sf());
surfaceScalarField buoyancyPhi = -rhorUAf*ghf*fvc::snGrad(rho)*mesh.magSf();
phi += buoyancyPhi;
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
{
fvScalarMatrix pEqn
fvScalarMatrix p_rghEqn
(
fvc::ddt(rho) + psi*correction(fvm::ddt(p))
fvc::ddt(rho) + psi*correction(fvm::ddt(p_rgh))
+ fvc::div(phi)
- fvm::laplacian(rhorUAf, p)
- fvm::laplacian(rhorUAf, p_rgh)
);
pEqn.solve
p_rghEqn.solve
(
mesh.solver
(
p.select
p_rgh.select
(
(
finalIter
@ -49,34 +46,25 @@
if (nonOrth == nNonOrthCorr)
{
// Calculate the conservative fluxes
phi += pEqn.flux();
phi += p_rghEqn.flux();
// Explicitly relax pressure for momentum corrector
p.relax();
p_rgh.relax();
// Correct the momentum source with the pressure gradient flux
// calculated from the relaxed pressure
U += rUA*fvc::reconstruct((buoyancyPhi + pEqn.flux())/rhorUAf);
U += rUA*fvc::reconstruct((buoyancyPhi + p_rghEqn.flux())/rhorUAf);
U.correctBoundaryConditions();
}
}
p = p_rgh + rho*gh;
// Second part of thermodynamic density update
thermo.rho() += psi*p;
thermo.rho() += psi*p_rgh;
DpDt = fvc::DDt(surfaceScalarField("phiU", phi/fvc::interpolate(rho)), p);
#include "rhoEqn.H"
#include "compressibleContinuityErrs.H"
// For closed-volume cases adjust the pressure and density levels
// to obey overall mass continuity
if (closedVolume)
{
p +=
(initialMass - fvc::domainIntegrate(psi*p))
/fvc::domainIntegrate(psi);
thermo.rho() = psi*p;
rho += (initialMass - fvc::domainIntegrate(rho))/totalVolume;
}
}

View File

@ -62,11 +62,8 @@ int main(int argc, char *argv[])
{
#include "UEqn.H"
#include "hEqn.H"
for (int i=0; i<3; i++)
{
#include "pEqn.H"
}
}
turbulence->correct();

View File

@ -23,20 +23,6 @@
volScalarField& h = thermo.h();
const volScalarField& psi = thermo.psi();
Info<< "Reading field p_rgh\n" << endl;
volScalarField p_rgh
(
IOobject
(
"p_rgh",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
Info<< "Reading field U\n" << endl;
volVectorField U
(
@ -53,7 +39,6 @@
#include "compressibleCreatePhi.H"
Info<< "Creating turbulence model\n" << endl;
autoPtr<compressible::RASModel> turbulence
(
@ -66,40 +51,39 @@
)
);
Info<< "Calculating field g.h\n" << endl;
volScalarField gh("gh", g & mesh.C());
surfaceScalarField ghf("ghf", g & mesh.Cf());
p = p_rgh + rho*gh;
thermo.correct();
rho = thermo.rho();
Info<< "Reading field p_rgh\n" << endl;
volScalarField p_rgh
(
IOobject
(
"p_rgh",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
// Force p_rgh to be consistent with p
p_rgh = p - rho*gh;
label p_rghRefCell = 0;
scalar p_rghRefValue = 0.0;
label pRefCell = 0;
scalar pRefValue = 0.0;
setRefCell
(
p,
p_rgh,
mesh.solutionDict().subDict("SIMPLE"),
p_rghRefCell,
p_rghRefValue
pRefCell,
pRefValue
);
scalar pRefValue = 0.0;
if (p_rgh.needReference())
{
pRefValue = readScalar
(
mesh.solutionDict().subDict("SIMPLE").lookup("pRefValue")
);
p += dimensionedScalar
(
"p",
p.dimensions(),
pRefValue - getRefCellValue(p, p_rghRefCell)
);
}
dimensionedScalar initialMass = fvc::domainIntegrate(rho);
dimensionedScalar totalVolume = sum(mesh.V());

View File

@ -1,11 +1,12 @@
{
rho = thermo.rho();
rho.relax();
volScalarField rUA = 1.0/UEqn().A();
surfaceScalarField rhorUAf("(rho*(1|A(U)))", fvc::interpolate(rho*rUA));
U = rUA*UEqn().H();
//UEqn.clear();
UEqn.clear();
phi = fvc::interpolate(rho)*(fvc::interpolate(U) & mesh.Sf());
bool closedVolume = adjustPhi(phi, U, p_rgh);
@ -20,7 +21,7 @@
fvm::laplacian(rhorUAf, p_rgh) == fvc::div(phi)
);
p_rghEqn.setReference(p_rghRefCell, p_rghRefValue);
p_rghEqn.setReference(pRefCell, getRefCellValue(p_rgh, pRefCell));
p_rghEqn.solve();
if (nonOrth == nNonOrthCorr)
@ -42,13 +43,13 @@
p = p_rgh + rho*gh;
// For closed-volume cases adjust the pressure and density levels
// For closed-volume cases adjust the pressure level
// to obey overall mass continuity
if (closedVolume)
{
p += (initialMass - fvc::domainIntegrate(psi*p))
/fvc::domainIntegrate(psi);
p_rgh == p - rho*gh;
p_rgh = p - rho*gh;
}
rho = thermo.rho();

View File

@ -58,7 +58,7 @@ int main(int argc, char *argv[])
#include "readSIMPLEControls.H"
p.storePrevIter();
p_rgh.storePrevIter();
rho.storePrevIter();
// Pressure-velocity SIMPLE corrector

View File

@ -93,6 +93,8 @@ int main(int argc, char *argv[])
// --- PIMPLE loop
for (int oCorr=0; oCorr<nOuterCorr; oCorr++)
{
bool finalIter = oCorr == nOuterCorr-1;
forAll(fluidRegions, i)
{
Info<< "\nSolving for fluid region "

View File

@ -13,7 +13,9 @@
==
fvc::reconstruct
(
fvc::interpolate(rho)*(g & mesh.Sf())
- fvc::snGrad(p)*mesh.magSf()
(
- ghf*fvc::snGrad(rho)
- fvc::snGrad(p_rgh)
)*mesh.magSf()
)
);

View File

@ -6,12 +6,16 @@
PtrList<surfaceScalarField> phiFluid(fluidRegions.size());
PtrList<uniformDimensionedVectorField> gFluid(fluidRegions.size());
PtrList<compressible::turbulenceModel> turbulence(fluidRegions.size());
PtrList<volScalarField> DpDtf(fluidRegions.size());
PtrList<volScalarField> p_rghFluid(fluidRegions.size());
PtrList<volScalarField> ghFluid(fluidRegions.size());
PtrList<surfaceScalarField> ghfFluid(fluidRegions.size());
List<scalar> initialMassFluid(fluidRegions.size());
List<label> pRefCellFluid(fluidRegions.size(),0);
List<scalar> pRefValueFluid(fluidRegions.size(),0.0);
PtrList<dimensionedScalar> rhoMax(fluidRegions.size());
PtrList<dimensionedScalar> rhoMin(fluidRegions.size());
// Populate fluid field pointer lists
forAll(fluidRegions, i)
@ -130,15 +134,74 @@
).ptr()
);
Info<< " Adding to ghFluid\n" << endl;
ghFluid.set
(
i,
new volScalarField("gh", gFluid[i] & fluidRegions[i].C())
);
Info<< " Adding to ghfFluid\n" << endl;
ghfFluid.set
(
i,
new surfaceScalarField("ghf", gFluid[i] & fluidRegions[i].Cf())
);
p_rghFluid.set
(
i,
new volScalarField
(
IOobject
(
"p_rgh",
runTime.timeName(),
fluidRegions[i],
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
fluidRegions[i]
)
);
// Force p_rgh to be consistent with p
p_rghFluid[i] = thermoFluid[i].p() - rhoFluid[i]*ghFluid[i];
initialMassFluid[i] = fvc::domainIntegrate(rhoFluid[i]).value();
setRefCell
(
thermoFluid[i].p(),
p_rghFluid[i],
fluidRegions[i].solutionDict().subDict("SIMPLE"),
pRefCellFluid[i],
pRefValueFluid[i]
);
rhoMax.set
(
i,
new dimensionedScalar
(
fluidRegions[i].solutionDict().subDict("SIMPLE").lookup
(
"rhoMax"
)
)
);
rhoMin.set
(
i,
new dimensionedScalar
(
fluidRegions[i].solutionDict().subDict("SIMPLE").lookup
(
"rhoMin"
)
)
);
}

View File

@ -5,8 +5,8 @@
- fvm::Sp(fvc::div(phi), h)
- fvm::laplacian(turb.alphaEff(), h)
==
fvc::div(phi/fvc::interpolate(rho)*fvc::interpolate(p))
- p*fvc::div(phi/fvc::interpolate(rho))
fvc::div(phi/fvc::interpolate(rho), rho/psi, "div(U,p)")
- (rho/psi)*fvc::div(phi/fvc::interpolate(rho))
);
hEqn.relax();

View File

@ -1,7 +1,9 @@
{
// From buoyantSimpleFoam
rho = thermo.rho();
rho = max(rho, rhoMin[i]);
rho = min(rho, rhoMax[i]);
rho.relax();
volScalarField rUA = 1.0/UEqn().A();
surfaceScalarField rhorUAf("(rho*(1|A(U)))", fvc::interpolate(rho*rUA));
@ -10,59 +12,54 @@
UEqn.clear();
phi = fvc::interpolate(rho)*(fvc::interpolate(U) & mesh.Sf());
bool closedVolume = adjustPhi(phi, U, p);
bool closedVolume = adjustPhi(phi, U, p_rgh);
surfaceScalarField buoyancyPhi =
rhorUAf*fvc::interpolate(rho)*(g & mesh.Sf());
phi += buoyancyPhi;
surfaceScalarField buoyancyPhi = rhorUAf*ghf*fvc::snGrad(rho)*mesh.magSf();
phi -= buoyancyPhi;
// Solve pressure
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
{
fvScalarMatrix pEqn
fvScalarMatrix p_rghEqn
(
fvm::laplacian(rhorUAf, p) == fvc::div(phi)
fvm::laplacian(rhorUAf, p_rgh) == fvc::div(phi)
);
pEqn.setReference(pRefCell, pRefValue);
p_rghEqn.setReference(pRefCell, getRefCellValue(p_rgh, pRefCell));
// retain the residual from the first iteration
if (nonOrth == 0)
{
pEqn.solve();
}
else
{
pEqn.solve();
}
p_rghEqn.solve();
if (nonOrth == nNonOrthCorr)
{
// For closed-volume cases adjust the pressure and density levels
// Calculate the conservative fluxes
phi -= p_rghEqn.flux();
// Explicitly relax pressure for momentum corrector
p_rgh.relax();
// Correct the momentum source with the pressure gradient flux
// calculated from the relaxed pressure
U -= rUA*fvc::reconstruct((buoyancyPhi + p_rghEqn.flux())/rhorUAf);
U.correctBoundaryConditions();
}
}
p = p_rgh + rho*gh;
#include "continuityErrs.H"
// For closed-volume cases adjust the pressure level
// to obey overall mass continuity
if (closedVolume)
{
p += (initialMass - fvc::domainIntegrate(psi*p))
/fvc::domainIntegrate(psi);
p_rgh = p - rho*gh;
}
// Calculate the conservative fluxes
phi -= pEqn.flux();
// Explicitly relax pressure for momentum corrector
p.relax();
// Correct the momentum source with the pressure gradient flux
// calculated from the relaxed pressure
U += rUA*fvc::reconstruct((buoyancyPhi - pEqn.flux())/rhorUAf);
U.correctBoundaryConditions();
}
}
#include "continuityErrs.H"
rho = thermo.rho();
rho = max(rho, rhoMin[i]);
rho = min(rho, rhoMax[i]);
rho.relax();
Info<< "Min/max rho:" << min(rho).value() << ' '

View File

@ -5,7 +5,6 @@
volScalarField& K = KFluid[i];
volVectorField& U = UFluid[i];
surfaceScalarField& phi = phiFluid[i];
const dimensionedVector& g = gFluid[i];
compressible::turbulenceModel& turb = turbulence[i];
@ -22,3 +21,7 @@
const label pRefCell = pRefCellFluid[i];
const scalar pRefValue = pRefValueFluid[i];
volScalarField& p_rgh = p_rghFluid[i];
const volScalarField& gh = ghFluid[i];
const surfaceScalarField& ghf = ghfFluid[i];

View File

@ -1,6 +1,6 @@
// Pressure-velocity SIMPLE corrector
p.storePrevIter();
p_rgh.storePrevIter();
rho.storePrevIter();
{
#include "UEqn.H"

View File

@ -16,8 +16,11 @@
==
fvc::reconstruct
(
fvc::interpolate(rho)*(g & mesh.Sf())
- fvc::snGrad(p)*mesh.magSf()
)
(
- ghf*fvc::snGrad(rho)
- fvc::snGrad(p_rgh)
)*mesh.magSf()
),
mesh.solver(U.select(finalIter))
);
}

View File

@ -6,6 +6,9 @@
PtrList<surfaceScalarField> phiFluid(fluidRegions.size());
PtrList<uniformDimensionedVectorField> gFluid(fluidRegions.size());
PtrList<compressible::turbulenceModel> turbulence(fluidRegions.size());
PtrList<volScalarField> p_rghFluid(fluidRegions.size());
PtrList<volScalarField> ghFluid(fluidRegions.size());
PtrList<surfaceScalarField> ghfFluid(fluidRegions.size());
PtrList<volScalarField> DpDtFluid(fluidRegions.size());
List<scalar> initialMassFluid(fluidRegions.size());
@ -129,6 +132,42 @@
).ptr()
);
Info<< " Adding to ghFluid\n" << endl;
ghFluid.set
(
i,
new volScalarField("gh", gFluid[i] & fluidRegions[i].C())
);
Info<< " Adding to ghfFluid\n" << endl;
ghfFluid.set
(
i,
new surfaceScalarField("ghf", gFluid[i] & fluidRegions[i].Cf())
);
p_rghFluid.set
(
i,
new volScalarField
(
IOobject
(
"p_rgh",
runTime.timeName(),
fluidRegions[i],
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
fluidRegions[i]
)
);
// Force p_rgh to be consistent with p
p_rghFluid[i] = thermoFluid[i].p() - rhoFluid[i]*ghFluid[i];
initialMassFluid[i] = fvc::domainIntegrate(rhoFluid[i]).value();
Info<< " Adding to DpDtFluid\n" << endl;
DpDtFluid.set
(
@ -147,6 +186,4 @@
)
)
);
initialMassFluid[i] = fvc::domainIntegrate(rhoFluid[i]).value();
}

View File

@ -7,16 +7,9 @@
==
DpDt
);
if (oCorr == nOuterCorr-1)
{
hEqn.relax();
hEqn.solve(mesh.solver("hFinal"));
}
else
{
hEqn.relax();
hEqn.solve();
}
hEqn.solve(mesh.solver(h.select(finalIter)));
thermo.correct();

View File

@ -1,5 +1,5 @@
{
bool closedVolume = p.needReference();
bool closedVolume = p_rgh.needReference();
rho = thermo.rho();
@ -17,34 +17,35 @@
)
);
phi = phiU + fvc::interpolate(rho)*(g & mesh.Sf())*rhorUAf;
phi = phiU - rhorUAf*ghf*fvc::snGrad(rho)*mesh.magSf();
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
{
fvScalarMatrix pEqn
fvScalarMatrix p_rghEqn
(
fvm::ddt(psi, p)
fvm::ddt(psi, p_rgh) + fvc::ddt(psi, rho)*gh
+ fvc::div(phi)
- fvm::laplacian(rhorUAf, p)
- fvm::laplacian(rhorUAf, p_rgh)
);
if
p_rghEqn.solve
(
mesh.solver
(
p_rgh.select
(
(
oCorr == nOuterCorr-1
&& corr == nCorr-1
&& nonOrth == nNonOrthCorr
)
{
pEqn.solve(mesh.solver(p.name() + "Final"));
}
else
{
pEqn.solve(mesh.solver(p.name()));
}
)
)
);
if (nonOrth == nNonOrthCorr)
{
phi += pEqn.flux();
phi += p_rghEqn.flux();
}
}
@ -52,6 +53,8 @@
U += rUA*fvc::reconstruct((phi - phiU)/rhorUAf);
U.correctBoundaryConditions();
p = p_rgh + rho*gh;
// Update pressure substantive derivative
DpDt = fvc::DDt(surfaceScalarField("phiU", phi/fvc::interpolate(rho)), p);
@ -65,9 +68,10 @@
// to obey overall mass continuity
if (closedVolume)
{
p += (massIni - fvc::domainIntegrate(psi*p))
p += (initialMass - fvc::domainIntegrate(psi*p))
/fvc::domainIntegrate(psi);
rho = thermo.rho();
p_rgh = p - rho*gh;
}
// Update thermal conductivity

View File

@ -1,17 +0,0 @@
const dictionary& piso = fluidRegions[i].solutionDict().subDict("PISO");
const int nOuterCorr =
piso.lookupOrDefault<int>("nOuterCorrectors", 1);
const int nCorr =
piso.lookupOrDefault<int>("nCorrectors", 1);
const int nNonOrthCorr =
piso.lookupOrDefault<int>("nNonOrthogonalCorrectors", 0);
const bool momentumPredictor =
piso.lookupOrDefault("momentumPredictor", true);
const bool transonic =
piso.lookupOrDefault("transonic", false);

View File

@ -1,11 +1,10 @@
const fvMesh& mesh = fluidRegions[i];
fvMesh& mesh = fluidRegions[i];
basicPsiThermo& thermo = thermoFluid[i];
volScalarField& rho = rhoFluid[i];
volScalarField& K = KFluid[i];
volVectorField& U = UFluid[i];
surfaceScalarField& phi = phiFluid[i];
const dimensionedVector& g = gFluid[i];
compressible::turbulenceModel& turb = turbulence[i];
volScalarField& DpDt = DpDtFluid[i];
@ -14,4 +13,13 @@
const volScalarField& psi = thermo.psi();
volScalarField& h = thermo.h();
const dimensionedScalar massIni("massIni", dimMass, initialMassFluid[i]);
volScalarField& p_rgh = p_rghFluid[i];
const volScalarField& gh = ghFluid[i];
const surfaceScalarField& ghf = ghfFluid[i];
const dimensionedScalar initialMass
(
"initialMass",
dimMass,
initialMassFluid[i]
);

View File

@ -1,3 +1,8 @@
if (finalIter)
{
mesh.data::add("finalIteration", true);
}
if (oCorr == 0)
{
#include "rhoEqn.H"
@ -16,3 +21,8 @@ for (int corr=0; corr<nCorr; corr++)
turb.correct();
rho = thermo.rho();
if (finalIter)
{
mesh.data::remove("finalIteration");
}

View File

@ -1,2 +1,2 @@
p.storePrevIter();
p_rgh.storePrevIter();
rho.storePrevIter();

View File

@ -8,9 +8,5 @@
<< solidRegions[i].name() << nl << endl;
Info<< " Adding to thermos\n" << endl;
thermos.set
(
i,
basicSolidThermo::New(solidRegions[i])
);
thermos.set(i, basicSolidThermo::New(solidRegions[i]));
}

View File

@ -1,3 +1,8 @@
if (finalIter)
{
mesh.data::add("finalIteration", true);
}
{
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
{
@ -7,8 +12,13 @@
- fvm::laplacian(K, T)
);
TEqn().relax();
TEqn().solve();
TEqn().solve(mesh.solver(T.select(finalIter)));
}
Info<< "Min/max T:" << min(T) << ' ' << max(T) << endl;
}
if (finalIter)
{
mesh.data::remove("finalIteration");
}

View File

@ -13,5 +13,5 @@
if (momentumPredictor)
{
solve(UEqn == -fvc::grad(p));
solve(UEqn == -fvc::grad(p), mesh.solver(U.select(finalIter)));
}

View File

@ -90,17 +90,28 @@ int main(int argc, char *argv[])
#include "rhoEqn.H"
// --- PIMPLE loop
for (int ocorr=1; ocorr<=nOuterCorr; ocorr++)
for (int oCorr=0; oCorr<nOuterCorr; oCorr++)
{
bool finalIter = oCorr == nOuterCorr - 1;
if (finalIter)
{
mesh.data::add("finalIteration", true);
}
#include "UEqn.H"
#include "YEqn.H"
#include "hsEqn.H"
// --- PISO loop
for (int corr=1; corr<=nCorr; corr++)
for (int corr=0; corr<nCorr; corr++)
{
#include "pEqn.H"
}
if (finalIter)
{
mesh.data::remove("finalIteration");
}
}
turbulence->correct();

View File

@ -15,7 +15,7 @@
hsEqn.relax();
hsEqn.solve();
hsEqn.solve(mesh.solver(hs.select(finalIter)));
thermo.correct();

View File

@ -26,7 +26,20 @@ if (transonic)
coalParcels.Srho()
);
pEqn.solve();
pEqn.solve
(
mesh.solver
(
p.select
(
(
finalIter
&& corr == nCorr-1
&& nonOrth == nNonOrthCorr
)
)
)
);
if (nonOrth == nNonOrthCorr)
{
@ -54,7 +67,20 @@ else
coalParcels.Srho()
);
pEqn.solve();
pEqn.solve
(
mesh.solver
(
p.select
(
(
finalIter
&& corr == nCorr-1
&& nonOrth == nNonOrthCorr
)
)
)
);
if (nonOrth == nNonOrthCorr)
{

View File

@ -20,7 +20,8 @@ The disadvantages:
- a patch-wise loop now might need to store data to go to the neighbour half
since it is no longer handled in a single patch.
- decomposed cyclics now require overlapping communications so will
only work in non-blocking mode. Hence the underlying message passing library
only work in 'nonBlocking' mode or 'blocking' (=buffered) mode but not
in 'scheduled' mode. The underlying message passing library
will require overlapping communications with message tags.
- it is quite a code-change and there might be some oversights.
- once converted (see foamUpgradeCyclics below) cases are not backwards
@ -103,19 +104,14 @@ type 'processorCyclic'.
- processor patches use overlapping communication using a different message
tag. This maps straight through into the MPI message tag.
See processorCyclicPolyPatch::tag(). This needs to be calculated the
same on both sides so is calculated as
Pstream::nProcs()*max(myProcNo, neighbProcNo)
+ min(myProcNo, neighbProcNo)
which is
- unique
- commutative
- does not interfere with the default tag (= 1)
tag. This maps straight through into the MPI message tag. Each processor
'interface' (processorPolyPatch, processorFvPatch, etc.) has a 'tag()'
to use for communication.
- when constructing a GeometricField from a dictionary it will explicitly
check for non-existing entries for cyclic patches and exit with an error message
warning to run foamUpgradeCyclics.
warning to run foamUpgradeCyclics. (1.7.x will check if you are trying
to run a case which has split cyclics)

View File

@ -296,6 +296,7 @@ primitiveShapes = meshes/primitiveShapes
$(primitiveShapes)/line/line.C
$(primitiveShapes)/plane/plane.C
$(primitiveShapes)/triangle/intersection.C
$(primitiveShapes)/objectHit/pointIndexHitIOList.C
meshShapes = meshes/meshShapes
$(meshShapes)/edge/edge.C

View File

@ -126,6 +126,14 @@ class face
public:
//- Return types for classify
enum proxType
{
NONE,
POINT, // Close to point
EDGE // Close to edge
};
// Static data members
static const char* const typeName;
@ -249,6 +257,20 @@ public:
const pointField& meshPoints
) const;
//- Return nearest point to face and classify it:
// + near point (nearType=POINT, nearLabel=0, 1, 2)
// + near edge (nearType=EDGE, nearLabel=0, 1, 2)
// Note: edges are counted from starting vertex so
// e.g. edge n is from f[n] to f[0], where the face has n + 1
// points
pointHit nearestPointClassify
(
const point& p,
const pointField& meshPoints,
label& nearType,
label& nearLabel
) const;
//- Return contact sphere diameter
scalar contactSphereDiameter
(

View File

@ -181,6 +181,22 @@ Foam::pointHit Foam::face::nearestPoint
const point& p,
const pointField& meshPoints
) const
{
// Dummy labels
label nearType = -1;
label nearLabel = -1;
return nearestPointClassify(p, meshPoints, nearType, nearLabel);
}
Foam::pointHit Foam::face::nearestPointClassify
(
const point& p,
const pointField& meshPoints,
label& nearType,
label& nearLabel
) const
{
const face& f = *this;
point ctr = centre(meshPoints);
@ -188,6 +204,9 @@ Foam::pointHit Foam::face::nearestPoint
// Initialize to miss, distance=GREAT
pointHit nearest(p);
nearType = -1;
nearLabel = -1;
label nPoints = f.size();
point nextPoint = ctr;
@ -196,8 +215,10 @@ Foam::pointHit Foam::face::nearestPoint
{
nextPoint = meshPoints[f[fcIndex(pI)]];
label tmpNearType = -1;
label tmpNearLabel = -1;
// Note: for best accuracy, centre point always comes last
//
triPointRef tri
(
meshPoints[f[pI]],
@ -205,12 +226,42 @@ Foam::pointHit Foam::face::nearestPoint
ctr
);
pointHit curHit = tri.nearestPoint(p);
pointHit curHit = tri.nearestPointClassify
(
p,
tmpNearType,
tmpNearLabel
);
if (Foam::mag(curHit.distance()) < Foam::mag(nearest.distance()))
{
nearest.setDistance(curHit.distance());
// Assume at first that the near type is NONE on the
// triangle (i.e. on the face of the triangle) then it is
// therefore also for the face.
nearType = NONE;
if (tmpNearType == triPointRef::EDGE && tmpNearLabel == 0)
{
// If the triangle edge label is 0, then this is also
// an edge of the face, if not, it is on the face
nearType = EDGE;
nearLabel = pI;
}
else if (tmpNearType == triPointRef::POINT && tmpNearLabel < 2)
{
// If the triangle point label is 0 or 1, then this is
// also a point of the face, if not, it is on the face
nearType = POINT;
nearLabel = pI + tmpNearLabel;
}
if (curHit.hit())
{
nearest.setHit();

View File

@ -79,21 +79,6 @@ class triangle
PointRef a_, b_, c_;
// Private Member Functions
//- Fast distance to triangle calculation. From
// "Distance Between Point and Trangle in 3D"
// David Eberly, Magic Software Inc. Aug. 2002.
// Works on function Q giving distance to point and tries to
// minimize this.
static pointHit nearestPoint
(
const Point& baseVertex,
const vector& E0,
const vector& E1,
const point& P
);
public:
@ -202,24 +187,27 @@ public:
const scalar tol = 0.0
) const;
//- Return nearest point to p on triangle
inline pointHit nearestPoint
(
const point& p
) const;
//- Classify point in triangle plane w.r.t. triangle edges.
// - inside (true returned)/outside (false returned)
// - near point (nearType=POINT, nearLabel=0, 1, 2)
// - near edge (nearType=EDGE, nearLabel=0, 1, 2)
//- Find the nearest point to p on the triangle and classify it:
// + near point (nearType=POINT, nearLabel=0, 1, 2)
// + near edge (nearType=EDGE, nearLabel=0, 1, 2)
// Note: edges are counted from starting
// vertex so e.g. edge 2 is from f[2] to f[0]
// tol is fraction to account for truncation error. Is only used
// when comparing normalized (0..1) numbers.
pointHit nearestPointClassify
(
const point& p,
label& nearType,
label& nearLabel
) const;
//- Return nearest point to p on triangle
inline pointHit nearestPoint(const point& p) const;
//- Classify nearest point to p in triangle plane
// w.r.t. triangle edges and points. Returns inside
// (true)/outside (false).
bool classify
(
const point& p,
const scalar tol,
label& nearType,
label& nearLabel
) const;

View File

@ -32,158 +32,6 @@ License
namespace Foam
{
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
template<class Point, class PointRef>
pointHit triangle<Point, PointRef>::nearestPoint
(
const Point& baseVertex,
const vector& E0,
const vector& E1,
const point& P
)
{
// Distance vector
const vector D(baseVertex - P);
// Some geometrical factors
const scalar a = E0 & E0;
const scalar b = E0 & E1;
const scalar c = E1 & E1;
// Precalculate distance factors
const scalar d = E0 & D;
const scalar e = E1 & D;
const scalar f = D & D;
// Do classification
const scalar det = a*c - b*b;
scalar s = b*e - c*d;
scalar t = b*d - a*e;
bool inside = false;
if (s+t < det)
{
if (s < 0)
{
if (t < 0)
{
// Region 4
if (e > 0)
{
// min on edge t = 0
t = 0;
s = (d >= 0 ? 0 : (-d >= a ? 1 : -d/a));
}
else
{
// min on edge s=0
s = 0;
t = (e >= 0 ? 0 : (-e >= c ? 1 : -e/c));
}
}
else
{
// Region 3. Min on edge s = 0
s = 0;
t = (e >= 0 ? 0 : (-e >= c ? 1 : -e/c));
}
}
else if (t < 0)
{
// Region 5
t = 0;
s = (d >= 0 ? 0 : (-d >= a ? 1 : -d/a));
}
else
{
// Region 0
const scalar invDet = 1/det;
s *= invDet;
t *= invDet;
inside = true;
}
}
else
{
if (s < 0)
{
// Region 2
const scalar tmp0 = b + d;
const scalar tmp1 = c + e;
if (tmp1 > tmp0)
{
// min on edge s+t=1
const scalar numer = tmp1 - tmp0;
const scalar denom = a-2*b+c;
s = (numer >= denom ? 1 : numer/denom);
t = 1 - s;
}
else
{
// min on edge s=0
s = 0;
t = (tmp1 <= 0 ? 1 : (e >= 0 ? 0 : - e/c));
}
}
else if (t < 0)
{
// Region 6
const scalar tmp0 = b + d;
const scalar tmp1 = c + e;
if (tmp1 > tmp0)
{
// min on edge s+t=1
const scalar numer = tmp1 - tmp0;
const scalar denom = a-2*b+c;
s = (numer >= denom ? 1 : numer/denom);
t = 1 - s;
}
else
{
// min on edge t=0
t = 0;
s = (tmp1 <= 0 ? 1 : (d >= 0 ? 0 : - d/a));
}
}
else
{
// Region 1
const scalar numer = c+e-(b+d);
if (numer <= 0)
{
s = 0;
}
else
{
const scalar denom = a-2*b+c;
s = (numer >= denom ? 1 : numer/denom);
}
}
t = 1 - s;
}
// Calculate distance.
// Note: Foam::mag used since truncation error causes negative distances
// with points very close to one of the triangle vertices.
// (Up to -2.77556e-14 seen). Could use +SMALL but that not large enough.
return pointHit
(
inside,
baseVertex + s*E0 + t*E1,
Foam::sqrt
(
Foam::mag(a*s*s + 2*b*s*t + c*t*t + 2*d*s + 2*e*t + f)
),
!inside
);
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
template<class Point, class PointRef>
@ -247,7 +95,7 @@ inline Point triangle<Point, PointRef>::centre() const
template<class Point, class PointRef>
inline scalar triangle<Point, PointRef>::mag() const
{
return ::Foam::mag(normal());
return Foam::mag(normal());
}
@ -536,7 +384,7 @@ inline pointHit triangle<Point, PointRef>::ray
inter.setMiss(eligible);
// The miss point is the nearest point on the triangle
inter.setPoint(nearestPoint(a_, E0, E1, p).rawPoint());
inter.setPoint(nearestPoint(p).rawPoint());
// The distance to the miss is the distance between the
// original point and plane of intersection
@ -633,18 +481,130 @@ inline pointHit triangle<Point, PointRef>::intersection
}
template<class Point, class PointRef>
pointHit triangle<Point, PointRef>::nearestPointClassify
(
const point& p,
label& nearType,
label& nearLabel
) const
{
// Adapted from:
// Real-time collision detection, Christer Ericson, 2005, 136-142
// Check if P in vertex region outside A
vector ab = b_ - a_;
vector ac = c_ - a_;
vector ap = p - a_;
scalar d1 = ab & ap;
scalar d2 = ac & ap;
if (d1 <= 0.0 && d2 <= 0.0)
{
// barycentric coordinates (1, 0, 0)
nearType = POINT;
nearLabel = 0;
return pointHit(false, a_, Foam::mag(a_ - p), true);
}
// Check if P in vertex region outside B
vector bp = p - b_;
scalar d3 = ab & bp;
scalar d4 = ac & bp;
if (d3 >= 0.0 && d4 <= d3)
{
// barycentric coordinates (0, 1, 0)
nearType = POINT;
nearLabel = 1;
return pointHit(false, b_, Foam::mag(b_ - p), true);
}
// Check if P in edge region of AB, if so return projection of P onto AB
scalar vc = d1*d4 - d3*d2;
if (vc <= 0.0 && d1 >= 0.0 && d3 <= 0.0)
{
// barycentric coordinates (1-v, v, 0)
scalar v = d1/(d1 - d3);
point nearPt = a_ + v*ab;
nearType = EDGE;
nearLabel = 0;
return pointHit(false, nearPt, Foam::mag(nearPt - p), true);
}
// Check if P in vertex region outside C
vector cp = p - c_;
scalar d5 = ab & cp;
scalar d6 = ac & cp;
if (d6 >= 0.0 && d5 <= d6)
{
// barycentric coordinates (0, 0, 1)
nearType = POINT;
nearLabel = 2;
return pointHit(false, c_, Foam::mag(c_ - p), true);
}
// Check if P in edge region of AC, if so return projection of P onto AC
scalar vb = d5*d2 - d1*d6;
if (vb <= 0.0 && d2 >= 0.0 && d6 <= 0.0)
{
// barycentric coordinates (1-w, 0, w)
scalar w = d2/(d2 - d6);
point nearPt = a_ + w*ac;
nearType = EDGE;
nearLabel = 2;
return pointHit(false, nearPt, Foam::mag(nearPt - p), true);
}
// Check if P in edge region of BC, if so return projection of P onto BC
scalar va = d3*d6 - d5*d4;
if (va <= 0.0 && (d4 - d3) >= 0.0 && (d5 - d6) >= 0.0)
{
// barycentric coordinates (0, 1-w, w)
scalar w = (d4 - d3)/((d4 - d3) + (d5 - d6));
point nearPt = b_ + w*(c_ - b_);
nearType = EDGE;
nearLabel = 1;
return pointHit(false, nearPt, Foam::mag(nearPt - p), true);
}
// P inside face region. Compute Q through its barycentric
// coordinates (u, v, w)
scalar denom = 1.0/(va + vb + vc);
scalar v = vb * denom;
scalar w = vc * denom;
// = u*a + v*b + w*c, u = va*denom = 1.0 - v - w
point nearPt = a_ + ab*v + ac*w;
nearType = NONE,
nearLabel = -1;
return pointHit(true, nearPt, Foam::mag(nearPt - p), false);
}
template<class Point, class PointRef>
inline pointHit triangle<Point, PointRef>::nearestPoint
(
const point& p
) const
{
// Express triangle in terms of baseVertex (point a_) and
// two edge vectors
vector E0 = b_ - a_;
vector E1 = c_ - a_;
// Dummy labels
label nearType = -1;
label nearLabel = -1;
return nearestPoint(a_, E0, E1, p);
return nearestPointClassify(p, nearType, nearLabel);
}
@ -652,158 +612,12 @@ template<class Point, class PointRef>
inline bool triangle<Point, PointRef>::classify
(
const point& p,
const scalar tol,
label& nearType,
label& nearLabel
) const
{
const vector E0 = b_ - a_;
const vector E1 = c_ - a_;
const vector n = 0.5*(E0 ^ E1);
// Get largest component of normal
scalar magX = Foam::mag(n.x());
scalar magY = Foam::mag(n.y());
scalar magZ = Foam::mag(n.z());
label i0 = -1;
if ((magX >= magY) && (magX >= magZ))
{
i0 = 0;
return nearestPointClassify(p, nearType, nearLabel).hit();
}
else if ((magY >= magX) && (magY >= magZ))
{
i0 = 1;
}
else
{
i0 = 2;
}
// Get other components
label i1 = (i0 + 1) % 3;
label i2 = (i1 + 1) % 3;
scalar u1 = E0[i1];
scalar v1 = E0[i2];
scalar u2 = E1[i1];
scalar v2 = E1[i2];
scalar det = v2*u1 - u2*v1;
scalar u0 = p[i1] - a_[i1];
scalar v0 = p[i2] - a_[i2];
scalar alpha = 0;
scalar beta = 0;
bool hit = false;
if (Foam::mag(u1) < ROOTVSMALL)
{
beta = u0/u2;
alpha = (v0 - beta*v2)/v1;
hit = ((alpha >= 0) && ((alpha + beta) <= 1));
}
else
{
beta = (v0*u1 - u0*v1)/det;
alpha = (u0 - beta*u2)/u1;
hit = ((alpha >= 0) && ((alpha + beta) <= 1));
}
//
// Now alpha, beta are the coordinates in the triangle local coordinate
// system E0, E1
//
//Pout<< "alpha:" << alpha << endl;
//Pout<< "beta:" << beta << endl;
//Pout<< "hit:" << hit << endl;
//Pout<< "tol:" << tol << endl;
if (hit)
{
// alpha,beta might get negative due to precision errors
alpha = max(0.0, min(1.0, alpha));
beta = max(0.0, min(1.0, beta));
}
nearType = NONE;
nearLabel = -1;
if (Foam::mag(alpha+beta-1) <= tol)
{
// On edge between vert 1-2 (=edge 1)
if (Foam::mag(alpha) <= tol)
{
nearType = POINT;
nearLabel = 2;
}
else if (Foam::mag(beta) <= tol)
{
nearType = POINT;
nearLabel = 1;
}
else if ((alpha >= 0) && (alpha <= 1) && (beta >= 0) && (beta <= 1))
{
nearType = EDGE;
nearLabel = 1;
}
}
else if (Foam::mag(alpha) <= tol)
{
// On edge between vert 2-0 (=edge 2)
if (Foam::mag(beta) <= tol)
{
nearType = POINT;
nearLabel = 0;
}
else if (Foam::mag(beta-1) <= tol)
{
nearType = POINT;
nearLabel = 2;
}
else if ((beta >= 0) && (beta <= 1))
{
nearType = EDGE;
nearLabel = 2;
}
}
else if (Foam::mag(beta) <= tol)
{
// On edge between vert 0-1 (= edge 0)
if (Foam::mag(alpha) <= tol)
{
nearType = POINT;
nearLabel = 0;
}
else if (Foam::mag(alpha-1) <= tol)
{
nearType = POINT;
nearLabel = 1;
}
else if ((alpha >= 0) && (alpha <= 1))
{
nearType = EDGE;
nearLabel = 0;
}
}
return hit;
}
// * * * * * * * * * * * * * * * Ostream Operator * * * * * * * * * * * * * //

View File

@ -112,13 +112,6 @@ directMappedVelocityFluxFixedValueFvPatchField
<< " in file " << dimensionedInternalField().objectPath()
<< exit(FatalError);
}
// Force calculation of schedule (uses parallel comms)
const directMappedPolyPatch& mpp = refCast<const directMappedPolyPatch>
(
this->patch().patch()
);
(void)mpp.map().schedule();
}

View File

@ -42,12 +42,13 @@ void Foam::singleCellFvMesh::agglomerateMesh
const polyBoundaryMesh& oldPatches = mesh.boundaryMesh();
// Check agglomeration within patch face range and continuous
labelList nAgglom(oldPatches.size());
labelList nAgglom(oldPatches.size(), 0);
forAll(oldPatches, patchI)
{
const polyPatch& pp = oldPatches[patchI];
if (pp.size() > 0)
{
nAgglom[patchI] = max(agglom[patchI])+1;
forAll(pp, i)
@ -63,6 +64,7 @@ void Foam::singleCellFvMesh::agglomerateMesh
}
}
}
}
// Check agglomeration is sync
{
@ -155,6 +157,8 @@ void Foam::singleCellFvMesh::agglomerateMesh
forAll(oldPatches, patchI)
{
patchStarts[patchI] = coarseI;
const polyPatch& pp = oldPatches[patchI];
if (pp.size() > 0)
@ -170,8 +174,6 @@ void Foam::singleCellFvMesh::agglomerateMesh
// From agglomeration to compact patch face
labelList agglomToFace(nAgglom[patchI], -1);
patchStarts[patchI] = coarseI;
forAll(pp, i)
{
label myAgglom = agglom[patchI][i];
@ -223,10 +225,10 @@ void Foam::singleCellFvMesh::agglomerateMesh
);
}
}
}
patchSizes[patchI] = coarseI-patchStarts[patchI];
}
}
//Pout<< "patchStarts:" << patchStarts << endl;
//Pout<< "patchSizes:" << patchSizes << endl;

View File

@ -44,7 +44,6 @@ octree/octreeDataFace.C
octree/treeBoundBox.C
octree/treeNodeName.C
octree/treeLeafName.C
octree/pointIndexHitIOList.C
indexedOctree/indexedOctreeName.C
indexedOctree/treeDataCell.C

View File

@ -2794,6 +2794,30 @@ Foam::indexedOctree<Type>::getVolumeType
}
template <class Type>
template <class CompareOp>
void Foam::indexedOctree<Type>::findNear
(
const scalar nearDist,
const indexedOctree<Type>& tree2,
CompareOp& cop
) const
{
findNear
(
nearDist,
true,
*this,
nodePlusOctant(0, 0),
bb(),
tree2,
nodePlusOctant(0, 0),
tree2.bb(),
cop
);
}
// Print contents of nodeI
template <class Type>
void Foam::indexedOctree<Type>::print

View File

@ -35,145 +35,145 @@ defineTypeNameAndDebug(Foam::treeDataTriSurface, 0);
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
// Fast distance to triangle calculation. From
// "Distance Between Point and Trangle in 3D"
// David Eberly, Magic Software Inc. Aug. 2003.
// Works on function Q giving distance to point and tries to minimize this.
Foam::scalar Foam::treeDataTriSurface::nearestCoords
(
const point& base,
const point& E0,
const point& E1,
const scalar a,
const scalar b,
const scalar c,
const point& P,
scalar& s,
scalar& t
)
{
// distance vector
const vector D(base - P);
// // Fast distance to triangle calculation. From
// // "Distance Between Point and Triangle in 3D"
// // David Eberly, Magic Software Inc. Aug. 2003.
// // Works on function Q giving distance to point and tries to minimize this.
// Foam::scalar Foam::treeDataTriSurface::nearestCoords
// (
// const point& base,
// const point& E0,
// const point& E1,
// const scalar a,
// const scalar b,
// const scalar c,
// const point& P,
// scalar& s,
// scalar& t
// )
// {
// // distance vector
// const vector D(base - P);
// Precalculate distance factors.
const scalar d = E0 & D;
const scalar e = E1 & D;
// // Precalculate distance factors.
// const scalar d = E0 & D;
// const scalar e = E1 & D;
// Do classification
const scalar det = a*c - b*b;
// // Do classification
// const scalar det = a*c - b*b;
s = b*e - c*d;
t = b*d - a*e;
// s = b*e - c*d;
// t = b*d - a*e;
if (s+t < det)
{
if (s < 0)
{
if (t < 0)
{
//region 4
if (e > 0)
{
//min on edge t = 0
t = 0;
s = (d >= 0 ? 0 : (-d >= a ? 1 : -d/a));
}
else
{
//min on edge s=0
s = 0;
t = (e >= 0 ? 0 : (-e >= c ? 1 : -e/c));
}
}
else
{
//region 3. Min on edge s = 0
s = 0;
t = (e >= 0 ? 0 : (-e >= c ? 1 : -e/c));
}
}
else if (t < 0)
{
//region 5
t = 0;
s = (d >= 0 ? 0 : (-d >= a ? 1 : -d/a));
}
else
{
//region 0
const scalar invDet = 1/det;
s *= invDet;
t *= invDet;
}
}
else
{
if (s < 0)
{
//region 2
const scalar tmp0 = b + d;
const scalar tmp1 = c + e;
if (tmp1 > tmp0)
{
//min on edge s+t=1
const scalar numer = tmp1 - tmp0;
const scalar denom = a-2*b+c;
s = (numer >= denom ? 1 : numer/denom);
t = 1 - s;
}
else
{
//min on edge s=0
s = 0;
t = (tmp1 <= 0 ? 1 : (e >= 0 ? 0 : - e/c));
}
}
else if (t < 0)
{
//region 6
const scalar tmp0 = b + d;
const scalar tmp1 = c + e;
if (tmp1 > tmp0)
{
//min on edge s+t=1
const scalar numer = tmp1 - tmp0;
const scalar denom = a-2*b+c;
s = (numer >= denom ? 1 : numer/denom);
t = 1 - s;
}
else
{
//min on edge t=0
t = 0;
s = (tmp1 <= 0 ? 1 : (d >= 0 ? 0 : - d/a));
}
}
else
{
//region 1
const scalar numer = c+e-(b+d);
if (numer <= 0)
{
s = 0;
}
else
{
const scalar denom = a-2*b+c;
s = (numer >= denom ? 1 : numer/denom);
}
}
t = 1 - s;
}
// if (s+t < det)
// {
// if (s < 0)
// {
// if (t < 0)
// {
// //region 4
// if (e > 0)
// {
// //min on edge t = 0
// t = 0;
// s = (d >= 0 ? 0 : (-d >= a ? 1 : -d/a));
// }
// else
// {
// //min on edge s=0
// s = 0;
// t = (e >= 0 ? 0 : (-e >= c ? 1 : -e/c));
// }
// }
// else
// {
// //region 3. Min on edge s = 0
// s = 0;
// t = (e >= 0 ? 0 : (-e >= c ? 1 : -e/c));
// }
// }
// else if (t < 0)
// {
// //region 5
// t = 0;
// s = (d >= 0 ? 0 : (-d >= a ? 1 : -d/a));
// }
// else
// {
// //region 0
// const scalar invDet = 1/det;
// s *= invDet;
// t *= invDet;
// }
// }
// else
// {
// if (s < 0)
// {
// //region 2
// const scalar tmp0 = b + d;
// const scalar tmp1 = c + e;
// if (tmp1 > tmp0)
// {
// //min on edge s+t=1
// const scalar numer = tmp1 - tmp0;
// const scalar denom = a-2*b+c;
// s = (numer >= denom ? 1 : numer/denom);
// t = 1 - s;
// }
// else
// {
// //min on edge s=0
// s = 0;
// t = (tmp1 <= 0 ? 1 : (e >= 0 ? 0 : - e/c));
// }
// }
// else if (t < 0)
// {
// //region 6
// const scalar tmp0 = b + d;
// const scalar tmp1 = c + e;
// if (tmp1 > tmp0)
// {
// //min on edge s+t=1
// const scalar numer = tmp1 - tmp0;
// const scalar denom = a-2*b+c;
// s = (numer >= denom ? 1 : numer/denom);
// t = 1 - s;
// }
// else
// {
// //min on edge t=0
// t = 0;
// s = (tmp1 <= 0 ? 1 : (d >= 0 ? 0 : - d/a));
// }
// }
// else
// {
// //region 1
// const scalar numer = c+e-(b+d);
// if (numer <= 0)
// {
// s = 0;
// }
// else
// {
// const scalar denom = a-2*b+c;
// s = (numer >= denom ? 1 : numer/denom);
// }
// }
// t = 1 - s;
// }
// Calculate distance.
// Note: abs should not be needed but truncation error causes problems
// with points very close to one of the triangle vertices.
// (seen up to -9e-15). Alternatively add some small value.
// // Calculate distance.
// // Note: abs should not be needed but truncation error causes problems
// // with points very close to one of the triangle vertices.
// // (seen up to -9e-15). Alternatively add some small value.
const scalar f = D & D;
return Foam::mag(a*s*s + 2*b*s*t + c*t*t + 2*d*s + 2*e*t + f);
}
// const scalar f = D & D;
// return Foam::mag(a*s*s + 2*b*s*t + c*t*t + 2*d*s + 2*e*t + f);
// }
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
@ -234,9 +234,7 @@ Foam::label Foam::treeDataTriSurface::getVolumeType
(
surface_,
sample,
pHit.index(),
pHit.hitPoint(),
indexedOctree<treeDataTriSurface>::perturbTol()
pHit.index()
);
if (t == triSurfaceTools::UNKNOWN)
@ -353,39 +351,43 @@ void Foam::treeDataTriSurface::findNearest
// )
//)
{
// Get spanning vectors of triangle
vector base(p1);
vector E0(p0 - p1);
vector E1(p2 - p1);
// // Get spanning vectors of triangle
// vector base(p1);
// vector E0(p0 - p1);
// vector E1(p2 - p1);
scalar a(E0& E0);
scalar b(E0& E1);
scalar c(E1& E1);
// scalar a(E0& E0);
// scalar b(E0& E1);
// scalar c(E1& E1);
// Get nearest point in s,t coordinates (s is along E0, t is along
// E1)
scalar s;
scalar t;
// // Get nearest point in s,t coordinates (s is along E0, t
// // is along E1)
// scalar s;
// scalar t;
scalar distSqr = nearestCoords
(
base,
E0,
E1,
a,
b,
c,
sample,
// scalar distSqr = nearestCoords
// (
// base,
// E0,
// E1,
// a,
// b,
// c,
// sample,
s,
t
);
// s,
// t
// );
pointHit pHit = triPointRef(p0, p1, p2).nearestPoint(sample);
scalar distSqr = sqr(pHit.distance());
if (distSqr < nearestDistSqr)
{
nearestDistSqr = distSqr;
minIndex = index;
nearestPoint = base + s*E0 + t*E1;
nearestPoint = pHit.rawPoint();
}
}
}

View File

@ -60,20 +60,20 @@ class treeDataTriSurface
// Private Member Functions
//- fast triangle nearest point calculation. Returns point in E0, E1
// coordinate system: base + s*E0 + t*E1
static scalar nearestCoords
(
const point& base,
const point& E0,
const point& E1,
const scalar a,
const scalar b,
const scalar c,
const point& P,
scalar& s,
scalar& t
);
// //- fast triangle nearest point calculation. Returns point in E0, E1
// // coordinate system: base + s*E0 + t*E1
// static scalar nearestCoords
// (
// const point& base,
// const point& E0,
// const point& E1,
// const scalar a,
// const scalar b,
// const scalar c,
// const point& P,
// scalar& s,
// scalar& t
// );
public:

View File

@ -430,10 +430,7 @@ bool Foam::edgeIntersections::offsetPerturb
point ctr = tri.centre();
// Get measure for tolerance.
scalar tolDim = 0.001*mag(tri.a() - ctr);
tri.classify(pHit.hitPoint(), tolDim, nearType, nearLabel);
tri.classify(pHit.hitPoint(), nearType, nearLabel);
if (nearType == triPointRef::POINT || nearType == triPointRef::EDGE)
{

View File

@ -315,7 +315,7 @@ void Foam::surfaceIntersection::classifyHit
surf2Pts[f2[0]],
surf2Pts[f2[1]],
surf2Pts[f2[2]]
).classify(pHit.hitPoint(), tolDim, nearType, nearLabel);
).classify(pHit.hitPoint(), nearType, nearLabel);
// Classify points on edge of surface1
label edgeEnd =

View File

@ -43,7 +43,7 @@ Foam::scalar Foam::octreeDataTriSurface::tol(1E-6);
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
// Fast distance to triangle calculation. From
// "Distance Between Point and Trangle in 3D"
// "Distance Between Point and Triangle in 3D"
// David Eberly, Magic Software Inc. Aug. 2003.
// Works on function Q giving distance to point and tries to minimize this.
void Foam::octreeDataTriSurface::nearestCoords

View File

@ -234,9 +234,7 @@ void Foam::orientedSurface::propagateOrientation
(
s,
samplePoint,
nearestFaceI,
nearestPt,
10*SMALL
nearestFaceI
);
if (side == triSurfaceTools::UNKNOWN)

View File

@ -2121,12 +2121,13 @@ Foam::vector Foam::triSurfaceTools::surfaceNormal
label nearType;
label nearLabel;
triPointRef
(
points[f[0]],
points[f[1]],
points[f[2]]
).classify(nearestPt, 1E-6, nearType, nearLabel);
).classify(nearestPt, nearType, nearLabel);
if (nearType == triPointRef::NONE)
{
@ -2199,28 +2200,61 @@ Foam::triSurfaceTools::sideType Foam::triSurfaceTools::surfaceSide
(
const triSurface& surf,
const point& sample,
const label nearestFaceI, // nearest face
const point& nearestPoint, // nearest point on nearest face
const scalar tol
const label nearestFaceI
)
{
const labelledTri& f = surf[nearestFaceI];
const pointField& points = surf.points();
// Find where point is on triangle. Note tolerance needed. Is relative
// one (used in comparing normalized [0..1] triangle coordinates).
// Find where point is on triangle.
label nearType, nearLabel;
triPointRef
pointHit pHit = triPointRef
(
points[f[0]],
points[f[1]],
points[f[2]]
).classify(nearestPoint, tol, nearType, nearLabel);
).nearestPointClassify(sample, nearType, nearLabel);
const point& nearestPoint(pHit.rawPoint());
if (nearType == triPointRef::NONE)
{
vector sampleNearestVec = (sample - nearestPoint);
// Nearest to face interior. Use faceNormal to determine side
scalar c = (sample - nearestPoint) & surf.faceNormals()[nearestFaceI];
scalar c = sampleNearestVec & surf.faceNormals()[nearestFaceI];
// // If the sample is essentially on the face, do not check for
// // it being perpendicular.
// scalar magSampleNearestVec = mag(sampleNearestVec);
// if (magSampleNearestVec > SMALL)
// {
// c /= magSampleNearestVec*mag(surf.faceNormals()[nearestFaceI]);
// if (mag(c) < 0.99)
// {
// FatalErrorIn("triSurfaceTools::surfaceSide")
// << "nearestPoint identified as being on triangle face "
// << "but vector from nearestPoint to sample is not "
// << "perpendicular to the normal." << nl
// << "sample: " << sample << nl
// << "nearestPoint: " << nearestPoint << nl
// << "sample - nearestPoint: "
// << sample - nearestPoint << nl
// << "normal: " << surf.faceNormals()[nearestFaceI] << nl
// << "mag(sample - nearestPoint): "
// << mag(sample - nearestPoint) << nl
// << "normalised dot product: " << c << nl
// << "triangle vertices: " << nl
// << " " << points[f[0]] << nl
// << " " << points[f[1]] << nl
// << " " << points[f[2]] << nl
// << abort(FatalError);
// }
// }
if (c > 0)
{
@ -2245,7 +2279,7 @@ Foam::triSurfaceTools::sideType Foam::triSurfaceTools::surfaceSide
// const edge& e = surf.edges()[edgeI];
// const labelList& meshPoints = surf.meshPoints();
// const edge meshEdge(meshPoints[e[0]], meshPoints[e[1]]);
//
// if
// (
// meshEdge
@ -2717,7 +2751,14 @@ void Foam::triSurfaceTools::calcInterpolationWeights
triPointRef tri(f.tri(points));
pointHit nearest = tri.nearestPoint(samplePt);
label nearType, nearLabel;
pointHit nearest = tri.nearestPointClassify
(
samplePt,
nearType,
nearLabel
);
if (nearest.hit())
{
@ -2741,14 +2782,6 @@ void Foam::triSurfaceTools::calcInterpolationWeights
minDistance = nearest.distance();
// Outside triangle. Store nearest.
label nearType, nearLabel;
tri.classify
(
nearest.rawPoint(),
1E-6, // relative tolerance
nearType,
nearLabel
);
if (nearType == triPointRef::POINT)
{
@ -2830,7 +2863,6 @@ Foam::surfaceLocation Foam::triSurfaceTools::classify
triPointRef(s[triI].tri(s.points())).classify
(
trianglePoint,
1E-6,
elemType,
index
);

View File

@ -458,9 +458,7 @@ public:
(
const triSurface& surf,
const point& sample,
const label nearestFaceI, // nearest face
const point& nearestPt, // nearest point on nearest face
const scalar tol // tolerance for nearness test.
const label nearestFaceI
);
// Triangulation of faces

View File

@ -168,7 +168,6 @@ bool Foam::streamLineParticle::move(streamLineParticle::trackData& td)
td.keepParticle
&& !td.switchProcessor
&& lifeTime_ > 0
&& tEnd > ROOTVSMALL
)
{
// TBD: implement subcycling so step through cells in more than
@ -191,6 +190,12 @@ bool Foam::streamLineParticle::move(streamLineParticle::trackData& td)
tEnd -= dt;
stepFraction() = 1.0 - tEnd/deltaT;
if (tEnd <= ROOTVSMALL)
{
// Force removal
lifeTime_ = 0;
}
}
if (!td.keepParticle || lifeTime_ == 0)

View File

@ -89,20 +89,29 @@ void Foam::distanceSurface::createGeometry()
if (signed_)
{
vectorField normal;
surfPtr_().getNormal(nearest, normal);
List<searchableSurface::volumeType> volType;
forAll(nearest, i)
{
vector d(cc[i]-nearest[i].hitPoint());
surfPtr_().getVolumeType(cc, volType);
if ((d&normal[i]) > 0)
forAll(volType, i)
{
fld[i] = Foam::mag(d);
searchableSurface::volumeType vT = volType[i];
if (vT == searchableSurface::OUTSIDE)
{
fld[i] = Foam::mag(cc[i] - nearest[i].hitPoint());
}
else if (vT == searchableSurface::INSIDE)
{
fld[i] = -Foam::mag(cc[i] - nearest[i].hitPoint());
}
else
{
fld[i] = -Foam::mag(d);
FatalErrorIn
(
"void Foam::distanceSurface::createGeometry()"
) << "getVolumeType failure, neither INSIDE or OUTSIDE"
<< exit(FatalError);
}
}
}
@ -132,20 +141,30 @@ void Foam::distanceSurface::createGeometry()
if (signed_)
{
vectorField normal;
surfPtr_().getNormal(nearest, normal);
List<searchableSurface::volumeType> volType;
forAll(nearest, i)
{
vector d(cc[i]-nearest[i].hitPoint());
surfPtr_().getVolumeType(cc, volType);
if ((d&normal[i]) > 0)
forAll(volType, i)
{
fld[i] = Foam::mag(d);
searchableSurface::volumeType vT = volType[i];
if (vT == searchableSurface::OUTSIDE)
{
fld[i] = Foam::mag(cc[i] - nearest[i].hitPoint());
}
else if (vT == searchableSurface::INSIDE)
{
fld[i] = -Foam::mag(cc[i] - nearest[i].hitPoint());
}
else
{
fld[i] = -Foam::mag(d);
FatalErrorIn
(
"void Foam::distanceSurface::createGeometry()"
) << "getVolumeType failure, "
<< "neither INSIDE or OUTSIDE"
<< exit(FatalError);
}
}
}
@ -179,20 +198,31 @@ void Foam::distanceSurface::createGeometry()
if (signed_)
{
vectorField normal;
surfPtr_().getNormal(nearest, normal);
List<searchableSurface::volumeType> volType;
forAll(nearest, i)
{
vector d(pts[i]-nearest[i].hitPoint());
surfPtr_().getVolumeType(pts, volType);
if ((d&normal[i]) > 0)
forAll(volType, i)
{
pointDistance_[i] = Foam::mag(d);
searchableSurface::volumeType vT = volType[i];
if (vT == searchableSurface::OUTSIDE)
{
pointDistance_[i] =
Foam::mag(pts[i] - nearest[i].hitPoint());
}
else if (vT == searchableSurface::INSIDE)
{
pointDistance_[i] =
-Foam::mag(pts[i] - nearest[i].hitPoint());
}
else
{
pointDistance_[i] = -Foam::mag(d);
FatalErrorIn
(
"void Foam::distanceSurface::createGeometry()"
) << "getVolumeType failure, neither INSIDE or OUTSIDE"
<< exit(FatalError);
}
}
}

View File

@ -231,19 +231,17 @@ void kappatJayatillekeWallFunctionFvPatchScalarField::updateCoeffs()
scalar P = Psmooth(Prat);
scalar yPlusTherm = this->yPlusTherm(P, Prat);
// Evaluate new effective thermal diffusivity
scalar kappaEff = 0.0;
if (yPlus < yPlusTherm)
// Update turbulent thermal conductivity
if (yPlus > yPlusTherm)
{
kappaEff = Pr*yPlus;
scalar nu = nuw[faceI];
scalar kt = nu*(yPlus/(Prt_/kappa_*log(E_*yPlusTherm) + P) - 1/Pr);
kappatw[faceI] = max(0.0, kt);
}
else
{
kappaEff = nuw[faceI]*yPlus/(Prt_/kappa_*log(E_*yPlusTherm) + P);
kappatw[faceI] = 0.0;
}
// Update turbulent thermal diffusivity
kappatw[faceI] = max(0.0, kappaEff - nuw[faceI]/Pr);
}
fixedValueFvPatchField<scalar>::updateCoeffs();

View File

@ -23,411 +23,7 @@ boundaryField
floor
{
type fixedValue;
value nonuniform List<scalar>
400
(
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
600
600
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
600
600
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
)
;
value uniform 300;
}
ceiling
{

View File

@ -22,23 +22,20 @@ boundaryField
{
floor
{
type buoyantPressure;
rho rhok;
value uniform 0;
type calculated;
value $internalField;
}
ceiling
{
type buoyantPressure;
rho rhok;
value uniform 0;
type calculated;
value $internalField;
}
fixedWalls
{
type buoyantPressure;
rho rhok;
value uniform 0;
type calculated;
value $internalField;
}
}

View File

@ -0,0 +1,45 @@
/*--------------------------------*- C++ -*----------------------------------*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: dev |
| \\ / A nd | Web: www.OpenFOAM.com |
| \\/ M anipulation | |
\*---------------------------------------------------------------------------*/
FoamFile
{
version 2.0;
format ascii;
class volScalarField;
object p_rgh;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
dimensions [0 2 -2 0 0 0 0];
internalField uniform 0;
boundaryField
{
floor
{
type buoyantPressure;
rho rhok;
value uniform 0;
}
ceiling
{
type buoyantPressure;
rho rhok;
value uniform 0;
}
fixedWalls
{
type buoyantPressure;
rho rhok;
value uniform 0;
}
}
// ************************************************************************* //

View File

@ -5,6 +5,6 @@ cd ${0%/*} || exit 1 # run from this directory
. $WM_PROJECT_DIR/bin/tools/CleanFunctions
cleanCase
cp 0/T.org 0/T
rm -f 0/T
# ----------------------------------------------------------------- end-of-file

View File

@ -8,6 +8,7 @@ application=`getApplication`
compileApplication ../../buoyantPimpleFoam/hotRoom/setHotRoom
runApplication blockMesh
cp 0/T.org 0/T
runApplication setHotRoom
runApplication $application

View File

@ -40,12 +40,12 @@ divSchemes
laplacianSchemes
{
default none;
laplacian(nuEff,U) Gauss linear corrected;
laplacian((1|A(U)),p) Gauss linear corrected;
laplacian(kappaEff,T) Gauss linear corrected;
laplacian(DkEff,k) Gauss linear corrected;
laplacian(DepsilonEff,epsilon) Gauss linear corrected;
laplacian(DREff,R) Gauss linear corrected;
laplacian(nuEff,U) Gauss linear uncorrected;
laplacian((1|A(U)),p_rgh) Gauss linear uncorrected;
laplacian(kappaEff,T) Gauss linear uncorrected;
laplacian(DkEff,k) Gauss linear uncorrected;
laplacian(DepsilonEff,epsilon) Gauss linear uncorrected;
laplacian(DREff,R) Gauss linear uncorrected;
}
interpolationSchemes
@ -55,13 +55,13 @@ interpolationSchemes
snGradSchemes
{
default corrected;
default uncorrected;
}
fluxRequired
{
default no;
p ;
p_rgh;
}

View File

@ -17,17 +17,17 @@ FoamFile
solvers
{
p
p_rgh
{
solver PCG;
preconditioner DIC;
tolerance 1e-8;
relTol 0.1;
relTol 0.01;
}
pFinal
p_rghFinal
{
$p;
$p_rgh;
relTol 0;
}

View File

@ -22,23 +22,20 @@ boundaryField
{
floor
{
type buoyantPressure;
rho rhok;
value uniform 0;
type calculated;
value $internalField;
}
ceiling
{
type buoyantPressure;
rho rhok;
value uniform 0;
type calculated;
value $internalField;
}
fixedWalls
{
type buoyantPressure;
rho rhok;
value uniform 0;
type calculated;
value $internalField;
}
}

View File

@ -5,6 +5,6 @@ cd ${0%/*} || exit 1 # run from this directory
. $WM_PROJECT_DIR/bin/tools/CleanFunctions
cleanCase
cp 0/T.org 0/T
rm -f 0/T
# ----------------------------------------------------------------- end-of-file

View File

@ -8,6 +8,7 @@ application=`getApplication`
compileApplication ../../buoyantPimpleFoam/hotRoom/setHotRoom
runApplication blockMesh
cp 0/T.org 0/T
runApplication setHotRoom
runApplication $application

View File

@ -45,5 +45,25 @@ timePrecision 6;
runTimeModifiable true;
functions
{
residualControl1
{
type residualControl;
functionObjectLibs ( "libjobControl.so" );
outputControl timeStep;
outputInterval 1;
maxResiduals
{
p_rgh 1e-2;
U 1e-4;
T 1e-3;
// possibly check turbulence fields
"(k|epsilon|omega)" 1e-3;
}
}
}
// ************************************************************************* //

View File

@ -37,17 +37,15 @@ solvers
SIMPLE
{
nNonOrthogonalCorrectors 0;
p_rghRefCell 0;
p_rghRefValue 0;
pRefCell 0;
pRefValue 0;
}
relaxationFactors
{
rho 1;
p_rgh 0.7;
U 0.2;
T 0.7;
T 0.5;
"(k|epsilon|R)" 0.7;
}

View File

@ -22,30 +22,26 @@ boundaryField
{
ground
{
type buoyantPressure;
rho rhok;
value uniform 0;
type calculated;
value $internalField;
}
igloo_region0
{
type buoyantPressure;
rho rhok;
value uniform 0;
type calculated;
value $internalField;
}
twoFridgeFreezers_seal_0
{
type buoyantPressure;
rho rhok;
value uniform 0;
type calculated;
value $internalField;
}
twoFridgeFreezers_herring_1
{
type buoyantPressure;
rho rhok;
value uniform 0;
type calculated;
value $internalField;
}
}

View File

@ -21,55 +21,55 @@ FoamFile
{
type empty;
nFaces 0;
startFace 60456;
startFace 60336;
}
minX
{
type empty;
nFaces 0;
startFace 60456;
startFace 60336;
}
maxX
{
type empty;
nFaces 0;
startFace 60456;
startFace 60336;
}
minY
{
type empty;
nFaces 0;
startFace 60456;
startFace 60336;
}
ground
{
type wall;
nFaces 590;
startFace 60456;
startFace 60336;
}
maxZ
{
type empty;
nFaces 0;
startFace 61046;
startFace 60926;
}
igloo_region0
{
type wall;
nFaces 2260;
startFace 61046;
startFace 60926;
}
twoFridgeFreezers_seal_0
{
type wall;
nFaces 1344;
startFace 63306;
startFace 63186;
}
twoFridgeFreezers_herring_1
{
type wall;
nFaces 1116;
startFace 64650;
startFace 64530;
}
)

View File

@ -45,5 +45,25 @@ timePrecision 6;
runTimeModifiable true;
functions
{
residualControl1
{
type residualControl;
functionObjectLibs ( "libjobControl.so" );
outputControl timeStep;
outputInterval 1;
maxResiduals
{
p_rgh 1e-2;
U 1e-4;
T 1e-3;
// possibly check turbulence fields
"(k|epsilon|omega)" 1e-3;
}
}
}
// ************************************************************************* //

View File

@ -37,16 +37,15 @@ solvers
SIMPLE
{
nNonOrthogonalCorrectors 0;
p_rghRefCell 0;
p_rghRefValue 0;
pRefCell 0;
pRefValue 0;
}
relaxationFactors
{
p_rgh 0.8;
p_rgh 0.7;
U 0.2;
T 0.7;
T 0.5;
"(k|epsilon)" 0.7;
}

View File

@ -22,20 +22,20 @@ boundaryField
{
floor
{
type buoyantPressure;
value uniform 1e5;
type calculated;
value $internalField;
}
ceiling
{
type buoyantPressure;
value uniform 1e5;
type calculated;
value $internalField;
}
fixedWalls
{
type buoyantPressure;
value uniform 1e5;
type calculated;
value $internalField;
}
}

View File

@ -0,0 +1,42 @@
/*--------------------------------*- C++ -*----------------------------------*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: dev |
| \\ / A nd | Web: www.OpenFOAM.com |
| \\/ M anipulation | |
\*---------------------------------------------------------------------------*/
FoamFile
{
version 2.0;
format ascii;
class volScalarField;
object p_rgh;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
dimensions [1 -1 -2 0 0 0 0];
internalField uniform 1e5;
boundaryField
{
floor
{
type buoyantPressure;
value uniform 1e5;
}
ceiling
{
type buoyantPressure;
value uniform 1e5;
}
fixedWalls
{
type buoyantPressure;
value uniform 1e5;
}
}
// ************************************************************************* //

View File

@ -42,7 +42,7 @@ laplacianSchemes
{
default none;
laplacian(muEff,U) Gauss linear corrected;
laplacian((rho*(1|A(U))),p) Gauss linear corrected;
laplacian((rho*(1|A(U))),p_rgh) Gauss linear corrected;
laplacian(alphaEff,h) Gauss linear corrected;
laplacian(DkEff,k) Gauss linear corrected;
laplacian(DepsilonEff,epsilon) Gauss linear corrected;
@ -62,7 +62,7 @@ snGradSchemes
fluxRequired
{
default no;
p ;
p_rgh;
}

View File

@ -25,17 +25,17 @@ solvers
relTol 0;
}
p
p_rgh
{
solver PCG;
preconditioner DIC;
tolerance 1e-8;
relTol 0.1;
relTol 0.01;
}
pFinal
p_rghFinal
{
$p;
$p_rgh;
relTol 0;
}
@ -44,7 +44,7 @@ solvers
solver PBiCG;
preconditioner DILU;
tolerance 1e-6;
relTol 0;
relTol 0.1;
}
"(U|h|k|epsilon|R)Final"
@ -56,7 +56,7 @@ solvers
PIMPLE
{
momentumPredictor no;
momentumPredictor yes;
nOuterCorrectors 1;
nCorrectors 2;
nNonOrthogonalCorrectors 0;

View File

@ -23,26 +23,26 @@ boundaryField
{
frontAndBack
{
type buoyantPressure;
value uniform 1e5;
type calculated;
value $internalField;
}
topAndBottom
{
type buoyantPressure;
value uniform 1e5;
type calculated;
value $internalField;
}
hot
{
type buoyantPressure;
value uniform 1e5;
type calculated;
value $internalField;
}
cold
{
type buoyantPressure;
value uniform 1e5;
type calculated;
value $internalField;
}
}

View File

@ -44,5 +44,25 @@ timePrecision 6;
runTimeModifiable true;
functions
{
residualControl1
{
type residualControl;
functionObjectLibs ( "libjobControl.so" );
outputControl timeStep;
outputInterval 1;
maxResiduals
{
p_rgh 1e-2;
U 1e-4;
T 1e-3;
// possibly check turbulence fields
"(k|epsilon|omega)" 1e-3;
}
}
}
// ************************************************************************* //

View File

@ -44,17 +44,16 @@ SIMPLE
{
momentumPredictor yes;
nNonOrthogonalCorrectors 0;
p_rghRefCell 0;
p_rghRefValue 100000;
pRefValue 100000;
convergence 1e-04;
pRefCell 0;
pRefValue 0;
}
relaxationFactors
{
p_rgh 0.9;
rho 1.0;
p_rgh 0.7;
U 0.3;
h 0.7;
h 0.3;
"(k|epsilon|omega)" 0.7;
}

View File

@ -23,411 +23,7 @@ boundaryField
floor
{
type fixedValue;
value nonuniform List<scalar>
400
(
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
600
600
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
600
600
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
)
;
value uniform 300;
}
ceiling
{

View File

@ -23,411 +23,7 @@ boundaryField
floor
{
type fixedValue;
value nonuniform List<scalar>
400
(
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
600
600
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
600
600
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
)
;
value uniform 300;
}
ceiling
{

View File

@ -22,20 +22,20 @@ boundaryField
{
floor
{
type buoyantPressure;
value uniform 1e5;
type calculated;
value $internalField;
}
ceiling
{
type buoyantPressure;
value uniform 1e5;
type calculated;
value $internalField;
}
fixedWalls
{
type buoyantPressure;
value uniform 1e5;
type calculated;
value $internalField;
}
}

View File

@ -0,0 +1,42 @@
/*--------------------------------*- C++ -*----------------------------------*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: dev |
| \\ / A nd | Web: www.OpenFOAM.com |
| \\/ M anipulation | |
\*---------------------------------------------------------------------------*/
FoamFile
{
version 2.0;
format ascii;
class volScalarField;
object p_rgh;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
dimensions [1 -1 -2 0 0 0 0];
internalField uniform 1e5;
boundaryField
{
floor
{
type buoyantPressure;
value uniform 1e5;
}
ceiling
{
type buoyantPressure;
value uniform 1e5;
}
fixedWalls
{
type buoyantPressure;
value uniform 1e5;
}
}
// ************************************************************************* //

View File

@ -45,5 +45,25 @@ timePrecision 6;
runTimeModifiable true;
functions
{
residualControl1
{
type residualControl;
functionObjectLibs ( "libjobControl.so" );
outputControl timeStep;
outputInterval 1;
maxResiduals
{
p_rgh 1e-2;
U 1e-4;
T 1e-3;
// possibly check turbulence fields
"(k|epsilon|omega)" 1e-3;
}
}
}
// ************************************************************************* //

View File

@ -40,12 +40,12 @@ divSchemes
laplacianSchemes
{
default none;
laplacian(muEff,U) Gauss linear corrected;
laplacian((rho*(1|A(U))),p) Gauss linear corrected;
laplacian(alphaEff,h) Gauss linear corrected;
laplacian(DkEff,k) Gauss linear corrected;
laplacian(DepsilonEff,epsilon) Gauss linear corrected;
laplacian(DREff,R) Gauss linear corrected;
laplacian(muEff,U) Gauss linear uncorrected;
laplacian((rho*(1|A(U))),p_rgh) Gauss linear uncorrected;
laplacian(alphaEff,h) Gauss linear uncorrected;
laplacian(DkEff,k) Gauss linear uncorrected;
laplacian(DepsilonEff,epsilon) Gauss linear uncorrected;
laplacian(DREff,R) Gauss linear uncorrected;
}
interpolationSchemes
@ -61,7 +61,7 @@ snGradSchemes
fluxRequired
{
default no;
p ;
p_rgh;
}

View File

@ -17,12 +17,12 @@ FoamFile
solvers
{
p
p_rgh
{
solver PCG;
preconditioner DIC;
tolerance 1e-08;
relTol 0;
relTol 0.01;
}
"(U|h|k|epsilon|R)"
@ -30,7 +30,7 @@ solvers
solver PBiCG;
preconditioner DILU;
tolerance 1e-05;
relTol 0;
relTol 0.1;
}
}
@ -38,16 +38,16 @@ SIMPLE
{
nNonOrthogonalCorrectors 0;
pRefCell 0;
pRefValue 100000;
pRefValue 0;
}
relaxationFactors
{
rho 1;
p 0.7;
rho 1.0;
p_rgh 0.7;
U 0.2;
h 0.7;
"(k|epsilon|R)" 0.7;
h 0.2;
"(k|epsilon|R)" 0.5;
}

View File

@ -25,7 +25,7 @@ boundaryField
type MarshakRadiation;
T T;
emissivity 1;
value uniform 0;
// value uniform 0;
}
fixedWalls
@ -33,7 +33,7 @@ boundaryField
type MarshakRadiation;
T T;
emissivity 1;
value uniform 0;
// value uniform 0;
}
ceiling
@ -41,7 +41,7 @@ boundaryField
type MarshakRadiation;
T T;
emissivity 1;
value uniform 0;
// value uniform 0;
}
box
@ -49,7 +49,7 @@ boundaryField
type MarshakRadiation;
T T;
emissivity 1;
value uniform 0;
// value uniform 0;
}
}

View File

@ -22,26 +22,26 @@ boundaryField
{
floor
{
type buoyantPressure;
value uniform 100000;
type calculated;
value $internalField;
}
ceiling
{
type buoyantPressure;
value uniform 100000;
type calculated;
value $internalField;
}
fixedWalls
{
type buoyantPressure;
value uniform 100000;
type calculated;
value $internalField;
}
box
{
type buoyantPressure;
value uniform 100000;
type calculated;
value $internalField;
}
}

View File

@ -0,0 +1,48 @@
/*--------------------------------*- C++ -*----------------------------------*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: dev |
| \\ / A nd | Web: www.OpenFOAM.com |
| \\/ M anipulation | |
\*---------------------------------------------------------------------------*/
FoamFile
{
version 2.0;
format ascii;
class volScalarField;
object p_rgh;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
dimensions [1 -1 -2 0 0 0 0];
internalField uniform 100000;
boundaryField
{
floor
{
type buoyantPressure;
value uniform 100000;
}
ceiling
{
type buoyantPressure;
value uniform 100000;
}
fixedWalls
{
type buoyantPressure;
value uniform 100000;
}
box
{
type buoyantPressure;
value uniform 100000;
}
}
// ************************************************************************* //

View File

@ -45,5 +45,25 @@ timePrecision 6;
runTimeModifiable true;
functions
{
residualControl1
{
type residualControl;
functionObjectLibs ( "libjobControl.so" );
outputControl timeStep;
outputInterval 1;
maxResiduals
{
p_rgh 1e-2;
U 1e-4;
T 1e-3;
// possibly check turbulence fields
"(k|epsilon|omega)" 1e-3;
}
}
}
// ************************************************************************* //

View File

@ -41,7 +41,7 @@ laplacianSchemes
{
default none;
laplacian(muEff,U) Gauss linear corrected;
laplacian((rho*(1|A(U))),p) Gauss linear corrected;
laplacian((rho*(1|A(U))),p_rgh) Gauss linear corrected;
laplacian(alphaEff,h) Gauss linear corrected;
laplacian(DkEff,k) Gauss linear corrected;
laplacian(DepsilonEff,epsilon) Gauss linear corrected;
@ -62,7 +62,7 @@ snGradSchemes
fluxRequired
{
default no;
p;
p_rgh;
}

View File

@ -17,7 +17,7 @@ FoamFile
solvers
{
p
p_rgh
{
solver PCG;
preconditioner DIC;
@ -35,7 +35,7 @@ solvers
G
{
$p;
$p_rgh;
tolerance 1e-05;
relTol 0.1;
}
@ -50,11 +50,11 @@ SIMPLE
relaxationFactors
{
rho 1;
p 0.3;
U 0.7;
h 0.7;
"(k|epsilon)" 0.7;
rho 1.0;
p_rgh 0.7;
U 0.2;
h 0.2;
"(k|epsilon|R)" 0.5;
G 0.7;
}

View File

@ -24,7 +24,7 @@ boundaryField
{
type greyDiffusiveRadiation;
T T;
emissivity 0.5;
emissivity 1.0;
value uniform 0;
}
}

Some files were not shown because too many files have changed in this diff Show More