Merge remote-tracking branch 'upstream/develop' into wp3-directional-refinement

This commit is contained in:
mattijs
2017-12-21 13:24:21 +00:00
948 changed files with 107557 additions and 3249 deletions

3
.gitmodules vendored Normal file
View File

@ -0,0 +1,3 @@
[submodule "cfmesh"]
path = modules/cfmesh
url = https://develop.openfoam.com/Community/integration-cfmesh.git

View File

@ -43,6 +43,15 @@ echo "Compile OpenFOAM applications"
echo echo
applications/Allwmake $targetType $* applications/Allwmake $targetType $*
# Additional components/modules
if [ -d "$WM_PROJECT_DIR/modules" ]
then
echo "========================================"
echo "Compile OpenFOAM modules"
echo
(cd $WM_PROJECT_DIR/modules 2>/dev/null && wmake -all)
fi
# Some summary information # Some summary information
echo echo
date "+%Y-%m-%d %H:%M:%S %z" 2>/dev/null || echo "date is unknown" date "+%Y-%m-%d %H:%M:%S %z" 2>/dev/null || echo "date is unknown"

View File

@ -0,0 +1,3 @@
potentialFoam.C
EXE = $(FOAM_APPBIN)/overPotentialFoam

View File

@ -0,0 +1,12 @@
EXE_INC = \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/dynamicFvMesh/lnInclude \
-I$(LIB_SRC)/overset/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/sampling/lnInclude
EXE_LIBS = \
-lfiniteVolume \
-lmeshTools \
-lsampling \
-loverset

View File

@ -0,0 +1,9 @@
const dictionary& potentialFlow
(
mesh.solutionDict().subDict("potentialFlow")
);
const int nNonOrthCorr
(
potentialFlow.lookupOrDefault<int>("nNonOrthogonalCorrectors", 0)
);

View File

@ -0,0 +1,146 @@
Info<< "Reading velocity field U\n" << endl;
volVectorField U
(
IOobject
(
"U",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
// Initialise the velocity internal field to zero
U = dimensionedVector("0", U.dimensions(), Zero);
surfaceScalarField phi
(
IOobject
(
"phi",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
fvc::flux(U)
);
if (args.optionFound("initialiseUBCs"))
{
U.correctBoundaryConditions();
phi = fvc::flux(U);
}
// Construct a pressure field
// If it is available read it otherwise construct from the velocity BCs
// converting fixed-value BCs to zero-gradient and vice versa.
word pName("p");
// Update name of the pressure field from the command-line option
args.optionReadIfPresent("pName", pName);
// Infer the pressure BCs from the velocity
wordList pBCTypes
(
U.boundaryField().size(),
fixedValueFvPatchScalarField::typeName
);
forAll(U.boundaryField(), patchi)
{
if (U.boundaryField()[patchi].fixesValue())
{
pBCTypes[patchi] = zeroGradientFvPatchScalarField::typeName;
}
}
// Note that registerObject is false for the pressure field. The pressure
// field in this solver doesn't have a physical value during the solution.
// It shouldn't be looked up and used by sub models or boundary conditions.
Info<< "Constructing pressure field " << pName << nl << endl;
volScalarField p
(
IOobject
(
pName,
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::NO_WRITE,
false
),
mesh,
dimensionedScalar(pName, sqr(dimVelocity), 0),
pBCTypes
);
// Infer the velocity potential BCs from the pressure
wordList PhiBCTypes
(
p.boundaryField().size(),
zeroGradientFvPatchScalarField::typeName
);
forAll(p.boundaryField(), patchi)
{
if (p.boundaryField()[patchi].fixesValue())
{
PhiBCTypes[patchi] = fixedValueFvPatchScalarField::typeName;
}
}
Info<< "Constructing velocity potential field Phi\n" << endl;
volScalarField Phi
(
IOobject
(
"Phi",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::NO_WRITE
),
mesh,
dimensionedScalar("Phi", dimLength*dimVelocity, 0),
PhiBCTypes
);
label PhiRefCell = 0;
scalar PhiRefValue = 0;
setRefCell
(
Phi,
potentialFlow.dict(),
PhiRefCell,
PhiRefValue
);
mesh.setFluxRequired(Phi.name());
#include "createMRF.H"
// Add overset specific interpolations
{
dictionary oversetDict;
oversetDict.add("Phi", true);
oversetDict.add("U", true);
const_cast<dictionary&>
(
mesh.schemesDict()
).add
(
"oversetInterpolationRequired",
oversetDict,
true
);
}
// Mask field for zeroing out contributions on hole cells
#include "createCellMask.H"
// Create bool field with interpolated cells
#include "createInterpolatedCells.H"

View File

@ -0,0 +1,260 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2017 OpenCFD Ltd
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
potentialFoam
Group
grpBasicSolvers
Description
Potential flow solver which solves for the velocity potential, to
calculate the flux-field, from which the velocity field is obtained by
reconstructing the flux.
\heading Solver details
The potential flow solution is typically employed to generate initial fields
for full Navier-Stokes codes. The flow is evolved using the equation:
\f[
\laplacian \Phi = \div(\vec{U})
\f]
Where:
\vartable
\Phi | Velocity potential [m2/s]
\vec{U} | Velocity [m/s]
\endvartable
The corresponding pressure field could be calculated from the divergence
of the Euler equation:
\f[
\laplacian p + \div(\div(\vec{U}\otimes\vec{U})) = 0
\f]
but this generates excessive pressure variation in regions of large
velocity gradient normal to the flow direction. A better option is to
calculate the pressure field corresponding to velocity variation along the
stream-lines:
\f[
\laplacian p + \div(\vec{F}\cdot\div(\vec{U}\otimes\vec{U})) = 0
\f]
where the flow direction tensor \f$\vec{F}\f$ is obtained from
\f[
\vec{F} = \hat{\vec{U}}\otimes\hat{\vec{U}}
\f]
\heading Required fields
\plaintable
U | Velocity [m/s]
\endplaintable
\heading Optional fields
\plaintable
p | Kinematic pressure [m2/s2]
Phi | Velocity potential [m2/s]
| Generated from p (if present) or U if not present
\endplaintable
\heading Options
\plaintable
-writep | write the Euler pressure
-writePhi | Write the final velocity potential
-initialiseUBCs | Update the velocity boundaries before solving for Phi
\endplaintable
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "pisoControl.H"
#include "dynamicFvMesh.H"
#include "cellCellStencilObject.H"
#include "localMin.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
argList::addOption
(
"pName",
"pName",
"Name of the pressure field"
);
argList::addBoolOption
(
"initialiseUBCs",
"Initialise U boundary conditions"
);
argList::addBoolOption
(
"writePhi",
"Write the final velocity potential field"
);
argList::addBoolOption
(
"writep",
"Calculate and write the Euler pressure field"
);
argList::addBoolOption
(
"withFunctionObjects",
"execute functionObjects"
);
#include "setRootCase.H"
#include "createTime.H"
#include "createNamedDynamicFvMesh.H"
pisoControl potentialFlow(mesh, "potentialFlow");
#include "createFields.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< nl << "Calculating potential flow" << endl;
mesh.update();
surfaceScalarField faceMask(localMin<scalar>(mesh).interpolate(cellMask));
// Since solver contains no time loop it would never execute
// function objects so do it ourselves
runTime.functionObjects().start();
MRF.makeRelative(phi);
adjustPhi(phi, U, p);
// Non-orthogonal velocity potential corrector loop
while (potentialFlow.correct())
{
phi = fvc::flux(U);
while (potentialFlow.correctNonOrthogonal())
{
fvScalarMatrix PhiEqn
(
fvm::laplacian(faceMask, Phi)
==
fvc::div(phi)
);
PhiEqn.setReference(PhiRefCell, PhiRefValue);
PhiEqn.solve();
if (potentialFlow.finalNonOrthogonalIter())
{
phi -= PhiEqn.flux();
}
}
MRF.makeAbsolute(phi);
Info<< "Continuity error = "
<< mag(fvc::div(phi))().weightedAverage(mesh.V()).value()
<< endl;
U = fvc::reconstruct(phi);
U.correctBoundaryConditions();
Info<< "Interpolated velocity error = "
<< (sqrt(sum(sqr(fvc::flux(U) - phi)))/sum(mesh.magSf())).value()
<< endl;
}
// Write U and phi
U.write();
phi.write();
// Optionally write Phi
if (args.optionFound("writePhi"))
{
Phi.write();
}
// Calculate the pressure field from the Euler equation
if (args.optionFound("writep"))
{
Info<< nl << "Calculating approximate pressure field" << endl;
label pRefCell = 0;
scalar pRefValue = 0.0;
setRefCell
(
p,
potentialFlow.dict(),
pRefCell,
pRefValue
);
// Calculate the flow-direction filter tensor
volScalarField magSqrU(magSqr(U));
volSymmTensorField F(sqr(U)/(magSqrU + SMALL*average(magSqrU)));
// Calculate the divergence of the flow-direction filtered div(U*U)
// Filtering with the flow-direction generates a more reasonable
// pressure distribution in regions of high velocity gradient in the
// direction of the flow
volScalarField divDivUU
(
fvc::div
(
F & fvc::div(phi, U),
"div(div(phi,U))"
)
);
// Solve a Poisson equation for the approximate pressure
while (potentialFlow.correctNonOrthogonal())
{
fvScalarMatrix pEqn
(
fvm::laplacian(p) + divDivUU
);
pEqn.setReference(pRefCell, pRefValue);
pEqn.solve();
}
p.write();
}
runTime.functionObjects().end();
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //

View File

@ -7,8 +7,8 @@ surfaceScalarField faceMask(localMin<scalar>(mesh).interpolate(cellMask));
volScalarField rAU(1.0/UEqn.A()); volScalarField rAU(1.0/UEqn.A());
surfaceScalarField rhorAUf("rhorAUf", faceMask*fvc::interpolate(rho*rAU)); surfaceScalarField rhorAUf("rhorAUf", faceMask*fvc::interpolate(rho*rAU));
volVectorField HbyA("HbyA", constrainHbyA(rAU*UEqn.H(), U, p)); volVectorField HbyA("HbyA", U);
//mesh.interpolate(HbyA); HbyA = constrainHbyA(rAU*UEqn.H(), U, p);
if (pimple.nCorrPISO() <= 1) if (pimple.nCorrPISO() <= 1)
{ {

View File

@ -0,0 +1,3 @@
rhoSimpleFoam.C
EXE = $(FOAM_APPBIN)/overRhoSimpleFoam

View File

@ -0,0 +1,27 @@
EXE_INC = \
-I.. \
-I$(LIB_SRC)/transportModels/compressible/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/basic/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/turbulenceModels/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/compressible/lnInclude \
-I$(LIB_SRC)/finiteVolume/cfdTools \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/sampling/lnInclude \
-I$(LIB_SRC)/dynamicFvMesh/lnInclude \
-I$(LIB_SRC)/dynamicMesh/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/overset/lnInclude
EXE_LIBS = \
-lcompressibleTransportModels \
-lfluidThermophysicalModels \
-lspecie \
-lturbulenceModels \
-lcompressibleTurbulenceModels \
-lfiniteVolume \
-lsampling \
-lmeshTools \
-lfvOptions \
-loverset \
-ldynamicFvMesh \
-ltopoChangerFvMesh

View File

@ -0,0 +1,23 @@
// Solve the Momentum equation
MRF.correctBoundaryVelocity(U);
tmp<fvVectorMatrix> tUEqn
(
fvm::div(phi, U)
+ MRF.DDt(rho, U)
+ turbulence->divDevRhoReff(U)
==
fvOptions(rho, U)
);
fvVectorMatrix& UEqn = tUEqn.ref();
UEqn.relax();
fvOptions.constrain(UEqn);
if (simple.momentumPredictor())
{
solve(UEqn == -cellMask*fvc::grad(p));
}
fvOptions.correct(U);

View File

@ -0,0 +1 @@
const volScalarField& psi = thermo.psi();

View File

@ -0,0 +1,91 @@
Info<< "Reading thermophysical properties\n" << endl;
autoPtr<fluidThermo> pThermo
(
fluidThermo::New(mesh)
);
fluidThermo& thermo = pThermo();
thermo.validate(args.executable(), "h", "e");
volScalarField& p = thermo.p();
volScalarField rho
(
IOobject
(
"rho",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
thermo.rho()
);
Info<< "Reading field U\n" << endl;
volVectorField U
(
IOobject
(
"U",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
#include "compressibleCreatePhi.H"
pressureControl pressureControl(p, rho, simple.dict());
mesh.setFluxRequired(p.name());
Info<< "Creating turbulence model\n" << endl;
autoPtr<compressible::turbulenceModel> turbulence
(
compressible::turbulenceModel::New
(
rho,
U,
phi,
thermo
)
);
dimensionedScalar initialMass = fvc::domainIntegrate(rho);
#include "createMRF.H"
//- Overset specific
// Add solver-specific interpolations
{
dictionary oversetDict;
oversetDict.add("U", true);
oversetDict.add("p", true);
oversetDict.add("HbyA", true);
oversetDict.add("grad(p)", true);
oversetDict.add("rho", true);
const_cast<dictionary&>
(
mesh.schemesDict()
).add
(
"oversetInterpolationRequired",
oversetDict,
true
);
}
// Mask field for zeroing out contributions on hole cells
#include "createCellMask.H"
#include "createInterpolatedCells.H"
bool adjustFringe
(
simple.dict().lookupOrDefault("oversetAdjustPhi", false)
);

View File

@ -0,0 +1,22 @@
Info<< "Create dynamic mesh for time = "
<< runTime.timeName() << nl << endl;
autoPtr<dynamicFvMesh> meshPtr
(
dynamicFvMesh::New
(
IOobject
(
dynamicFvMesh::defaultRegion,
runTime.timeName(),
runTime,
IOobject::MUST_READ
)
)
);
dynamicFvMesh& mesh = meshPtr();
// Calculate initial mesh-to-mesh mapping. Note that this should be
// done under the hood, e.g. as a MeshObject
mesh.update();

View File

@ -0,0 +1,123 @@
{
surfaceScalarField faceMask(localMin<scalar>(mesh).interpolate(cellMask));
volScalarField rAU(1.0/UEqn.A());
surfaceScalarField rhorAUf("rhorAUf", faceMask*fvc::interpolate(rho*rAU));
volVectorField HbyA("HbyA", U);
HbyA = constrainHbyA(cellMask*rAU*UEqn.H(), U, p);
tUEqn.clear();
bool closedVolume = false;
surfaceScalarField phiHbyA("phiHbyA", fvc::interpolate(rho)*fvc::flux(HbyA));
MRF.makeRelative(fvc::interpolate(rho), phiHbyA);
// Update the pressure BCs to ensure flux consistency
constrainPressure(p, rho, U, phiHbyA, rhorAUf, MRF);
if (simple.transonic())
{
surfaceScalarField phid
(
"phid",
(fvc::interpolate(psi)/fvc::interpolate(rho))*phiHbyA
);
phiHbyA -= fvc::interpolate(psi*p)*phiHbyA/fvc::interpolate(rho);
while (simple.correctNonOrthogonal())
{
fvScalarMatrix pEqn
(
fvc::div(phiHbyA)
+ fvm::div(phid, p)
- fvm::laplacian(rhorAUf, p)
==
fvOptions(psi, p, rho.name())
);
// Relax the pressure equation to ensure diagonal-dominance
pEqn.relax();
pEqn.setReference
(
pressureControl.refCell(),
pressureControl.refValue()
);
pEqn.solve();
if (simple.finalNonOrthogonalIter())
{
phi = phiHbyA + pEqn.flux();
}
}
}
else
{
closedVolume = adjustPhi(phiHbyA, U, p);
if (adjustFringe)
{
oversetAdjustPhi(phiHbyA, U);
}
while (simple.correctNonOrthogonal())
{
fvScalarMatrix pEqn
(
fvc::div(phiHbyA)
- fvm::laplacian(rhorAUf, p)
==
fvOptions(psi, p, rho.name())
);
pEqn.setReference
(
pressureControl.refCell(),
pressureControl.refValue()
);
pEqn.solve();
if (simple.finalNonOrthogonalIter())
{
phi = phiHbyA + pEqn.flux();
}
}
}
#include "incompressible/continuityErrs.H"
// Explicitly relax pressure for momentum corrector
p.relax();
volVectorField gradP(fvc::grad(p));
U = HbyA - rAU*cellMask*gradP;
U.correctBoundaryConditions();
fvOptions.correct(U);
bool pLimited = pressureControl.limit(p);
// For closed-volume cases adjust the pressure and density levels
// to obey overall mass continuity
if (closedVolume)
{
p += (initialMass - fvc::domainIntegrate(psi*p))
/fvc::domainIntegrate(psi);
}
if (pLimited || closedVolume)
{
p.correctBoundaryConditions();
}
rho = thermo.rho();
if (!simple.transonic())
{
rho.relax();
}
}

View File

@ -0,0 +1,92 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2017 OpenCFD Ltd
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
overRhoSimpleFoam
Group
grpCompressibleSolvers
Description
Overset steady-state solver for turbulent flow of compressible fluids.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "dynamicFvMesh.H"
#include "fluidThermo.H"
#include "turbulentFluidThermoModel.H"
#include "simpleControl.H"
#include "pressureControl.H"
#include "fvOptions.H"
#include "cellCellStencilObject.H"
#include "localMin.H"
#include "oversetAdjustPhi.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
#define CREATE_MESH createUpdatedDynamicFvMesh.H
#include "postProcess.H"
#include "setRootCase.H"
#include "createTime.H"
#include "createUpdatedDynamicFvMesh.H"
#include "createControl.H"
#include "createFields.H"
#include "createFieldRefs.H"
#include "createFvOptions.H"
#include "initContinuityErrs.H"
turbulence->validate();
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
while (simple.loop())
{
Info<< "Time = " << runTime.timeName() << nl << endl;
// Pressure-velocity SIMPLE corrector
#include "UEqn.H"
#include "EEqn.H"
#include "pEqn.H"
turbulence->correct();
runTime.write();
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //

View File

@ -3,7 +3,7 @@
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | \\ / O peration |
\\ / A nd | Copyright (C) 2015 OpenFOAM Foundation \\ / A nd | Copyright (C) 2015 OpenFOAM Foundation
\\/ M anipulation | \\/ M anipulation | Copyright (C) 2017 OpenCFD Ltd.
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
License License
This file is part of OpenFOAM. This file is part of OpenFOAM.
@ -39,6 +39,7 @@ The available solvers are grouped into the following categories:
- \ref grpLagrangianSolvers - \ref grpLagrangianSolvers
- \ref grpMultiphaseSolvers - \ref grpMultiphaseSolvers
- \ref grpStressAnalysisSolvers - \ref grpStressAnalysisSolvers
- \ref grpFiniteAreaSolvers
\*---------------------------------------------------------------------------*/ \*---------------------------------------------------------------------------*/

View File

@ -3,7 +3,7 @@
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | \\ / O peration |
\\ / A nd | Copyright (C) 2015 OpenFOAM Foundation \\ / A nd | Copyright (C) 2015 OpenFOAM Foundation
\\/ M anipulation | \\/ M anipulation | Copyright (C) 2017 OpenCFD Ltd.
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
License License
This file is part of OpenFOAM. This file is part of OpenFOAM.
@ -34,4 +34,10 @@ License
This group contains moving mesh solvers solvers This group contains moving mesh solvers solvers
@} @}
\defgroup grpFiniteAreaSolvers Finite area solvers
@{
\ingroup grpSolvers
This group contains finite area solvers
@}
\*---------------------------------------------------------------------------*/ \*---------------------------------------------------------------------------*/

View File

@ -0,0 +1,3 @@
liquidFilmFoam.C
EXE = $(FOAM_APPBIN)/liquidFilmFoam

View File

@ -0,0 +1,10 @@
EXE_INC = \
-I$(LIB_SRC)/finiteArea/lnInclude \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/cfdTools/general/lnInclude
EXE_LIBS = \
-lfiniteArea \
-lfiniteVolume \
-lmeshTools

View File

@ -0,0 +1,7 @@
{
// Stabilisation of friction factor calculation
// Friction factor is defined with standard gravity
frictionFactor.primitiveFieldRef() =
mag(2*9.81*sqr(manningField.primitiveField())/
pow(mag(h.primitiveField()) + 1e-7, 1.0/3.0));
}

View File

@ -0,0 +1,13 @@
{
scalar CoNumSigma = max
(
sqrt
(
2*M_PI*sigma*sqr(aMesh.edgeInterpolation::deltaCoeffs())
*aMesh.edgeInterpolation::deltaCoeffs()
/rhol
)
).value()*runTime.deltaT().value();
Info<< "Max Capillary Courant Number = " << CoNumSigma << '\n' << endl;
}

View File

@ -0,0 +1,158 @@
Info<< "Reading field h" << endl;
areaScalarField h
(
IOobject
(
"h",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
aMesh
);
Info<< "Reading field Us" << endl;
areaVectorField Us
(
IOobject
(
"Us",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
aMesh
);
edgeScalarField phis
(
IOobject
(
"phis",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
fac::interpolate(Us) & aMesh.Le()
);
edgeScalarField phi2s
(
IOobject
(
"phi2s",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
fac::interpolate(h*Us) & aMesh.Le()
);
const areaVectorField& Ns = aMesh.faceAreaNormals();
areaVectorField Gs(g - Ns*(Ns & g));
areaScalarField Gn(mag(g - Gs));
// Mass source
areaScalarField Sm
(
IOobject
(
"Sm",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
aMesh,
dimensionedScalar("Sm", dimLength/dimTime, 0)
);
// Mass sink
areaScalarField Sd
(
IOobject
(
"Sd",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
aMesh,
dimensionedScalar("Sd", dimLength/dimTime, 0)
);
areaVectorField Ug
(
IOobject
(
"Sg",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
aMesh,
dimensionedVector("Ug", dimVelocity, vector::zero)
);
// Surface pressure
areaScalarField ps
(
IOobject
(
"ps",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
rhol*Gn*h - sigma*fac::laplacian(h)
);
// Friction factor
areaScalarField dotProduct
(
aMesh.faceAreaNormals() & (g/mag(g))
);
Info<< "View factor: min = " << min(dotProduct.internalField())
<< " max = " << max(dotProduct.internalField()) << endl;
areaScalarField manningField
(
IOobject
(
"manningField",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
aMesh
);
areaScalarField frictionFactor
(
IOobject
(
"frictionFactor",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
aMesh,
dimensionedScalar("one", dimless, 0.01)
);
aMesh.setFluxRequired("h");

View File

@ -0,0 +1,31 @@
volVectorField U
(
IOobject
(
"U",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedVector("0", dimVelocity, vector::zero)
);
volScalarField H
(
IOobject
(
"H",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("0", dimLength, 0)
);
// Create volume-to surface mapping object
volSurfaceMapping vsm(aMesh);

View File

@ -0,0 +1,160 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd |
\\/ M anipulation |
-------------------------------------------------------------------------------
| Copyright (C) 2016-2017 Wikki Ltd
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
liquidFilmFoam
Group
grpFiniteAreaSolvers
Description
Transient solver for incompressible, laminar flow of Newtonian fluids in
liquid film formulation.
Author
Zeljko Tukovic, FMENA
Hrvoje Jasak, Wikki Ltd.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "faCFD.H"
#include "loopControl.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
#include "setRootCase.H"
#include "createTime.H"
#include "createMesh.H"
#include "createFaMesh.H"
#include "readGravitationalAcceleration.H"
#include "readTransportProperties.H"
#include "createFaFields.H"
#include "createFvFields.H"
#include "createTimeControls.H"
Info<< "\nStarting time loop\n" << endl;
while (runTime.run())
{
#include "readSolutionControls.H"
#include "readTimeControls.H"
#include "surfaceCourantNo.H"
#include "capillaryCourantNo.H"
#include "setDeltaT.H"
runTime++;
Info<< "Time = " << runTime.timeName() << nl << endl;
while (iters.loop())
{
phi2s = fac::interpolate(h)*phis;
#include "calcFrictionFactor.H"
faVectorMatrix UsEqn
(
fam::ddt(h, Us)
+ fam::div(phi2s, Us)
+ fam::Sp(0.0125*frictionFactor*mag(Us), Us)
==
Gs*h
- fam::Sp(Sd, Us)
);
UsEqn.relax();
solve(UsEqn == - fac::grad(ps*h)/rhol + ps*fac::grad(h)/rhol);
areaScalarField UsA(UsEqn.A());
Us = UsEqn.H()/UsA;
Us.correctBoundaryConditions();
phis =
(fac::interpolate(Us) & aMesh.Le())
- fac::interpolate(1.0/(rhol*UsA))*fac::lnGrad(ps*h)*aMesh.magLe()
+ fac::interpolate(ps/(rhol*UsA))*fac::lnGrad(h)*aMesh.magLe();
faScalarMatrix hEqn
(
fam::ddt(h)
+ fam::div(phis, h)
==
Sm
- fam::Sp
(
Sd/(h + dimensionedScalar("small", dimLength, SMALL)),
h
)
);
hEqn.relax();
hEqn.solve();
phi2s = hEqn.flux();
// Bound h
h.primitiveFieldRef() = max
(
max
(
h.primitiveField(),
fac::average(max(h, h0))().primitiveField()
*pos(h0.value() - h.primitiveField())
),
h0.value()
);
ps = rhol*Gn*h - sigma*fac::laplacian(h);
ps.correctBoundaryConditions();
Us -= (1.0/(rhol*UsA))*fac::grad(ps*h)
- (ps/(rhol*UsA))*fac::grad(h);
Us.correctBoundaryConditions();
}
if (runTime.outputTime())
{
vsm.mapToVolume(h, H.boundaryFieldRef());
vsm.mapToVolume(Us, U.boundaryFieldRef());
runTime.write();
}
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //

View File

@ -0,0 +1 @@
loopControl iters(runTime, aMesh.solutionDict(), "solution");

View File

@ -0,0 +1,41 @@
IOdictionary transportProperties
(
IOobject
(
"transportProperties",
runTime.constant(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
)
);
dimensionedScalar mug
(
transportProperties.lookup("mug")
);
dimensionedScalar mul
(
transportProperties.lookup("mul")
);
dimensionedScalar sigma
(
transportProperties.lookup("sigma")
);
dimensionedScalar rhol
(
transportProperties.lookup("rhol")
);
dimensionedScalar rhog
(
transportProperties.lookup("rhog")
);
dimensionedScalar h0
(
transportProperties.lookup("h0")
);

View File

@ -0,0 +1,63 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd |
\\/ M anipulation |
-------------------------------------------------------------------------------
| Copyright (C) 2016-2017 Wikki Ltd
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Global
surfaceCourantNo
Author
Hrvoje Jasak, Wikki Ltd.
Description
Calculates and outputs the mean and maximum Courant Numbers for the
Finite Area method.
\*---------------------------------------------------------------------------*/
scalar CoNum = 0.0;
scalar meanCoNum = 0.0;
scalar velMag = 0.0;
if (aMesh.nInternalEdges())
{
edgeScalarField SfUfbyDelta
(
aMesh.edgeInterpolation::deltaCoeffs()*mag(phis)
);
CoNum = max(SfUfbyDelta/aMesh.magLe())
.value()*runTime.deltaT().value();
meanCoNum = (sum(SfUfbyDelta)/sum(aMesh.magLe()))
.value()*runTime.deltaT().value();
velMag = max(mag(phis)/aMesh.magLe()).value();
}
Info<< "Courant Number mean: " << meanCoNum
<< " max: " << CoNum
<< " velocity magnitude: " << velMag << endl;
// ************************************************************************* //

View File

@ -0,0 +1,3 @@
surfactantFoam.C
EXE = $(FOAM_USER_APPBIN)/sphereSurfactantFoam

View File

@ -0,0 +1,10 @@
EXE_INC = \
-I$(LIB_SRC)/finiteArea/lnInclude \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/cfdTools/general/lnInclude
EXE_LIBS = \
-lfiniteArea \
-lfiniteVolume \
-lmeshTools

View File

@ -0,0 +1,78 @@
Info<< "Reading field Cs" << endl;
areaScalarField Cs
(
IOobject
(
"Cs",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
aMesh
);
dimensioned<scalar> Cs0
(
"Cs0",
dimensionSet(1, -2, 0, 0, 0, 0, 0),
1.0
);
const areaVectorField& R = aMesh.areaCentres();
Cs = Cs0*(1.0 + R.component(vector::X)/mag(R));
dimensioned<scalar> Ds
(
"Ds",
dimensionSet(0, 2, -1, 0, 0, 0, 0),
1.0
);
areaVectorField Us
(
IOobject
(
"Us",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
aMesh,
dimensioned<vector>("Us", dimVelocity, vector::zero)
);
dimensioned<scalar> Uinf("Uinf", dimVelocity, 1.0);
forAll (Us, faceI)
{
Us[faceI].x() =
Uinf.value()*(0.25*(3.0 + sqr(R[faceI].x()/mag(R[faceI]))) - 1.0);
Us[faceI].y() =
Uinf.value()*0.25*R[faceI].x()*R[faceI].y()/sqr(mag(R[faceI]));
Us[faceI].z() =
Uinf.value()*0.25*R[faceI].x()*R[faceI].z()/sqr(mag(R[faceI]));
}
Us -= aMesh.faceAreaNormals()*(aMesh.faceAreaNormals() & Us);
edgeScalarField phis
(
IOobject
(
"phis",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
linearEdgeInterpolate(Us) & aMesh.Le()
);

View File

@ -0,0 +1,2 @@
// Create Finite Area mesh
faMesh aMesh(mesh);

View File

@ -0,0 +1,36 @@
// Create volume-to surface mapping object
volSurfaceMapping vsm(aMesh);
volScalarField Cvf
(
IOobject
(
"Cvf",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("0", dimless/dimLength, 0)
);
vsm.mapToVolume(Cs, Cvf.boundaryFieldRef());
Cvf.write();
volVectorField U
(
IOobject
(
"U",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedVector("zero", dimVelocity, vector::zero)
);
vsm.mapToVolume(Us, U.boundaryFieldRef());
U.write();

View File

@ -0,0 +1,91 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd |
\\/ M anipulation |
-------------------------------------------------------------------------------
| Copyright (C) 2016-2017 Wikki Ltd
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
surfactantFoam for sphere transport
Group
grpFiniteAreaSolvers
Description
Passive scalar transport equation solver on a sphere
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "faCFD.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
#include "setRootCase.H"
#include "createTime.H"
#include "createMesh.H"
#include "createFaMesh.H"
#include "createFaFields.H"
#include "createVolFields.H"
Info<< "Total mass of surfactant: "
<< sum(Cs.internalField()*aMesh.S()) << endl;
Info<< "\nStarting time loop\n" << endl;
while (runTime.loop())
{
Info<< "Time = " << runTime.value() << endl;
faScalarMatrix CsEqn
(
fam::ddt(Cs)
+ fam::div(phis, Cs)
- fam::laplacian(Ds, Cs)
);
CsEqn.solve();
if (runTime.writeTime())
{
vsm.mapToVolume(Cs, Cvf.boundaryFieldRef());
runTime.write();
}
Info<< "Total mass of surfactant: "
<< sum(Cs.internalField()*aMesh.S()) << endl;
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //

View File

@ -0,0 +1,3 @@
surfactantFoam.C
EXE = $(FOAM_APPBIN)/surfactantFoam

View File

@ -0,0 +1,10 @@
EXE_INC = \
-I$(LIB_SRC)/finiteArea/lnInclude \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/cfdTools/general/lnInclude
EXE_LIBS = \
-lfiniteArea \
-lfiniteVolume \
-lmeshTools

View File

@ -0,0 +1,63 @@
Info<< "Reading field Cs" << endl;
areaScalarField Cs
(
IOobject
(
"Cs",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
aMesh
);
Info<< "Reading transportProperties\n" << endl;
IOdictionary transportProperties
(
IOobject
(
"transportProperties",
runTime.constant(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
)
);
Info<< "Reading diffusivity D\n" << endl;
dimensionedScalar Ds
(
transportProperties.lookup("Ds")
);
areaVectorField Us
(
IOobject
(
"Us",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
),
aMesh
);
edgeScalarField phis
(
IOobject
(
"phis",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
linearEdgeInterpolate(Us) & aMesh.Le()
);

View File

@ -0,0 +1,2 @@
// Create Finite Area mesh
faMesh aMesh(mesh);

View File

@ -0,0 +1,36 @@
// Create volume-to surface mapping object
volSurfaceMapping vsm(aMesh);
volScalarField Cvf
(
IOobject
(
"Cvf",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("0", dimless/dimLength, 0)
);
vsm.mapToVolume(Cs, Cvf.boundaryFieldRef());
Cvf.write();
volVectorField U
(
IOobject
(
"U",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedVector("zero", dimVelocity, vector::zero)
);
vsm.mapToVolume(Us, U.boundaryFieldRef());
U.write();

View File

@ -0,0 +1,114 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd |
\\/ M anipulation |
-------------------------------------------------------------------------------
| Copyright (C) 2016-2017 Wikki Ltd
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
surfactantFoam
Group
grpFiniteAreaSolvers
Description
Passive scalar transport equation solver.
\heading Solver details
The equation is given by:
\f[
\ddt{Cs} + \div \left(\vec{U} Cs\right) - \div \left(D_T \grad Cs \right)
= 0
\f]
Where:
\vartable
Cs | Passive scalar
Ds | Diffusion coefficient
\endvartable
\heading Required fields
\plaintable
Cs | Passive scalar
Us | Velocity [m/s]
\endplaintable
Author
Zeljko Tukovic, FMENA
Hrvoje Jasak, Wikki Ltd.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "faCFD.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
#include "setRootCase.H"
#include "createTime.H"
#include "createMesh.H"
#include "createFaMesh.H"
#include "createFaFields.H"
#include "createVolFields.H"
Info<< "Total mass of surfactant: "
<< sum(Cs.internalField()*aMesh.S()) << endl;
Info<< "\nStarting time loop\n" << endl;
while (runTime.loop())
{
Info<< "Time = " << runTime.value() << endl;
faScalarMatrix CsEqn
(
fam::ddt(Cs)
+ fam::div(phis, Cs)
- fam::laplacian(Ds, Cs)
);
CsEqn.solve();
if (runTime.writeTime())
{
vsm.mapToVolume(Cs, Cvf.boundaryFieldRef());
runTime.write();
}
Info<< "Total mass of surfactant: "
<< sum(Cs.internalField()*aMesh.S()) << endl;
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //

View File

@ -3,7 +3,7 @@
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | \\ / O peration |
\\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation \\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation
\\/ M anipulation | \\/ M anipulation | Copyright (C) 2017 OpenCFD Ltd.
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
License License
This file is part of OpenFOAM. This file is part of OpenFOAM.
@ -47,6 +47,7 @@ Description
#include "radiationModel.H" #include "radiationModel.H"
#include "fvOptions.H" #include "fvOptions.H"
#include "coordinateSystem.H" #include "coordinateSystem.H"
#include "loopControl.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
@ -89,11 +90,10 @@ int main(int argc, char *argv[])
} }
} }
// --- PIMPLE loop // --- PIMPLE loop
for (int oCorr=0; oCorr<nOuterCorr; oCorr++) for (int oCorr=0; oCorr<nOuterCorr; ++oCorr)
{ {
bool finalIter = oCorr == nOuterCorr-1; const bool finalIter = (oCorr == nOuterCorr-1);
forAll(fluidRegions, i) forAll(fluidRegions, i)
{ {
@ -113,6 +113,35 @@ int main(int argc, char *argv[])
#include "solveSolid.H" #include "solveSolid.H"
} }
// Additional loops for energy solution only
if (!oCorr && nOuterCorr > 1)
{
loopControl looping(runTime, pimple, "energyCoupling");
while (looping.loop())
{
Info<< nl << looping << nl;
forAll(fluidRegions, i)
{
Info<< "\nSolving for fluid region "
<< fluidRegions[i].name() << endl;
#include "setRegionFluidFields.H"
#include "readFluidMultiRegionPIMPLEControls.H"
frozenFlow = true;
#include "solveFluid.H"
}
forAll(solidRegions, i)
{
Info<< "\nSolving for solid region "
<< solidRegions[i].name() << endl;
#include "setRegionSolidFields.H"
#include "readSolidMultiRegionPIMPLEControls.H"
#include "solveSolid.H"
}
}
}
} }
runTime.write(); runTime.write();

View File

@ -3,7 +3,7 @@
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | \\ / O peration |
\\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation \\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation
\\/ M anipulation | \\/ M anipulation | Copyright (C) 2017 OpenCFD Ltd.
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
License License
This file is part of OpenFOAM. This file is part of OpenFOAM.
@ -42,6 +42,7 @@ Description
#include "radiationModel.H" #include "radiationModel.H"
#include "fvOptions.H" #include "fvOptions.H"
#include "coordinateSystem.H" #include "coordinateSystem.H"
#include "loopControl.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
@ -57,7 +58,6 @@ int main(int argc, char *argv[])
#include "createFields.H" #include "createFields.H"
#include "initContinuityErrs.H" #include "initContinuityErrs.H"
while (runTime.loop()) while (runTime.loop())
{ {
Info<< "Time = " << runTime.timeName() << nl << endl; Info<< "Time = " << runTime.timeName() << nl << endl;
@ -80,6 +80,35 @@ int main(int argc, char *argv[])
#include "solveSolid.H" #include "solveSolid.H"
} }
// Additional loops for energy solution only
{
loopControl looping(runTime, "SIMPLE", "energyCoupling");
while (looping.loop())
{
Info<< nl << looping << nl;
forAll(fluidRegions, i)
{
Info<< "\nSolving for fluid region "
<< fluidRegions[i].name() << endl;
#include "setRegionFluidFields.H"
#include "readFluidMultiRegionSIMPLEControls.H"
frozenFlow = true;
#include "solveFluid.H"
}
forAll(solidRegions, i)
{
Info<< "\nSolving for solid region "
<< solidRegions[i].name() << endl;
#include "setRegionSolidFields.H"
#include "readSolidMultiRegionSIMPLEControls.H"
#include "solveSolid.H"
}
}
}
runTime.write(); runTime.write();
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s" Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"

View File

@ -12,6 +12,14 @@
volScalarField& p = thermo.p(); volScalarField& p = thermo.p();
const volScalarField& psi = thermo.psi(); const volScalarField& psi = thermo.psi();
volScalarField& p_rgh = p_rghFluid[i];
const dimensionedVector& g = gFluid[i];
const volScalarField& gh = ghFluid[i];
const surfaceScalarField& ghf = ghfFluid[i];
radiation::radiationModel& rad = radiation[i];
IOMRFZoneList& MRF = MRFfluid[i]; IOMRFZoneList& MRF = MRFfluid[i];
fv::options& fvOptions = fluidFvOptions[i]; fv::options& fvOptions = fluidFvOptions[i];
@ -22,14 +30,7 @@
initialMassFluid[i] initialMassFluid[i]
); );
radiation::radiationModel& rad = radiation[i]; bool frozenFlow = frozenFlowFluid[i];
const label pRefCell = pRefCellFluid[i]; const label pRefCell = pRefCellFluid[i];
const scalar pRefValue = pRefValueFluid[i]; const scalar pRefValue = pRefValueFluid[i];
const bool frozenFlow = frozenFlowFluid[i];
volScalarField& p_rgh = p_rghFluid[i];
const dimensionedVector& g = gFluid[i];
const volScalarField& gh = ghFluid[i];
const surfaceScalarField& ghf = ghfFluid[i];

View File

@ -1,5 +1,5 @@
{ {
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++) for (int nonOrth=0; nonOrth<=nNonOrthCorr; ++nonOrth)
{ {
fvScalarMatrix hEqn fvScalarMatrix hEqn
( (
@ -20,9 +20,9 @@
fvOptions.correct(h); fvOptions.correct(h);
} }
thermo.correct();
Info<< "Min/max T:" << min(thermo.T()).value() << ' '
<< max(thermo.T()).value() << endl;
} }
thermo.correct();
Info<< "Min/max T:" << min(thermo.T()).value() << ' '
<< max(thermo.T()).value() << endl;

View File

@ -19,8 +19,8 @@ List<bool> frozenFlowFluid(fluidRegions.size(), false);
PtrList<IOMRFZoneList> MRFfluid(fluidRegions.size()); PtrList<IOMRFZoneList> MRFfluid(fluidRegions.size());
PtrList<fv::options> fluidFvOptions(fluidRegions.size()); PtrList<fv::options> fluidFvOptions(fluidRegions.size());
List<label> refCellFluid(fluidRegions.size()); List<label> pRefCellFluid(fluidRegions.size());
List<scalar> refValueFluid(fluidRegions.size()); List<scalar> pRefValueFluid(fluidRegions.size());
// Populate fluid field pointer lists // Populate fluid field pointer lists
forAll(fluidRegions, i) forAll(fluidRegions, i)
@ -252,8 +252,8 @@ forAll(fluidRegions, i)
turbulence[i].validate(); turbulence[i].validate();
refCellFluid[i] = 0; pRefCellFluid[i] = 0;
refValueFluid[i] = 0.0; pRefValueFluid[i] = 0.0;
if (p_rghFluid[i].needReference()) if (p_rghFluid[i].needReference())
{ {
@ -262,8 +262,8 @@ forAll(fluidRegions, i)
thermoFluid[i].p(), thermoFluid[i].p(),
p_rghFluid[i], p_rghFluid[i],
pimpleDict, pimpleDict,
refCellFluid[i], pRefCellFluid[i],
refValueFluid[i] pRefValueFluid[i]
); );
} }

View File

@ -32,7 +32,8 @@
initialMassFluid[i] initialMassFluid[i]
); );
const bool frozenFlow = frozenFlowFluid[i]; bool frozenFlow = frozenFlowFluid[i];
const label pRefCell = pRefCellFluid[i];
const scalar pRefValue = pRefValueFluid[i];
const label pRefCell = refCellFluid[i];
const scalar pRefValue = refValueFluid[i];

View File

@ -1,10 +1,10 @@
const wordList solidsNames(rp["solid"]); const wordList solidNames(rp["solid"]);
PtrList<fvMesh> solidRegions(solidsNames.size()); PtrList<fvMesh> solidRegions(solidNames.size());
forAll(solidsNames, i) forAll(solidNames, i)
{ {
Info<< "Create solid mesh for region " << solidsNames[i] Info<< "Create solid mesh for region " << solidNames[i]
<< " for time = " << runTime.timeName() << nl << endl; << " for time = " << runTime.timeName() << nl << endl;
solidRegions.set solidRegions.set
@ -14,7 +14,7 @@
( (
IOobject IOobject
( (
solidsNames[i], solidNames[i],
runTime.timeName(), runTime.timeName(),
runTime, runTime,
IOobject::MUST_READ IOobject::MUST_READ

View File

@ -4,7 +4,7 @@ if (finalIter)
} }
{ {
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++) for (int nonOrth=0; nonOrth<=nNonOrthCorr; ++nonOrth)
{ {
fvScalarMatrix hEqn fvScalarMatrix hEqn
( (
@ -26,13 +26,13 @@ if (finalIter)
fvOptions.correct(h); fvOptions.correct(h);
} }
thermo.correct();
Info<< "Min/max T:" << min(thermo.T()).value() << ' '
<< max(thermo.T()).value() << endl;
} }
thermo.correct();
Info<< "Min/max T:" << min(thermo.T()).value() << ' '
<< max(thermo.T()).value() << endl;
if (finalIter) if (finalIter)
{ {
mesh.data::remove("finalIteration"); mesh.data::remove("finalIteration");

View File

@ -54,10 +54,8 @@ Description
int main(int argc, char *argv[]) int main(int argc, char *argv[])
{ {
argList::addNote #include "postProcess.H"
(
"Experimental version of pimpleDyMFoam with support for overset meshes"
);
#include "setRootCase.H" #include "setRootCase.H"
#include "createTime.H" #include "createTime.H"
#include "createDynamicFvMesh.H" #include "createDynamicFvMesh.H"

View File

@ -16,6 +16,9 @@
fvOptions.constrain(UEqn); fvOptions.constrain(UEqn);
solve(UEqn == -cellMask*fvc::grad(p)); if (simple.momentumPredictor())
{
solve(UEqn == -cellMask*fvc::grad(p));
}
fvOptions.correct(U); fvOptions.correct(U);

View File

@ -5,7 +5,7 @@
surfaceScalarField rAUf("rAUf", faceMask*fvc::interpolate(rAU)); surfaceScalarField rAUf("rAUf", faceMask*fvc::interpolate(rAU));
volVectorField HbyA("HbyA", U); volVectorField HbyA("HbyA", U);
HbyA = constrainHbyA(rAU*UEqn.H(), U, p); HbyA = constrainHbyA(cellMask*rAU*UEqn.H(), U, p);
//mesh.interpolate(HbyA); //mesh.interpolate(HbyA);
if (massFluxInterpolation) if (massFluxInterpolation)

View File

@ -138,3 +138,4 @@ volScalarField pDivU
mesh, mesh,
dimensionedScalar("pDivU", p.dimensions()/dimTime, 0) dimensionedScalar("pDivU", p.dimensions()/dimTime, 0)
); );

View File

@ -1,6 +1,6 @@
#include "readTimeControls.H" #include "readTimeControls.H"
correctPhi = pimple.dict().lookupOrDefault<Switch>("correctPhi", true); correctPhi = pimple.dict().lookupOrDefault<Switch>("correctPhi", false);
checkMeshCourantNo = checkMeshCourantNo =
pimple.dict().lookupOrDefault<Switch>("checkMeshCourantNo", false); pimple.dict().lookupOrDefault<Switch>("checkMeshCourantNo", false);

View File

@ -36,7 +36,7 @@ namespace Foam
namespace dragModels namespace dragModels
{ {
defineTypeNameAndDebug(GidaspowErgunWenYu, 0); defineTypeNameAndDebug(GidaspowErgunWenYu, 0);
addToRunTimeSelectionTable(dragModel, GidaspowErgunWenYu, dictionary); addToRunTimeSelectionTable(dragModel, GidaspowErgunWenYu, dictionary);
} }
} }

View File

@ -58,6 +58,9 @@ int main(int argc, char *argv[])
argList args(argc, argv); argList args(argc, argv);
Info<<"have: "
<<args.optionCount({"label", "scalar"}) << " options" << nl;
label ival; label ival;
scalar sval; scalar sval;

View File

@ -29,9 +29,13 @@ Description
\*---------------------------------------------------------------------------*/ \*---------------------------------------------------------------------------*/
#include "argList.H"
#include "quaternion.H" #include "quaternion.H"
#include "septernion.H" #include "septernion.H"
#include "mathematicalConstants.H"
#include "Tuple2.H"
#include "IOstreams.H" #include "IOstreams.H"
#include "transform.H"
using namespace Foam; using namespace Foam;
@ -39,6 +43,95 @@ using namespace Foam;
int main(int argc, char *argv[]) int main(int argc, char *argv[])
{ {
argList::addOption
(
"rollPitchYaw",
"vector",
"Rotate by '(roll pitch yaw)' in degrees"
);
argList::addOption
(
"yawPitchRoll",
"vector",
"Rotate by '(yaw pitch roll)' in degrees"
);
argList::addOption
(
"rotate-angle",
"(vector angle)",
"Rotate about the <vector> by <angle> degrees - eg, '((1 0 0) 45)'"
);
argList args(argc, argv);
vector rotVector;
if (args.optionReadIfPresent("rollPitchYaw", rotVector))
{
Info<< "Rotate by" << nl
<< " roll " << rotVector.x() << nl
<< " pitch " << rotVector.y() << nl
<< " yaw " << rotVector.z() << nl;
// degToRad
rotVector *= constant::mathematical::pi/180.0;
const quaternion quat(quaternion::rotationSequence::XYZ, rotVector);
Info<< "quaternion " << quat << endl;
Info<< "rotation = " << quat.R() << endl;
}
if (args.optionReadIfPresent("yawPitchRoll", rotVector))
{
Info<< "Rotate by" << nl
<< " yaw " << rotVector.x() << nl
<< " pitch " << rotVector.y() << nl
<< " roll " << rotVector.z() << nl;
// degToRad
rotVector *= constant::mathematical::pi/180.0;
const quaternion quat(quaternion::rotationSequence::ZYX, rotVector);
Info<< "quaternion " << quat << endl;
Info<< "rotation = " << quat.R() << endl;
}
if (args.optionFound("rotate-angle"))
{
const Tuple2<vector, scalar> axisAngle
(
args.optionLookup("rotate-angle")()
);
Info<< "Rotate" << nl
<< " about " << axisAngle.first() << nl
<< " angle " << axisAngle.second() << nl;
const quaternion quat
(
axisAngle.first(),
axisAngle.second() * constant::mathematical::pi/180.0 // degToRad
);
Info<< "quaternion " << quat << endl;
Info<< "rotation = " << quat.R() << endl;
Info<< "transform Ra = "
<< Ra
(
axisAngle.first() / mag(axisAngle.first()),
axisAngle.second() * constant::mathematical::pi/180.0
) << endl;
Info<< "-ve Ra = "
<< Ra
(
axisAngle.first() / mag(axisAngle.first()),
-axisAngle.second() * constant::mathematical::pi/180.0
) << endl;
}
Info<< nl << nl;
quaternion q(vector(1, 2, 3), 0.7853981); quaternion q(vector(1, 2, 3), 0.7853981);
Info<< "q " << q << endl; Info<< "q " << q << endl;

View File

@ -32,6 +32,7 @@ bodies
type sphere; type sphere;
mass 1; mass 1;
radius 0.05; radius 0.05;
centreOfMass (0 10 0);
transform (1 0 0 0 1 0 0 0 1) (0 -1 0); transform (1 0 0 0 1 0 0 0 1) (0 -1 0);
mergeWith hinge; mergeWith hinge;
} }

View File

@ -14,6 +14,7 @@ bodies
parent root; parent root;
mass 6e4; mass 6e4;
radius 0.01; radius 0.01;
centreOfMass (0 0 0);
transform (1 0 0 0 1 0 0 0 1) (0 0 0); transform (1 0 0 0 1 0 0 0 1) (0 0 0);
joint joint
{ {
@ -37,6 +38,7 @@ bodies
parent M; parent M;
mass 6e3; mass 6e3;
radius 0.01; radius 0.01;
centreOfMass (0 0 0);
transform (1 0 0 0 1 0 0 0 1) (0 -5 0); transform (1 0 0 0 1 0 0 0 1) (0 -5 0);
mergeWith M; mergeWith M;
} }

View File

@ -0,0 +1,3 @@
checkFaMesh.C
EXE = $(FOAM_APPBIN)/checkFaMesh

View File

@ -0,0 +1,9 @@
EXE_INC = \
-I$(LIB_SRC)/finiteArea/lnInclude \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \
EXE_LIBS = \
-lfiniteVolume \
-lmeshTools \
-lfiniteArea

View File

@ -0,0 +1,84 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd |
\\/ M anipulation |
-------------------------------------------------------------------------------
| Copyright (C) 2016-2017 Wikki Ltd
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
makeFaMesh
Description
Check a Finite Area mesh
Author
Zeljko Tukovic, FAMENA
Hrvoje Jasak, Wikki Ltd.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "faCFD.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
using namespace Foam;
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
#include "addRegionOption.H"
#include "setRootCase.H"
#include "createTime.H"
#include "createNamedMesh.H"
#include "createFaMesh.H"
Info<< "Time = " << runTime.timeName() << nl << endl;
// General mesh statistics
Info<< "Number of points: " << aMesh.nPoints() << nl
<< "Number of internal edges: " << aMesh.nInternalEdges() << nl
<< "Number of edges: " << aMesh.nEdges() << nl
<< "Number of faces: " << aMesh.nFaces() << nl
<< endl;
// Check geometry
Info<< "Face area: min = " << min(aMesh.S().field())
<< " max = " << max(aMesh.S().field()) << nl
<< "Internal edge length: min = "
<< min(aMesh.magLe().internalField()) << nl
<< " max = " << max(aMesh.magLe().internalField()) << nl
<< "Edge length: min = "
<< min(aMesh.magLe()).value() << nl
<< " max = " << max(aMesh.magLe()).value() << nl
<< "Face area normals: min = " << min(aMesh.faceAreaNormals().field())
<< " max = " << max(aMesh.faceAreaNormals().field()) << nl
<< endl;
Info << "\nEnd" << endl;
return 0;
}
// ************************************************************************* //

View File

@ -0,0 +1,3 @@
makeFaMesh.C
EXE = $(FOAM_APPBIN)/makeFaMesh

View File

@ -0,0 +1,8 @@
EXE_INC = \
-I$(LIB_SRC)/finiteArea/lnInclude \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/cfdTools/general/lnInclude
EXE_LIBS = \
-lfiniteArea \
-lfiniteVolume

View File

@ -0,0 +1,355 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd |
\\/ M anipulation |
-------------------------------------------------------------------------------
| Copyright (C) 2016-2017 Wikki Ltd
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
makeFaMesh
Description
A mesh generator for finite area mesh.
Author
Zeljko Tukovic, FAMENA
Hrvoje Jasak, Wikki Ltd.
\*---------------------------------------------------------------------------*/
#include "objectRegistry.H"
#include "Time.H"
#include "argList.H"
#include "OSspecific.H"
#include "faMesh.H"
#include "fvMesh.H"
using namespace Foam;
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
class faPatchData
{
public:
word name_;
word type_;
dictionary dict_;
label ownPolyPatchID_;
label ngbPolyPatchID_;
labelList edgeLabels_;
faPatchData()
:
name_(word::null),
type_(word::null),
ownPolyPatchID_(-1),
ngbPolyPatchID_(-1)
{}
};
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
#include "addRegionOption.H"
argList::noParallel();
#include "setRootCase.H"
#include "createTime.H"
#include "createNamedMesh.H"
// Reading faMeshDefinition dictionary
IOdictionary faMeshDefinition
(
IOobject
(
"faMeshDefinition",
runTime.constant(),
"faMesh",
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
)
);
wordList polyMeshPatches
(
faMeshDefinition.lookup("polyMeshPatches")
);
const dictionary& bndDict = faMeshDefinition.subDict("boundary");
const wordList faPatchNames(bndDict.toc());
List<faPatchData> faPatches(faPatchNames.size()+1);
forAll(faPatchNames, patchI)
{
const dictionary& curPatchDict = bndDict.subDict(faPatchNames[patchI]);
faPatches[patchI].name_ = faPatchNames[patchI];
faPatches[patchI].type_ = word(curPatchDict.lookup("type"));
const word ownName = curPatchDict.lookup("ownerPolyPatch");
faPatches[patchI].ownPolyPatchID_ =
mesh.boundaryMesh().findPatchID(ownName);
if (faPatches[patchI].ownPolyPatchID_ < 0)
{
FatalErrorIn("makeFaMesh:")
<< "neighbourPolyPatch " << ownName << " does not exist"
<< exit(FatalError);
}
const word neiName = curPatchDict.lookup("neighbourPolyPatch");
faPatches[patchI].ngbPolyPatchID_ =
mesh.boundaryMesh().findPatchID(neiName);
if (faPatches[patchI].ngbPolyPatchID_ < 0)
{
FatalErrorIn("makeFaMesh:")
<< "neighbourPolyPatch " << neiName << " does not exist"
<< exit(FatalError);
}
}
// Setting faceLabels list size
label size = 0;
labelList patchIDs(polyMeshPatches.size(), -1);
forAll(polyMeshPatches, patchI)
{
patchIDs[patchI] =
mesh.boundaryMesh().findPatchID(polyMeshPatches[patchI]);
if (patchIDs[patchI] < 0)
{
FatalErrorIn("makeFaMesh:")
<< "Patch " << polyMeshPatches[patchI] << " does not exist"
<< exit(FatalError);
}
size += mesh.boundaryMesh()[patchIDs[patchI]].size();
}
labelList faceLabels(size, -1);
sort(patchIDs);
// Filling of faceLabels list
label faceI = -1;
forAll(polyMeshPatches, patchI)
{
label start = mesh.boundaryMesh()[patchIDs[patchI]].start();
label size = mesh.boundaryMesh()[patchIDs[patchI]].size();
for (label i = 0; i < size; ++i)
{
faceLabels[++faceI] = start + i;
}
}
// Creating faMesh
Info << "Create faMesh ... ";
faMesh areaMesh
(
mesh,
faceLabels
);
Info << "Done" << endl;
// Determination of faPatch ID for each boundary edge.
// Result is in the bndEdgeFaPatchIDs list
const indirectPrimitivePatch& patch = areaMesh.patch();
labelList faceCells(faceLabels.size(), -1);
forAll(faceCells, faceI)
{
label faceID = faceLabels[faceI];
faceCells[faceI] = mesh.faceOwner()[faceID];
}
labelList meshEdges =
patch.meshEdges
(
mesh.edges(),
mesh.cellEdges(),
faceCells
);
const labelListList& edgeFaces = mesh.edgeFaces();
const label nTotalEdges = patch.nEdges();
const label nInternalEdges = patch.nInternalEdges();
labelList bndEdgeFaPatchIDs(nTotalEdges - nInternalEdges, -1);
for (label edgeI = nInternalEdges; edgeI < nTotalEdges; ++edgeI)
{
label curMeshEdge = meshEdges[edgeI];
labelList curEdgePatchIDs(2, label(-1));
label patchI = -1;
forAll(edgeFaces[curMeshEdge], faceI)
{
label curFace = edgeFaces[curMeshEdge][faceI];
label curPatchID = mesh.boundaryMesh().whichPatch(curFace);
if (curPatchID != -1)
{
curEdgePatchIDs[++patchI] = curPatchID;
}
}
for (label pI = 0; pI < faPatches.size() - 1; ++pI)
{
if
(
(
curEdgePatchIDs[0] == faPatches[pI].ownPolyPatchID_
&& curEdgePatchIDs[1] == faPatches[pI].ngbPolyPatchID_
)
||
(
curEdgePatchIDs[1] == faPatches[pI].ownPolyPatchID_
&& curEdgePatchIDs[0] == faPatches[pI].ngbPolyPatchID_
)
)
{
bndEdgeFaPatchIDs[edgeI - nInternalEdges] = pI;
break;
}
}
}
// Set edgeLabels for each faPatch
for (label pI=0; pI<(faPatches.size()-1); ++pI)
{
SLList<label> tmpList;
forAll(bndEdgeFaPatchIDs, eI)
{
if (bndEdgeFaPatchIDs[eI] == pI)
{
tmpList.append(nInternalEdges + eI);
}
}
faPatches[pI].edgeLabels_ = tmpList;
}
// Check for undefined edges
SLList<label> tmpList;
forAll(bndEdgeFaPatchIDs, eI)
{
if (bndEdgeFaPatchIDs[eI] == -1)
{
tmpList.append(nInternalEdges + eI);
}
}
if (tmpList.size() > 0)
{
label pI = faPatches.size()-1;
faPatches[pI].name_ = "undefined";
faPatches[pI].type_ = "patch";
faPatches[pI].edgeLabels_ = tmpList;
}
// Add good patches to faMesh
SLList<faPatch*> faPatchLst;
for (label pI = 0; pI < faPatches.size(); ++pI)
{
faPatches[pI].dict_.add("type", faPatches[pI].type_);
faPatches[pI].dict_.add("edgeLabels", faPatches[pI].edgeLabels_);
faPatches[pI].dict_.add
(
"ngbPolyPatchIndex",
faPatches[pI].ngbPolyPatchID_
);
if(faPatches[pI].edgeLabels_.size() > 0)
{
faPatchLst.append
(
faPatch::New
(
faPatches[pI].name_,
faPatches[pI].dict_,
pI,
areaMesh.boundary()
).ptr()
);
}
}
if (args.optionFound("addEmptyPatch"))
{
word emptyPatchName(args.optionLookup("addEmptyPatch")());
dictionary emptyPatchDict;
emptyPatchDict.add("type", "empty");
emptyPatchDict.add("edgeLabels", labelList());
emptyPatchDict.add("ngbPolyPatchIndex", -1);
faPatchLst.append
(
faPatch::New
(
emptyPatchName,
emptyPatchDict,
faPatchLst.size(),
areaMesh.boundary()
).ptr()
);
}
Info << "Add faPatches ... ";
areaMesh.addFaPatches(List<faPatch*>(faPatchLst));
Info << "Done" << endl;
// Writing faMesh
Info << "Write finite area mesh ... ";
areaMesh.write();
Info << "\nEnd" << endl;
return 0;
}
// ************************************************************************* //

View File

@ -75,11 +75,10 @@ PtrList<SLList<label>> slPatchCellFaces;
Map<word> cellTypes; Map<word> cellTypes;
label currentTypei = -1; label currentTypei = -1;
// Dummy yywrap to keep yylex happy at compile time. // Dummy yywrap to keep yylex happy at compile time.
// It is called by yylex but is not used as the mechanism to change file. // It is called by yylex but is not used as the mechanism to change file.
// See <<EOF>> // See <<EOF>>
#if YY_FLEX_MINOR_VERSION < 6 && YY_FLEX_SUBMINOR_VERSION < 34 #if YY_FLEX_MAJOR_VERSION <= 2 && YY_FLEX_MINOR_VERSION <= 5 && YY_FLEX_SUBMINOR_VERSION < 34
extern "C" int yywrap() extern "C" int yywrap()
#else #else
int yyFlexLexer::yywrap() int yyFlexLexer::yywrap()

View File

@ -126,7 +126,7 @@ void uniquify(word& name, HashSet<word>& patchNames)
// Dummy yywrap to keep yylex happy at compile time. // Dummy yywrap to keep yylex happy at compile time.
// It is called by yylex but is not used as the mechanism to change file. // It is called by yylex but is not used as the mechanism to change file.
// See <<EOF>> // See <<EOF>>
#if YY_FLEX_MINOR_VERSION < 6 && YY_FLEX_SUBMINOR_VERSION < 34 #if YY_FLEX_MAJOR_VERSION <= 2 && YY_FLEX_MINOR_VERSION <= 5 && YY_FLEX_SUBMINOR_VERSION < 34
extern "C" int yywrap() extern "C" int yywrap()
#else #else
int yyFlexLexer::yywrap() int yyFlexLexer::yywrap()

View File

@ -103,7 +103,7 @@ wordList patchNameIDs(maxZoneID);
// Dummy yywrap to keep yylex happy at compile time. // Dummy yywrap to keep yylex happy at compile time.
// It is called by yylex but is not used as the mechanism to change file. // It is called by yylex but is not used as the mechanism to change file.
// See <<EOF>> // See <<EOF>>
#if YY_FLEX_MINOR_VERSION < 6 && YY_FLEX_SUBMINOR_VERSION < 34 #if YY_FLEX_MAJOR_VERSION <= 2 && YY_FLEX_MINOR_VERSION <= 5 && YY_FLEX_SUBMINOR_VERSION < 34
extern "C" int yywrap() extern "C" int yywrap()
#else #else
int yyFlexLexer::yywrap() int yyFlexLexer::yywrap()

View File

@ -82,7 +82,7 @@ label nValuesForPatchFaces = 0;
// Dummy yywrap to keep yylex happy at compile time. // Dummy yywrap to keep yylex happy at compile time.
// It is called by yylex but is not used as the mechanism to change file. // It is called by yylex but is not used as the mechanism to change file.
// See <<EOF>> // See <<EOF>>
#if YY_FLEX_MINOR_VERSION < 6 && YY_FLEX_SUBMINOR_VERSION < 34 #if YY_FLEX_MAJOR_VERSION <= 2 && YY_FLEX_MINOR_VERSION <= 5 && YY_FLEX_SUBMINOR_VERSION < 34
extern "C" int yywrap() extern "C" int yywrap()
#else #else
int yyFlexLexer::yywrap() int yyFlexLexer::yywrap()

View File

@ -178,16 +178,16 @@ Foam::label Foam::checkTopology
{ {
cells.insert(celli); cells.insert(celli);
} }
forAll(cFaces, i) for (const label facei : cFaces)
{ {
if (cFaces[i] < 0 || cFaces[i] >= mesh.nFaces()) if (facei < 0 || facei >= mesh.nFaces())
{ {
cells.insert(celli); cells.insert(celli);
break; break;
} }
} }
} }
label nCells = returnReduce(cells.size(), sumOp<label>()); const label nCells = returnReduce(cells.size(), sumOp<label>());
if (nCells > 0) if (nCells > 0)
{ {
@ -203,7 +203,6 @@ Foam::label Foam::checkTopology
{ {
mergeAndWrite(surfWriter(), cells); mergeAndWrite(surfWriter(), cells);
} }
} }
else else
{ {
@ -238,7 +237,7 @@ Foam::label Foam::checkTopology
noFailedChecks++; noFailedChecks++;
} }
label nFaces = returnReduce(faces.size(), sumOp<label>()); const label nFaces = returnReduce(faces.size(), sumOp<label>());
if (nFaces > 0) if (nFaces > 0)
{ {
@ -259,7 +258,7 @@ Foam::label Foam::checkTopology
{ {
noFailedChecks++; noFailedChecks++;
label nFaces = returnReduce(faces.size(), sumOp<label>()); const label nFaces = returnReduce(faces.size(), sumOp<label>());
Info<< " <<Writing " << nFaces Info<< " <<Writing " << nFaces
<< " faces with out-of-range or duplicate vertices to set " << " faces with out-of-range or duplicate vertices to set "
@ -280,7 +279,7 @@ Foam::label Foam::checkTopology
{ {
noFailedChecks++; noFailedChecks++;
label nCells = returnReduce(cells.size(), sumOp<label>()); const label nCells = returnReduce(cells.size(), sumOp<label>());
Info<< " <<Writing " << nCells Info<< " <<Writing " << nCells
<< " cells with over used edges to set " << cells.name() << " cells with over used edges to set " << cells.name()
@ -303,7 +302,7 @@ Foam::label Foam::checkTopology
noFailedChecks++; noFailedChecks++;
} }
label nFaces = returnReduce(faces.size(), sumOp<label>()); const label nFaces = returnReduce(faces.size(), sumOp<label>());
if (nFaces > 0) if (nFaces > 0)
{ {
Info<< " <<Writing " << nFaces Info<< " <<Writing " << nFaces
@ -334,9 +333,9 @@ Foam::label Foam::checkTopology
{ {
const labelUList& owners = patches[patchi].faceCells(); const labelUList& owners = patches[patchi].faceCells();
forAll(owners, i) for (const label facei : owners)
{ {
nInternalFaces[owners[i]]++; nInternalFaces[facei]++;
} }
} }
} }
@ -444,14 +443,14 @@ Foam::label Foam::checkTopology
( (
label facei = mesh.nInternalFaces(); label facei = mesh.nInternalFaces();
facei < mesh.nFaces(); facei < mesh.nFaces();
facei++ ++facei
) )
{ {
label regioni = rs[mesh.faceOwner()[facei]]; const label regioni = rs[mesh.faceOwner()[facei]];
const face& f = mesh.faces()[facei]; const face& f = mesh.faces()[facei];
forAll(f, fp) for (const label verti : f)
{ {
label& pRegion = pointToRegion[f[fp]]; label& pRegion = pointToRegion[verti];
if (pRegion == -1) if (pRegion == -1)
{ {
pRegion = regioni; pRegion = regioni;
@ -467,7 +466,7 @@ Foam::label Foam::checkTopology
regionDisconnected[regioni] = false; regionDisconnected[regioni] = false;
regionDisconnected[pRegion] = false; regionDisconnected[pRegion] = false;
pRegion = -2; pRegion = -2;
points.insert(f[fp]); points.insert(verti);
} }
} }
} }
@ -618,9 +617,8 @@ Foam::label Foam::checkTopology
} }
Info<< endl; Info<< endl;
forAll(faceZones, zoneI) for (const faceZone& fz : faceZones)
{ {
const faceZone& fz = faceZones[zoneI];
checkPatch(allGeometry, fz.name(), fz(), points); checkPatch(allGeometry, fz.name(), fz(), points);
Info<< endl; Info<< endl;
} }
@ -631,7 +629,7 @@ Foam::label Foam::checkTopology
} }
} }
label nPoints = returnReduce(points.size(), sumOp<label>()); const label nPoints = returnReduce(points.size(), sumOp<label>());
if (nPoints) if (nPoints)
{ {
@ -654,45 +652,44 @@ Foam::label Foam::checkTopology
if (cellZones.size()) if (cellZones.size())
{ {
Info<< " " Info<< " "
<< setw(20) << "CellZone" << setw(20) << "CellZone"
<< setw(9) << "Cells" << setw(9) << "Cells"
<< setw(9) << "Points" << setw(9) << "Points"
<< setw(13) << "BoundingBox" <<endl; << ' ' << "BoundingBox" <<endl;
const cellList& cells = mesh.cells(); const cellList& cells = mesh.cells();
const faceList& faces = mesh.faces(); const faceList& faces = mesh.faces();
treeBoundBox bb(boundBox::invertedBox);
PackedBoolList isZonePoint(mesh.nPoints()); PackedBoolList isZonePoint(mesh.nPoints());
forAll(cellZones, zoneI) for (const cellZone& cZone : cellZones)
{ {
const cellZone& cZone = cellZones[zoneI]; boundBox bb;
isZonePoint.reset(); // clears all bits (reset count)
forAll(cZone, i) for (const label celli : cZone)
{ {
const label cellI = cZone[i]; for (const label facei : cells[celli])
const cell& cFaces = cells[cellI];
forAll(cFaces, cFacei)
{ {
const face& f = faces[cFaces[cFacei]]; const face& f = faces[facei];
forAll(f, fp) for (const label verti : f)
{ {
if (isZonePoint.set(f[fp])) if (isZonePoint.set(verti))
{ {
bb.add(mesh.points()[f[fp]]); bb.add(mesh.points()[verti]);
} }
} }
} }
} }
bb.reduce(); // Global min/max
Info<< " " Info<< " "
<< setw(20) << cZone.name() << setw(20) << cZone.name()
<< setw(9) << returnReduce(cZone.size(), sumOp<label>()) << setw(9) << returnReduce(cZone.size(), sumOp<label>())
<< setw(9) << setw(9)
<< returnReduce(isZonePoint.count(), sumOp<label>()) << returnReduce(isZonePoint.count(), sumOp<label>())
<< setw(3) << bb << endl; << ' ' << bb << endl;
} }
} }
else else

View File

@ -48,19 +48,19 @@ void RotateFields
( (
const fvMesh& mesh, const fvMesh& mesh,
const IOobjectList& objects, const IOobjectList& objects,
const tensor& T const tensor& rotT
) )
{ {
// Search list of objects for volScalarFields // Objects of field type
IOobjectList fields(objects.lookupClass(GeometricField::typeName)); IOobjectList fields(objects.lookupClass(GeometricField::typeName));
forAllIter(IOobjectList, fields, fieldIter) forAllIter(IOobjectList, fields, fieldIter)
{ {
Info<< " Rotating " << fieldIter()->name() << endl; Info<< " Rotating " << fieldIter()->name() << endl;
GeometricField theta(*fieldIter(), mesh); GeometricField fld(*fieldIter(), mesh);
transform(theta, dimensionedTensor(T), theta); transform(fld, dimensionedTensor(rotT), fld);
theta.write(); fld.write();
} }
} }
@ -69,6 +69,12 @@ void RotateFields
int main(int argc, char *argv[]) int main(int argc, char *argv[])
{ {
argList::addNote
(
"Rotate mesh points and vector/tensor fields\n"
"Rotation from the <n1> vector to the <n2> vector"
);
timeSelector::addOptions(); timeSelector::addOptions();
argList::addArgument("n1"); argList::addArgument("n1");
@ -83,7 +89,7 @@ int main(int argc, char *argv[])
vector n2(args.argRead<vector>(2)); vector n2(args.argRead<vector>(2));
n2 /= mag(n2); n2 /= mag(n2);
tensor T(rotationTensor(n1, n2)); const tensor rotT(rotationTensor(n1, n2));
{ {
pointIOField points pointIOField points
@ -100,7 +106,7 @@ int main(int argc, char *argv[])
) )
); );
points = transform(T, points); points = transform(rotT, points);
// Set the precision of the points data to 10 // Set the precision of the points data to 10
IOstream::defaultPrecision(max(10u, IOstream::defaultPrecision())); IOstream::defaultPrecision(max(10u, IOstream::defaultPrecision()));
@ -123,15 +129,15 @@ int main(int argc, char *argv[])
// Search for list of objects for this time // Search for list of objects for this time
IOobjectList objects(mesh, runTime.timeName()); IOobjectList objects(mesh, runTime.timeName());
RotateFields<volVectorField>(mesh, objects, T); RotateFields<volVectorField>(mesh, objects, rotT);
RotateFields<volSphericalTensorField>(mesh, objects, T); RotateFields<volSphericalTensorField>(mesh, objects, rotT);
RotateFields<volSymmTensorField>(mesh, objects, T); RotateFields<volSymmTensorField>(mesh, objects, rotT);
RotateFields<volTensorField>(mesh, objects, T); RotateFields<volTensorField>(mesh, objects, rotT);
RotateFields<surfaceVectorField>(mesh, objects, T); RotateFields<surfaceVectorField>(mesh, objects, rotT);
RotateFields<surfaceSphericalTensorField>(mesh, objects, T); RotateFields<surfaceSphericalTensorField>(mesh, objects, rotT);
RotateFields<surfaceSymmTensorField>(mesh, objects, T); RotateFields<surfaceSymmTensorField>(mesh, objects, rotT);
RotateFields<surfaceTensorField>(mesh, objects, T); RotateFields<surfaceTensorField>(mesh, objects, rotT);
} }
Info<< "End\n" << endl; Info<< "End\n" << endl;

View File

@ -3,7 +3,7 @@
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | \\ / O peration |
\\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation \\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation
\\/ M anipulation | \\/ M anipulation | Copyright (C) 2017 OpenCFD Ltd.
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
License License
This file is part of OpenFOAM. This file is part of OpenFOAM.
@ -40,6 +40,9 @@ Usage
-rotate (vector vector) -rotate (vector vector)
Rotates the points from the first vector to the second, Rotates the points from the first vector to the second,
-rotate-angle (vector angle)
Rotate angle degrees about vector axis.
or -yawPitchRoll (yawdegrees pitchdegrees rolldegrees) or -yawPitchRoll (yawdegrees pitchdegrees rolldegrees)
or -rollPitchYaw (rolldegrees pitchdegrees yawdegrees) or -rollPitchYaw (rolldegrees pitchdegrees yawdegrees)
@ -68,7 +71,6 @@ Usage
#include "pointFields.H" #include "pointFields.H"
#include "transformField.H" #include "transformField.H"
#include "transformGeometricField.H" #include "transformGeometricField.H"
#include "StringStream.H"
#include "mathematicalConstants.H" #include "mathematicalConstants.H"
using namespace Foam; using namespace Foam;
@ -81,7 +83,7 @@ void readAndRotateFields
( (
PtrList<GeoField>& flds, PtrList<GeoField>& flds,
const fvMesh& mesh, const fvMesh& mesh,
const tensor& T, const tensor& rotT,
const IOobjectList& objects const IOobjectList& objects
) )
{ {
@ -89,7 +91,7 @@ void readAndRotateFields
forAll(flds, i) forAll(flds, i)
{ {
Info<< "Transforming " << flds[i].name() << endl; Info<< "Transforming " << flds[i].name() << endl;
dimensionedTensor dimT("t", flds[i].dimensions(), T); const dimensionedTensor dimT("t", flds[i].dimensions(), rotT);
transform(flds[i], dimT, flds[i]); transform(flds[i], dimT, flds[i]);
} }
} }
@ -155,23 +157,34 @@ int main(int argc, char *argv[])
"Translate by specified <vector> - eg, '(1 0 0)' before rotations" "Translate by specified <vector> - eg, '(1 0 0)' before rotations"
); );
argList::addOption argList::addOption
(
"origin",
"point",
"Use specified <point> as origin for rotations"
);
argList::addOption
( (
"rotate", "rotate",
"(vectorA vectorB)", "(vectorA vectorB)",
"Transform as a rotation between <vectorA> and <vectorB> " "Rotate from <vectorA> to <vectorB> - eg, '((1 0 0) (0 0 1))'"
"- eg, '( (1 0 0) (0 0 1) )'" );
argList::addOption
(
"rotate-angle",
"(vector scalar)",
"Rotate <angle> degrees about <vector> - eg, '((1 0 0) 45)'"
); );
argList::addOption argList::addOption
( (
"rollPitchYaw", "rollPitchYaw",
"vector", "vector",
"Rotate by '(roll pitch yaw)' in degrees" "Rotate by '(roll pitch yaw)' degrees"
); );
argList::addOption argList::addOption
( (
"yawPitchRoll", "yawPitchRoll",
"vector", "vector",
"Rotate by '(yaw pitch roll)' in degrees" "Rotate by '(yaw pitch roll)' degrees"
); );
argList::addBoolOption argList::addBoolOption
( (
@ -182,25 +195,54 @@ int main(int argc, char *argv[])
( (
"scale", "scale",
"scalar | vector", "scalar | vector",
"Scale by the specified amount - eg, for a uniform [mm] to [m] scaling " "Scale by the specified amount - Eg, for uniform [mm] to [m] scaling "
"use either (0.001 0.001 0.001)' or simply '0.001'" "use either '(0.001 0.001 0.001)' or simply '0.001'"
); );
#include "addRegionOption.H" #include "addRegionOption.H"
#include "setRootCase.H" #include "setRootCase.H"
const bool doRotateFields = args.optionFound("rotateFields");
// Verify that an operation has been specified
{
const List<word> operationNames
{
"translate",
"rotate",
"rotate-angle",
"rollPitchYaw",
"yawPitchRoll",
"scale"
};
if (!args.optionCount(operationNames))
{
FatalError
<< "No operation supplied, "
<< "use least one of the following:" << nl
<< " ";
for (const auto& opName : operationNames)
{
FatalError
<< " -" << opName;
}
FatalError
<< nl << exit(FatalError);
}
}
#include "createTime.H" #include "createTime.H"
word regionName = polyMesh::defaultRegion; word regionName = polyMesh::defaultRegion;
fileName meshDir; fileName meshDir = polyMesh::meshSubDir;
if (args.optionReadIfPresent("region", regionName)) if (args.optionReadIfPresent("region", regionName))
{ {
meshDir = regionName/polyMesh::meshSubDir; meshDir = regionName/polyMesh::meshSubDir;
} }
else
{
meshDir = polyMesh::meshSubDir;
}
pointIOField points pointIOField points
( (
@ -216,17 +258,6 @@ int main(int argc, char *argv[])
) )
); );
const bool doRotateFields = args.optionFound("rotateFields");
// this is not actually stringent enough:
if (args.options().empty())
{
FatalErrorInFunction
<< "No options supplied, please use one or more of "
"-translate, -rotate or -scale options."
<< exit(FatalError);
}
vector v; vector v;
if (args.optionReadIfPresent("translate", v)) if (args.optionReadIfPresent("translate", v))
{ {
@ -235,6 +266,14 @@ int main(int argc, char *argv[])
points += v; points += v;
} }
vector origin;
const bool useOrigin = args.optionReadIfPresent("origin", origin);
if (useOrigin)
{
Info<< "Set origin for rotations to " << origin << endl;
points -= origin;
}
if (args.optionFound("rotate")) if (args.optionFound("rotate"))
{ {
Pair<vector> n1n2 Pair<vector> n1n2
@ -243,15 +282,41 @@ int main(int argc, char *argv[])
); );
n1n2[0] /= mag(n1n2[0]); n1n2[0] /= mag(n1n2[0]);
n1n2[1] /= mag(n1n2[1]); n1n2[1] /= mag(n1n2[1]);
tensor T = rotationTensor(n1n2[0], n1n2[1]);
Info<< "Rotating points by " << T << endl; const tensor rotT = rotationTensor(n1n2[0], n1n2[1]);
points = transform(T, points); Info<< "Rotating points by " << rotT << endl;
points = transform(rotT, points);
if (doRotateFields) if (doRotateFields)
{ {
rotateFields(args, runTime, T); rotateFields(args, runTime, rotT);
}
}
else if (args.optionFound("rotate-angle"))
{
const Tuple2<vector, scalar> axisAngle
(
args.optionLookup("rotate-angle")()
);
Info<< "Rotating points " << nl
<< " about " << axisAngle.first() << nl
<< " angle " << axisAngle.second() << nl;
const quaternion quat
(
axisAngle.first(),
axisAngle.second() * pi/180.0 // degToRad
);
Info<< "Rotating points by quaternion " << quat << endl;
points = transform(quat, points);
if (doRotateFields)
{
rotateFields(args, runTime, quat.R());
} }
} }
else if (args.optionReadIfPresent("rollPitchYaw", v)) else if (args.optionReadIfPresent("rollPitchYaw", v))
@ -264,14 +329,14 @@ int main(int argc, char *argv[])
// degToRad // degToRad
v *= pi/180.0; v *= pi/180.0;
const quaternion R(quaternion::rotationSequence::XYZ, v); const quaternion quat(quaternion::rotationSequence::XYZ, v);
Info<< "Rotating points by quaternion " << R << endl; Info<< "Rotating points by quaternion " << quat << endl;
points = transform(R, points); points = transform(quat, points);
if (doRotateFields) if (doRotateFields)
{ {
rotateFields(args, runTime, R.R()); rotateFields(args, runTime, quat.R());
} }
} }
else if (args.optionReadIfPresent("yawPitchRoll", v)) else if (args.optionReadIfPresent("yawPitchRoll", v))
@ -284,14 +349,14 @@ int main(int argc, char *argv[])
// degToRad // degToRad
v *= pi/180.0; v *= pi/180.0;
const quaternion R(quaternion::rotationSequence::ZYX, v); const quaternion quat(quaternion::rotationSequence::ZYX, v);
Info<< "Rotating points by quaternion " << R << endl; Info<< "Rotating points by quaternion " << quat << endl;
points = transform(R, points); points = transform(quat, points);
if (doRotateFields) if (doRotateFields)
{ {
rotateFields(args, runTime, R.R()); rotateFields(args, runTime, quat.R());
} }
} }
@ -325,6 +390,13 @@ int main(int argc, char *argv[])
} }
} }
if (useOrigin)
{
Info<< "Unset origin for rotations from " << origin << endl;
points += origin;
}
// Set the precision of the points data to 10 // Set the precision of the points data to 10
IOstream::defaultPrecision(max(10u, IOstream::defaultPrecision())); IOstream::defaultPrecision(max(10u, IOstream::defaultPrecision()));

View File

@ -4,6 +4,8 @@ domainDecompositionMesh.C
domainDecompositionDistribute.C domainDecompositionDistribute.C
dimFieldDecomposer.C dimFieldDecomposer.C
pointFieldDecomposer.C pointFieldDecomposer.C
faMeshDecomposition.C
faFieldDecomposer.C
lagrangianFieldDecomposer.C lagrangianFieldDecomposer.C
EXE = $(FOAM_APPBIN)/decomposePar EXE = $(FOAM_APPBIN)/decomposePar

View File

@ -2,6 +2,7 @@ EXE_INC = \
-I$(LIB_SRC)/parallel/decompose/decompose/lnInclude \ -I$(LIB_SRC)/parallel/decompose/decompose/lnInclude \
-I$(LIB_SRC)/parallel/decompose/decompositionMethods/lnInclude \ -I$(LIB_SRC)/parallel/decompose/decompositionMethods/lnInclude \
-I$(LIB_SRC)/finiteVolume/lnInclude \ -I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/finiteArea/lnInclude \
-I$(LIB_SRC)/dynamicMesh/lnInclude \ -I$(LIB_SRC)/dynamicMesh/lnInclude \
-I$(LIB_SRC)/lagrangian/basic/lnInclude \ -I$(LIB_SRC)/lagrangian/basic/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \ -I$(LIB_SRC)/meshTools/lnInclude \

View File

@ -106,6 +106,11 @@ Usage
#include "decompositionModel.H" #include "decompositionModel.H"
#include "collatedFileOperation.H" #include "collatedFileOperation.H"
#include "faCFD.H"
#include "emptyFaPatch.H"
#include "faMeshDecomposition.H"
#include "faFieldDecomposer.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam namespace Foam
@ -1239,6 +1244,178 @@ int main(int argc, char *argv[])
processorDbList.set(proci, nullptr); processorDbList.set(proci, nullptr);
} }
} }
// Finite area mesh and field decomposition
IOobject faMeshBoundaryIOobj
(
"faBoundary",
mesh.time().findInstance
(
mesh.dbDir()/polyMesh::meshSubDir,
"boundary"
),
faMesh::meshSubDir,
mesh,
IOobject::READ_IF_PRESENT,
IOobject::NO_WRITE
);
if (faMeshBoundaryIOobj.typeHeaderOk<faBoundaryMesh>(true))
{
Info << "\nFinite area mesh decomposition" << endl;
faMeshDecomposition aMesh(mesh);
aMesh.decomposeMesh();
aMesh.writeDecomposition();
// Construct the area fields
// ~~~~~~~~~~~~~~~~~~~~~~~~
PtrList<areaScalarField> areaScalarFields;
readFields(aMesh, objects, areaScalarFields);
PtrList<areaVectorField> areaVectorFields;
readFields(aMesh, objects, areaVectorFields);
PtrList<areaSphericalTensorField> areaSphericalTensorFields;
readFields(aMesh, objects, areaSphericalTensorFields);
PtrList<areaSymmTensorField> areaSymmTensorFields;
readFields(aMesh, objects, areaSymmTensorFields);
PtrList<areaTensorField> areaTensorFields;
readFields(aMesh, objects, areaTensorFields);
// Construct the edge fields
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
PtrList<edgeScalarField> edgeScalarFields;
readFields(aMesh, objects, edgeScalarFields);
Info << endl;
// Split the fields over processors
for (label procI = 0; procI < mesh.nProcs(); procI++)
{
Info<< "Processor " << procI
<< ": finite area field transfer" << endl;
// open the database
Time processorDb
(
Time::controlDictName,
args.rootPath(),
args.caseName()/
fileName(word("processor") + name(procI))
);
processorDb.setTime(runTime);
// Read the mesh
fvMesh procFvMesh
(
IOobject
(
regionName,
processorDb.timeName(),
processorDb
)
);
faMesh procMesh(procFvMesh);
// // Does not work. HJ, 15/Aug/2017
// const labelIOList& faceProcAddressing =
// procAddressing
// (
// procMeshList,
// procI,
// "faceProcAddressing",
// faceProcAddressingList
// );
// const labelIOList& boundaryProcAddressing =
// procAddressing
// (
// procMeshList,
// procI,
// "boundaryProcAddressing",
// boundaryProcAddressingList
// );
labelIOList faceProcAddressing
(
IOobject
(
"faceProcAddressing",
"constant",
procMesh.meshSubDir,
procFvMesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
)
);
labelIOList boundaryProcAddressing
(
IOobject
(
"boundaryProcAddressing",
"constant",
procMesh.meshSubDir,
procFvMesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
)
);
// FA fields
if
(
areaScalarFields.size()
|| areaVectorFields.size()
|| areaSphericalTensorFields.size()
|| areaSymmTensorFields.size()
|| areaTensorFields.size()
|| edgeScalarFields.size()
)
{
labelIOList edgeProcAddressing
(
IOobject
(
"edgeProcAddressing",
"constant",
procMesh.meshSubDir,
procFvMesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
)
);
faFieldDecomposer fieldDecomposer
(
aMesh,
procMesh,
edgeProcAddressing,
faceProcAddressing,
boundaryProcAddressing
);
fieldDecomposer.decomposeFields(areaScalarFields);
fieldDecomposer.decomposeFields(areaVectorFields);
fieldDecomposer.decomposeFields(areaSphericalTensorFields);
fieldDecomposer.decomposeFields(areaSymmTensorFields);
fieldDecomposer.decomposeFields(areaTensorFields);
fieldDecomposer.decomposeFields(edgeScalarFields);
}
}
}
} }
} }
} }

View File

@ -0,0 +1,238 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd |
\\/ M anipulation |
-------------------------------------------------------------------------------
| Copyright (C) 2016-2017 Wikki Ltd
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "faFieldDecomposer.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
faFieldDecomposer::patchFieldDecomposer::patchFieldDecomposer
(
const label sizeBeforeMapping,
const labelUList& addressingSlice,
const label addressingOffset
)
:
sizeBeforeMapping_(sizeBeforeMapping),
directAddressing_(addressingSlice)
{
forAll (directAddressing_, i)
{
// Subtract one to align addressing.
// directAddressing_[i] -= addressingOffset + 1;
// ZT, 12/Nov/2010
directAddressing_[i] -= addressingOffset;
}
}
faFieldDecomposer::processorAreaPatchFieldDecomposer::
processorAreaPatchFieldDecomposer
(
const faMesh& mesh,
const labelUList& addressingSlice
)
:
sizeBeforeMapping_(mesh.nFaces()),
addressing_(addressingSlice.size()),
weights_(addressingSlice.size())
{
const scalarField& weights = mesh.weights().internalField();
const labelList& own = mesh.edgeOwner();
const labelList& neighb = mesh.edgeNeighbour();
forAll (addressing_, i)
{
// Subtract one to align addressing.
label ai = addressingSlice[i];
// label ai = mag(addressingSlice[i]) - 1;
if (ai < neighb.size())
{
// This is a regular edge. it has been an internal edge
// of the original mesh and now it has become a edge
// on the parallel boundary
addressing_[i].setSize(2);
weights_[i].setSize(2);
addressing_[i][0] = own[ai];
addressing_[i][1] = neighb[ai];
weights_[i][0] = weights[ai];
weights_[i][1] = 1.0 - weights[ai];
}
else
{
// This is a edge that used to be on a cyclic boundary
// but has now become a parallel patch edge. I cannot
// do the interpolation properly (I would need to look
// up the different (edge) list of data), so I will
// just grab the value from the owner face
//
addressing_[i].setSize(1);
weights_[i].setSize(1);
addressing_[i][0] = own[ai];
weights_[i][0] = 1.0;
}
}
}
faFieldDecomposer::processorEdgePatchFieldDecomposer::
processorEdgePatchFieldDecomposer
(
label sizeBeforeMapping,
const labelUList& addressingSlice
)
:
sizeBeforeMapping_(sizeBeforeMapping),
addressing_(addressingSlice.size()),
weights_(addressingSlice.size())
{
forAll (addressing_, i)
{
addressing_[i].setSize(1);
weights_[i].setSize(1);
addressing_[i][0] = mag(addressingSlice[i]) - 1;
weights_[i][0] = sign(addressingSlice[i]);
}
}
faFieldDecomposer::faFieldDecomposer
(
const faMesh& completeMesh,
const faMesh& procMesh,
const labelList& edgeAddressing,
const labelList& faceAddressing,
const labelList& boundaryAddressing
)
:
completeMesh_(completeMesh),
procMesh_(procMesh),
edgeAddressing_(edgeAddressing),
faceAddressing_(faceAddressing),
boundaryAddressing_(boundaryAddressing),
patchFieldDecomposerPtrs_
(
procMesh_.boundary().size(),
static_cast<patchFieldDecomposer*>(NULL)
),
processorAreaPatchFieldDecomposerPtrs_
(
procMesh_.boundary().size(),
static_cast<processorAreaPatchFieldDecomposer*>(NULL)
),
processorEdgePatchFieldDecomposerPtrs_
(
procMesh_.boundary().size(),
static_cast<processorEdgePatchFieldDecomposer*>(NULL)
)
{
forAll (boundaryAddressing_, patchi)
{
if (boundaryAddressing_[patchi] >= 0)
{
patchFieldDecomposerPtrs_[patchi] = new patchFieldDecomposer
(
completeMesh_.boundary()[boundaryAddressing_[patchi]].size(),
procMesh_.boundary()[patchi].patchSlice(edgeAddressing_),
// completeMesh_.boundaryMesh()
completeMesh_.boundary()
[
boundaryAddressing_[patchi]
].start()
);
}
else
{
processorAreaPatchFieldDecomposerPtrs_[patchi] =
new processorAreaPatchFieldDecomposer
(
completeMesh_,
procMesh_.boundary()[patchi].patchSlice(edgeAddressing_)
);
processorEdgePatchFieldDecomposerPtrs_[patchi] =
new processorEdgePatchFieldDecomposer
(
procMesh_.boundary()[patchi].size(),
static_cast<const labelUList&>
(
procMesh_.boundary()[patchi].patchSlice
(
edgeAddressing_
)
)
);
}
}
}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
faFieldDecomposer::~faFieldDecomposer()
{
forAll (patchFieldDecomposerPtrs_, patchi)
{
if (patchFieldDecomposerPtrs_[patchi])
{
delete patchFieldDecomposerPtrs_[patchi];
}
}
forAll (processorAreaPatchFieldDecomposerPtrs_, patchi)
{
if (processorAreaPatchFieldDecomposerPtrs_[patchi])
{
delete processorAreaPatchFieldDecomposerPtrs_[patchi];
}
}
forAll (processorEdgePatchFieldDecomposerPtrs_, patchi)
{
if (processorEdgePatchFieldDecomposerPtrs_[patchi])
{
delete processorEdgePatchFieldDecomposerPtrs_[patchi];
}
}
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// ************************************************************************* //

View File

@ -0,0 +1,319 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd |
\\/ M anipulation |
-------------------------------------------------------------------------------
| Copyright (C) 2016-2017 Wikki Ltd
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Class
faFieldDecomposer
Description
Finite Area area and edge field decomposer.
Author
Zeljko Tukovic, FSB Zagreb
Hrvoje Jasak, Wikki Ltd.
SourceFiles
faFieldDecomposer.C
faFieldDecomposerDecomposeFields.C
\*---------------------------------------------------------------------------*/
#ifndef faFieldDecomposer_H
#define faFieldDecomposer_H
#include "faMesh.H"
#include "faPatchFieldMapper.H"
#include "edgeFields.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
class IOobjectList;
/*---------------------------------------------------------------------------*\
Class faFieldDecomposer Declaration
\*---------------------------------------------------------------------------*/
class faFieldDecomposer
{
public:
//- Patch field decomposer class
class patchFieldDecomposer
:
public faPatchFieldMapper
{
// Private data
label sizeBeforeMapping_;
labelList directAddressing_;
public:
// Constructors
//- Construct given addressing
patchFieldDecomposer
(
const label sizeBeforeMapping,
const labelUList& addressingSlice,
const label addressingOffset
);
// Member functions
label size() const
{
return directAddressing_.size();
}
virtual label sizeBeforeMapping() const
{
return sizeBeforeMapping_;
}
bool direct() const
{
return true;
}
virtual bool hasUnmapped() const
{
return false;
}
const labelUList& directAddressing() const
{
return directAddressing_;
}
};
//- Processor patch field decomposer class
class processorAreaPatchFieldDecomposer
:
public faPatchFieldMapper
{
// Private data
label sizeBeforeMapping_;
labelListList addressing_;
scalarListList weights_;
public:
//- Construct given addressing
processorAreaPatchFieldDecomposer
(
const faMesh& mesh,
const labelUList& addressingSlice
);
// Member functions
label size() const
{
return addressing_.size();
}
virtual label sizeBeforeMapping() const
{
return sizeBeforeMapping_;
}
bool direct() const
{
return false;
}
virtual bool hasUnmapped() const
{
return false;
}
const labelListList& addressing() const
{
return addressing_;
}
const scalarListList& weights() const
{
return weights_;
}
};
//- Processor patch field decomposer class
class processorEdgePatchFieldDecomposer
:
public faPatchFieldMapper
{
label sizeBeforeMapping_;
labelListList addressing_;
scalarListList weights_;
public:
//- Construct given addressing
processorEdgePatchFieldDecomposer
(
label sizeBeforeMapping,
const labelUList& addressingSlice
);
// Member functions
label size() const
{
return addressing_.size();
}
virtual label sizeBeforeMapping() const
{
return sizeBeforeMapping_;
}
bool direct() const
{
return false;
}
virtual bool hasUnmapped() const
{
return false;
}
const labelListList& addressing() const
{
return addressing_;
}
const scalarListList& weights() const
{
return weights_;
}
};
private:
// Private data
//- Reference to complete mesh
const faMesh& completeMesh_;
//- Reference to processor mesh
const faMesh& procMesh_;
//- Reference to edge addressing
const labelList& edgeAddressing_;
//- Reference to face addressing
const labelList& faceAddressing_;
//- Reference to boundary addressing
const labelList& boundaryAddressing_;
//- List of patch field decomposers
List<patchFieldDecomposer*> patchFieldDecomposerPtrs_;
List<processorAreaPatchFieldDecomposer*>
processorAreaPatchFieldDecomposerPtrs_;
List<processorEdgePatchFieldDecomposer*>
processorEdgePatchFieldDecomposerPtrs_;
// Private Member Functions
//- Disallow default bitwise copy construct
faFieldDecomposer(const faFieldDecomposer&);
//- Disallow default bitwise assignment
void operator=(const faFieldDecomposer&);
public:
// Constructors
//- Construct from components
faFieldDecomposer
(
const faMesh& completeMesh,
const faMesh& procMesh,
const labelList& edgeAddressing,
const labelList& faceAddressing,
const labelList& boundaryAddressing
);
// Destructor
~faFieldDecomposer();
// Member Functions
//- Decompose area field
template<class Type>
tmp<GeometricField<Type, faPatchField, areaMesh> >
decomposeField
(
const GeometricField<Type, faPatchField, areaMesh>& field
) const;
//- Decompose surface field
template<class Type>
tmp<GeometricField<Type, faePatchField, edgeMesh> >
decomposeField
(
const GeometricField<Type, faePatchField, edgeMesh>& field
) const;
template<class GeoField>
void decomposeFields(const PtrList<GeoField>& fields) const;
};
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#ifdef NoRepository
# include "faFieldDecomposerDecomposeFields.C"
#endif
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#endif
// ************************************************************************* //

View File

@ -0,0 +1,237 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd |
\\/ M anipulation |
-------------------------------------------------------------------------------
| Copyright (C) 2016-2017 Wikki Ltd
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "faFieldDecomposer.H"
#include "processorFaPatchField.H"
#include "processorFaePatchField.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
template<class Type>
tmp<GeometricField<Type, faPatchField, areaMesh> >
faFieldDecomposer::decomposeField
(
const GeometricField<Type, faPatchField, areaMesh>& field
) const
{
// Create and map the internal field values
Field<Type> internalField(field.internalField(), faceAddressing_);
// Create and map the patch field values
PtrList<faPatchField<Type> > patchFields(boundaryAddressing_.size());
forAll (boundaryAddressing_, patchi)
{
if (boundaryAddressing_[patchi] >= 0)
{
patchFields.set
(
patchi,
faPatchField<Type>::New
(
field.boundaryField()[boundaryAddressing_[patchi]],
procMesh_.boundary()[patchi],
DimensionedField<Type, areaMesh>::null(),
*patchFieldDecomposerPtrs_[patchi]
)
);
}
else
{
patchFields.set
(
patchi,
new processorFaPatchField<Type>
(
procMesh_.boundary()[patchi],
DimensionedField<Type, areaMesh>::null(),
Field<Type>
(
field.internalField(),
*processorAreaPatchFieldDecomposerPtrs_[patchi]
)
)
);
}
}
// Create the field for the processor
return tmp<GeometricField<Type, faPatchField, areaMesh> >
(
new GeometricField<Type, faPatchField, areaMesh>
(
IOobject
(
field.name(),
procMesh_.time().timeName(),
procMesh_(),
IOobject::NO_READ,
IOobject::NO_WRITE
),
procMesh_,
field.dimensions(),
internalField,
patchFields
)
);
}
template<class Type>
tmp<GeometricField<Type, faePatchField, edgeMesh> >
faFieldDecomposer::decomposeField
(
const GeometricField<Type, faePatchField, edgeMesh>& field
) const
{
labelList mapAddr
(
labelList::subList
(
edgeAddressing_,
procMesh_.nInternalEdges()
)
);
forAll (mapAddr, i)
{
mapAddr[i] -= 1;
}
// Create and map the internal field values
Field<Type> internalField
(
field.internalField(),
mapAddr
);
// Problem with addressing when a processor patch picks up both internal
// edges and edges from cyclic boundaries. This is a bit of a hack, but
// I cannot find a better solution without making the internal storage
// mechanism for edgeFields correspond to the one of edges in polyMesh
// (i.e. using slices)
Field<Type> allEdgeField(field.mesh().nEdges());
forAll (field.internalField(), i)
{
allEdgeField[i] = field.internalField()[i];
}
forAll (field.boundaryField(), patchi)
{
const Field<Type> & p = field.boundaryField()[patchi];
const label patchStart = field.mesh().boundary()[patchi].start();
forAll (p, i)
{
allEdgeField[patchStart + i] = p[i];
}
}
// Create and map the patch field values
PtrList<faePatchField<Type> > patchFields(boundaryAddressing_.size());
forAll (boundaryAddressing_, patchi)
{
if (boundaryAddressing_[patchi] >= 0)
{
patchFields.set
(
patchi,
faePatchField<Type>::New
(
field.boundaryField()[boundaryAddressing_[patchi]],
procMesh_.boundary()[patchi],
DimensionedField<Type, edgeMesh>::null(),
*patchFieldDecomposerPtrs_[patchi]
)
);
}
else
{
patchFields.set
(
patchi,
new processorFaePatchField<Type>
(
procMesh_.boundary()[patchi],
DimensionedField<Type, edgeMesh>::null(),
Field<Type>
(
allEdgeField,
*processorEdgePatchFieldDecomposerPtrs_[patchi]
)
)
);
}
}
// Create the field for the processor
return tmp<GeometricField<Type, faePatchField, edgeMesh> >
(
new GeometricField<Type, faePatchField, edgeMesh>
(
IOobject
(
field.name(),
procMesh_.time().timeName(),
procMesh_(),
IOobject::NO_READ,
IOobject::NO_WRITE
),
procMesh_,
field.dimensions(),
internalField,
patchFields
)
);
}
template<class GeoField>
void faFieldDecomposer::decomposeFields
(
const PtrList<GeoField>& fields
) const
{
forAll (fields, fieldI)
{
decomposeField(fields[fieldI])().write();
}
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// ************************************************************************* //

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,178 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd |
\\/ M anipulation |
-------------------------------------------------------------------------------
| Copyright (C) 2016-2017 Wikki Ltd
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Class
faMeshDecomposition
Description
Automatic faMesh decomposition class
Author
Zeljko Tukovic, FSB Zagreb
Hrvoje Jasak, Wikki Ltd.
SourceFiles
faMeshDecomposition.C
\*---------------------------------------------------------------------------*/
#ifndef faMeshDecomposition_H
#define faMeshDecomposition_H
#include "fvMesh.H"
#include "faMesh.H"
#include "labelList.H"
#include "SLList.H"
#include "PtrList.H"
#include "point.H"
#ifndef namespaceFoam
#define namespaceFoam
using namespace Foam;
#endif
/*---------------------------------------------------------------------------*\
Class faMeshDecomposition Declaration
\*---------------------------------------------------------------------------*/
class faMeshDecomposition
:
public faMesh
{
// Private data
//- Mesh decomposition control dictionary
IOdictionary decompositionDict_;
//- Number of processors in decomposition
label nProcs_;
//- Is the decomposition data to be distributed for each processor
bool distributed_;
//- Processor label for each cell
labelList faceToProc_;
//- Face labels for each processor mesh
labelListList procFaceLabels_;
//-
List<Map<label> > procMeshEdgesMap_;
//- Number of internal edges for each processor mesh
labelList procNInternalEdges_;
//- Edge labels for patches of processor meshes
List<List<List<label> > > procPatchEdgeLabels_;
//- Labels of points for each processor
labelListList procPatchPointAddressing_;
//- Labels of edges for each processor
labelListList procPatchEdgeAddressing_;
//- Labels of edges for each processor
labelListList procEdgeAddressing_;
//- Labels of faces for each processor
labelListList procFaceAddressing_;
//- Original patch index for every processor patch
labelListList procBoundaryAddressing_;
//- Sizes for processor mesh patches
// Excludes inter-processor boundaries
labelListList procPatchSize_;
//- Start indices for processor patches
// Excludes inter-processor boundaries
labelListList procPatchStartIndex_;
//- Neighbour processor ID for inter-processor boundaries
labelListList procNeighbourProcessors_;
//- Sizes for inter-processor patches
labelListList procProcessorPatchSize_;
//- Start indices for inter-processor patches
labelListList procProcessorPatchStartIndex_;
//- List of globally shared point labels
labelList globallySharedPoints_;
//- Are there cyclic-parallel faces
bool cyclicParallel_;
// Private Member Functions
void distributeFaces();
public:
// Constructors
//- Construct from fvMesh
faMeshDecomposition(const fvMesh& mesh);
// Destructor
~faMeshDecomposition();
// Member Functions
//- Number of processor in decomposition
label nProcs() const
{
return nProcs_;
}
//- Is the decomposition data to be distributed for each processor
bool distributed() const
{
return distributed_;
}
//- Decompose mesh
void decomposeMesh();
//- Write decomposition
bool writeDecomposition();
//- Cell-processor decomposition labels
const labelList& faceToProc() const
{
return faceToProc_;
}
};
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#endif
// ************************************************************************* //

View File

@ -1,3 +1,5 @@
processorFaMeshes.C
faFieldReconstructor.C
reconstructPar.C reconstructPar.C
EXE = $(FOAM_APPBIN)/reconstructPar EXE = $(FOAM_APPBIN)/reconstructPar

View File

@ -1,5 +1,6 @@
EXE_INC = \ EXE_INC = \
-I$(LIB_SRC)/finiteVolume/lnInclude \ -I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/finiteArea/lnInclude \
-I$(LIB_SRC)/lagrangian/basic/lnInclude \ -I$(LIB_SRC)/lagrangian/basic/lnInclude \
-I$(LIB_SRC)/dynamicMesh/lnInclude \ -I$(LIB_SRC)/dynamicMesh/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \ -I$(LIB_SRC)/meshTools/lnInclude \

View File

@ -0,0 +1,49 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd |
\\/ M anipulation |
-------------------------------------------------------------------------------
| Copyright (C) 2016-2017 Wikki Ltd
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "faFieldReconstructor.H"
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::faFieldReconstructor::faFieldReconstructor
(
faMesh& mesh,
const PtrList<faMesh>& procMeshes,
const PtrList<labelIOList>& edgeProcAddressing,
const PtrList<labelIOList>& faceProcAddressing,
const PtrList<labelIOList>& boundaryProcAddressing
)
:
mesh_(mesh),
procMeshes_(procMeshes),
edgeProcAddressing_(edgeProcAddressing),
faceProcAddressing_(faceProcAddressing),
boundaryProcAddressing_(boundaryProcAddressing)
{}
// ************************************************************************* //

View File

@ -0,0 +1,205 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd |
\\/ M anipulation |
-------------------------------------------------------------------------------
| Copyright (C) 2016-2017 Wikki Ltd
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Class
faFieldReconstructor
Description
FA area and edge field reconstructor.
Author
Zeljko Tukovic, FSB Zagreb
Hrvoje Jasak, Wikki Ltd.
SourceFiles
faFieldReconstructor.C
faFieldReconstructorReconstructFields.C
\*---------------------------------------------------------------------------*/
#ifndef faFieldReconstructor_H
#define faFieldReconstructor_H
#include "PtrList.H"
#include "faMesh.H"
#include "IOobjectList.H"
#include "faPatchFieldMapper.H"
#include "labelIOList.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
/*---------------------------------------------------------------------------*\
Class faFieldReconstructor Declaration
\*---------------------------------------------------------------------------*/
class faFieldReconstructor
{
// Private data
//- Reconstructed mesh reference
faMesh& mesh_;
//- List of processor meshes
const PtrList<faMesh>& procMeshes_;
//- List of processor edge addressing lists
const PtrList<labelIOList>& edgeProcAddressing_;
//- List of processor face addressing lists
const PtrList<labelIOList>& faceProcAddressing_;
//- List of processor boundary addressing lists
const PtrList<labelIOList>& boundaryProcAddressing_;
// Private Member Functions
//- Disallow default bitwise copy construct
faFieldReconstructor(const faFieldReconstructor&);
//- Disallow default bitwise assignment
void operator=(const faFieldReconstructor&);
public:
class faPatchFieldReconstructor
:
public faPatchFieldMapper
{
label size_;
label sizeBeforeMapping_;
public:
// Constructors
//- Construct given size
faPatchFieldReconstructor
(
const label size,
const label sizeBeforeMapping
)
:
size_(size),
sizeBeforeMapping_(sizeBeforeMapping)
{}
// Member functions
virtual label size() const
{
return size_;
}
virtual label sizeBeforeMapping() const
{
return sizeBeforeMapping_;
}
virtual bool direct() const
{
return true;
}
virtual bool hasUnmapped() const
{
return false;
}
virtual const labelUList& directAddressing() const
{
return labelUList::null();
}
};
// Constructors
//- Construct from components
faFieldReconstructor
(
faMesh& mesh,
const PtrList<faMesh>& procMeshes,
const PtrList<labelIOList>& edgeProcAddressing,
const PtrList<labelIOList>& faceProcAddressing,
const PtrList<labelIOList>& boundaryProcAddressing
);
// Member Functions
//- Reconstruct area field
template<class Type>
tmp<GeometricField<Type, faPatchField, areaMesh> >
reconstructFaAreaField
(
const IOobject& fieldIoObject
);
//- Reconstruct edge field
template<class Type>
tmp<GeometricField<Type, faePatchField, edgeMesh> >
reconstructFaEdgeField
(
const IOobject& fieldIoObject
);
//- Reconstruct and write all area fields
template<class Type>
void reconstructFaAreaFields
(
const IOobjectList& objects
);
//- Reconstruct and write all area fields
template<class Type>
void reconstructFaEdgeFields
(
const IOobjectList& objects
);
};
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#ifdef NoRepository
# include "faFieldReconstructorReconstructFields.C"
#endif
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#endif
// ************************************************************************* //

View File

@ -0,0 +1,642 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd |
\\/ M anipulation |
-------------------------------------------------------------------------------
| Copyright (C) 2016-2017 Wikki Ltd
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "faFieldReconstructor.H"
#include "Time.H"
#include "PtrList.H"
#include "faPatchFields.H"
#include "emptyFaPatch.H"
#include "emptyFaPatchField.H"
#include "emptyFaePatchField.H"
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
template<class Type>
Foam::tmp<Foam::GeometricField<Type, Foam::faPatchField, Foam::areaMesh> >
Foam::faFieldReconstructor::reconstructFaAreaField
(
const IOobject& fieldIoObject
)
{
// Read the field for all the processors
PtrList<GeometricField<Type, faPatchField, areaMesh> > procFields
(
procMeshes_.size()
);
forAll (procMeshes_, procI)
{
procFields.set
(
procI,
new GeometricField<Type, faPatchField, areaMesh>
(
IOobject
(
fieldIoObject.name(),
procMeshes_[procI].time().timeName(),
procMeshes_[procI](),
IOobject::MUST_READ,
IOobject::NO_WRITE
),
procMeshes_[procI]
)
);
}
// Create the internalField
Field<Type> internalField(mesh_.nFaces());
// Create the patch fields
PtrList<faPatchField<Type> > patchFields(mesh_.boundary().size());
// Create global mesh patchs starts
labelList gStarts(mesh_.boundary().size(), -1);
if (mesh_.boundary().size() > 0)
{
gStarts[0] = mesh_.nInternalEdges();
}
for(label i=1; i<mesh_.boundary().size(); i++)
{
gStarts[i] = gStarts[i-1] + mesh_.boundary()[i-1].labelList::size();
}
forAll (procMeshes_, procI)
{
const GeometricField<Type, faPatchField, areaMesh>& procField =
procFields[procI];
// Set the face values in the reconstructed field
internalField.rmap
(
procField.internalField(),
faceProcAddressing_[procI]
);
// Set the boundary patch values in the reconstructed field
labelList starts(procMeshes_[procI].boundary().size(), -1);
if(procMeshes_[procI].boundary().size() > 0)
{
starts[0] = procMeshes_[procI].nInternalEdges();
}
for(label i=1; i<procMeshes_[procI].boundary().size(); i++)
{
starts[i] =
starts[i-1]
+ procMeshes_[procI].boundary()[i-1].labelList::size();
}
forAll(boundaryProcAddressing_[procI], patchI)
{
// Get patch index of the original patch
const label curBPatch = boundaryProcAddressing_[procI][patchI];
// Get addressing slice for this patch
// const labelList::subList cp =
// procMeshes_[procI].boundary()[patchI].patchSlice
// (
// edgeProcAddressing_[procI]
// );
const labelList::subList cp =
labelList::subList
(
edgeProcAddressing_[procI],
procMeshes_[procI].boundary()[patchI].size(),
starts[patchI]
);
// check if the boundary patch is not a processor patch
if (curBPatch >= 0)
{
// Regular patch. Fast looping
if (!patchFields(curBPatch))
{
patchFields.set
(
curBPatch,
faPatchField<Type>::New
(
procField.boundaryField()[patchI],
mesh_.boundary()[curBPatch],
DimensionedField<Type, areaMesh>::null(),
faPatchFieldReconstructor
(
mesh_.boundary()[curBPatch].size(),
procField.boundaryField()[patchI].size()
)
)
);
}
const label curPatchStart = gStarts[curBPatch];
// mesh_.boundary()[curBPatch].start();
labelList reverseAddressing(cp.size());
forAll(cp, edgeI)
{
// Subtract one to take into account offsets for
// face direction.
// reverseAddressing[edgeI] = cp[edgeI] - 1 - curPatchStart;
reverseAddressing[edgeI] = cp[edgeI] - curPatchStart;
}
patchFields[curBPatch].rmap
(
procField.boundaryField()[patchI],
reverseAddressing
);
}
else
{
const Field<Type>& curProcPatch =
procField.boundaryField()[patchI];
// In processor patches, there's a mix of internal faces (some
// of them turned) and possible cyclics. Slow loop
forAll(cp, edgeI)
{
// Subtract one to take into account offsets for
// face direction.
// label curE = cp[edgeI] - 1;
label curE = cp[edgeI];
// Is the face on the boundary?
if (curE >= mesh_.nInternalEdges())
{
// label curBPatch = mesh_.boundary().whichPatch(curE);
label curBPatch = -1;
forAll (mesh_.boundary(), pI)
{
if
(
curE >= gStarts[pI]
&& curE <
(
gStarts[pI]
+ mesh_.boundary()[pI].labelList::size()
)
)
{
curBPatch = pI;
}
}
if (!patchFields(curBPatch))
{
patchFields.set
(
curBPatch,
faPatchField<Type>::New
(
mesh_.boundary()[curBPatch].type(),
mesh_.boundary()[curBPatch],
DimensionedField<Type, areaMesh>::null()
)
);
}
// add the edge
// label curPatchEdge =
// mesh_.boundary()
// [curBPatch].whichEdge(curE);
label curPatchEdge = curE - gStarts[curBPatch];
patchFields[curBPatch][curPatchEdge] =
curProcPatch[edgeI];
}
}
}
}
}
forAll(mesh_.boundary(), patchI)
{
// add empty patches
if
(
isA<emptyFaPatch>(mesh_.boundary()[patchI])
&& !patchFields(patchI)
)
{
patchFields.set
(
patchI,
faPatchField<Type>::New
(
emptyFaPatchField<Type>::typeName,
mesh_.boundary()[patchI],
DimensionedField<Type, areaMesh>::null()
)
);
}
}
// Now construct and write the field
// setting the internalField and patchFields
return tmp<GeometricField<Type, faPatchField, areaMesh> >
(
new GeometricField<Type, faPatchField, areaMesh>
(
IOobject
(
fieldIoObject.name(),
mesh_.time().timeName(),
mesh_(),
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh_,
procFields[0].dimensions(),
internalField,
patchFields
)
);
}
template<class Type>
Foam::tmp<Foam::GeometricField<Type, Foam::faePatchField, Foam::edgeMesh> >
Foam::faFieldReconstructor::reconstructFaEdgeField
(
const IOobject& fieldIoObject
)
{
// Read the field for all the processors
PtrList<GeometricField<Type, faePatchField, edgeMesh> > procFields
(
procMeshes_.size()
);
forAll (procMeshes_, procI)
{
procFields.set
(
procI,
new GeometricField<Type, faePatchField, edgeMesh>
(
IOobject
(
fieldIoObject.name(),
procMeshes_[procI].time().timeName(),
procMeshes_[procI](),
IOobject::MUST_READ,
IOobject::NO_WRITE
),
procMeshes_[procI]
)
);
}
// Create the internalField
Field<Type> internalField(mesh_.nInternalEdges());
// Create the patch fields
PtrList<faePatchField<Type> > patchFields(mesh_.boundary().size());
labelList gStarts(mesh_.boundary().size(), -1);
if(mesh_.boundary().size() > 0)
{
gStarts[0] = mesh_.nInternalEdges();
}
for(label i=1; i<mesh_.boundary().size(); i++)
{
gStarts[i] = gStarts[i-1] + mesh_.boundary()[i-1].labelList::size();
}
forAll (procMeshes_, procI)
{
const GeometricField<Type, faePatchField, edgeMesh>& procField =
procFields[procI];
// Set the face values in the reconstructed field
// It is necessary to create a copy of the addressing array to
// take care of the face direction offset trick.
//
{
labelList curAddr(edgeProcAddressing_[procI]);
// forAll (curAddr, addrI)
// {
// curAddr[addrI] -= 1;
// }
internalField.rmap
(
procField.internalField(),
curAddr
);
}
// Set the boundary patch values in the reconstructed field
labelList starts(procMeshes_[procI].boundary().size(), -1);
if(procMeshes_[procI].boundary().size() > 0)
{
starts[0] = procMeshes_[procI].nInternalEdges();
}
for(label i=1; i<procMeshes_[procI].boundary().size(); i++)
{
starts[i] =
starts[i-1]
+ procMeshes_[procI].boundary()[i-1].labelList::size();
}
forAll(boundaryProcAddressing_[procI], patchI)
{
// Get patch index of the original patch
const label curBPatch = boundaryProcAddressing_[procI][patchI];
// Get addressing slice for this patch
// const labelList::subList cp =
// procMeshes_[procI].boundary()[patchI].patchSlice
// (
// faceProcAddressing_[procI]
// );
const labelList::subList cp =
labelList::subList
(
edgeProcAddressing_[procI],
procMeshes_[procI].boundary()[patchI].size(),
starts[patchI]
);
// check if the boundary patch is not a processor patch
if (curBPatch >= 0)
{
// Regular patch. Fast looping
if (!patchFields(curBPatch))
{
patchFields.set
(
curBPatch,
faePatchField<Type>::New
(
procField.boundaryField()[patchI],
mesh_.boundary()[curBPatch],
DimensionedField<Type, edgeMesh>::null(),
faPatchFieldReconstructor
(
mesh_.boundary()[curBPatch].size(),
procField.boundaryField()[patchI].size()
)
)
);
}
const label curPatchStart = gStarts[curBPatch];
// mesh_.boundary()[curBPatch].start();
labelList reverseAddressing(cp.size());
forAll(cp, edgeI)
{
// Subtract one to take into account offsets for
// face direction.
// reverseAddressing[faceI] = cp[faceI] - 1 - curPatchStart;
reverseAddressing[edgeI] = cp[edgeI] - curPatchStart;
}
patchFields[curBPatch].rmap
(
procField.boundaryField()[patchI],
reverseAddressing
);
}
else
{
const Field<Type>& curProcPatch =
procField.boundaryField()[patchI];
// In processor patches, there's a mix of internal faces (some
// of them turned) and possible cyclics. Slow loop
forAll(cp, edgeI)
{
// label curF = cp[edgeI] - 1;
label curE = cp[edgeI];
// Is the face turned the right side round
if (curE >= 0)
{
// Is the face on the boundary?
if (curE >= mesh_.nInternalEdges())
{
// label curBPatch =
// mesh_.boundary().whichPatch(curF);
label curBPatch = -1;
forAll (mesh_.boundary(), pI)
{
if
(
curE >= gStarts[pI]
&& curE <
(
gStarts[pI]
+ mesh_.boundary()[pI].labelList::size()
)
)
{
curBPatch = pI;
}
}
if (!patchFields(curBPatch))
{
patchFields.set
(
curBPatch,
faePatchField<Type>::New
(
mesh_.boundary()[curBPatch].type(),
mesh_.boundary()[curBPatch],
DimensionedField<Type, edgeMesh>
::null()
)
);
}
// add the face
// label curPatchFace =
// mesh_.boundary()
// [curBPatch].whichEdge(curF);
label curPatchEdge = curE - gStarts[curBPatch];
patchFields[curBPatch][curPatchEdge] =
curProcPatch[edgeI];
}
else
{
// Internal face
internalField[curE] = curProcPatch[edgeI];
}
}
}
}
}
}
forAll(mesh_.boundary(), patchI)
{
// add empty patches
if
(
isA<emptyFaPatch>(mesh_.boundary()[patchI])
&& !patchFields(patchI)
)
{
patchFields.set
(
patchI,
faePatchField<Type>::New
(
emptyFaePatchField<Type>::typeName,
mesh_.boundary()[patchI],
DimensionedField<Type, edgeMesh>::null()
)
);
}
}
// Now construct and write the field
// setting the internalField and patchFields
return tmp<GeometricField<Type, faePatchField, edgeMesh> >
(
new GeometricField<Type, faePatchField, edgeMesh>
(
IOobject
(
fieldIoObject.name(),
mesh_.time().timeName(),
mesh_(),
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh_,
procFields[0].dimensions(),
internalField,
patchFields
)
);
}
// Reconstruct and write all area fields
template<class Type>
void Foam::faFieldReconstructor::reconstructFaAreaFields
(
const IOobjectList& objects
)
{
const word& fieldClassName =
GeometricField<Type, faPatchField, areaMesh>::typeName;
IOobjectList fields = objects.lookupClass(fieldClassName);
if (fields.size())
{
Info<< " Reconstructing " << fieldClassName << "s\n" << endl;
for
(
IOobjectList::const_iterator fieldIter = fields.begin();
fieldIter != fields.end();
++fieldIter
)
{
Info << " " << fieldIter()->name() << endl;
reconstructFaAreaField<Type>(*fieldIter())().write();
}
Info<< endl;
}
}
// Reconstruct and write all edge fields
template<class Type>
void Foam::faFieldReconstructor::reconstructFaEdgeFields
(
const IOobjectList& objects
)
{
const word& fieldClassName =
GeometricField<Type, faePatchField, edgeMesh>::typeName;
IOobjectList fields = objects.lookupClass(fieldClassName);
if (fields.size())
{
Info<< " Reconstructing " << fieldClassName << "s\n" << endl;
for
(
IOobjectList::const_iterator fieldIter = fields.begin();
fieldIter != fields.end();
++fieldIter
)
{
Info<< " " << fieldIter()->name() << endl;
reconstructFaEdgeField<Type>(*fieldIter())().write();
}
Info<< endl;
}
}
// ************************************************************************* //

View File

@ -0,0 +1,260 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd |
\\/ M anipulation |
-------------------------------------------------------------------------------
| Copyright (C) 2016-2017 Wikki Ltd
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "processorFaMeshes.H"
#include "Time.H"
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
void Foam::processorFaMeshes::read()
{
forAll (fvMeshes_, procI)
{
meshes_.set
(
procI,
new faMesh(fvMeshes_[procI])
);
pointProcAddressing_.set
(
procI,
new labelIOList
(
IOobject
(
"pointProcAddressing",
meshes_[procI].time().findInstance
(
meshes_[procI].meshDir(),
"pointProcAddressing"
),
meshes_[procI].meshSubDir,
fvMeshes_[procI],
IOobject::MUST_READ,
IOobject::NO_WRITE
)
)
);
edgeProcAddressing_.set
(
procI,
new labelIOList
(
IOobject
(
"edgeProcAddressing",
meshes_[procI].time().findInstance
(
meshes_[procI].meshDir(),
"edgeProcAddressing"
),
meshes_[procI].meshSubDir,
fvMeshes_[procI],
IOobject::MUST_READ,
IOobject::NO_WRITE
)
)
);
faceProcAddressing_.set
(
procI,
new labelIOList
(
IOobject
(
"faceProcAddressing",
meshes_[procI].time().findInstance
(
meshes_[procI].meshDir(),
"faceProcAddressing"
),
meshes_[procI].meshSubDir,
fvMeshes_[procI],
IOobject::MUST_READ,
IOobject::NO_WRITE
)
)
);
boundaryProcAddressing_.set
(
procI,
new labelIOList
(
IOobject
(
"boundaryProcAddressing",
meshes_[procI].time().findInstance
(
meshes_[procI].meshDir(),
"faceProcAddressing"
),
meshes_[procI].meshSubDir,
fvMeshes_[procI],
IOobject::MUST_READ,
IOobject::NO_WRITE
)
)
);
}
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::processorFaMeshes::processorFaMeshes
(
const PtrList<fvMesh>& processorFvMeshes
)
:
fvMeshes_(processorFvMeshes),
meshes_(processorFvMeshes.size()),
pointProcAddressing_(processorFvMeshes.size()),
edgeProcAddressing_(processorFvMeshes.size()),
faceProcAddressing_(processorFvMeshes.size()),
boundaryProcAddressing_(processorFvMeshes.size())
{
read();
}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
// Foam::fvMesh::readUpdateState Foam::processorFaMeshes::readUpdate()
// {
// fvMesh::readUpdateState stat = fvMesh::UNCHANGED;
// forAll (databases_, procI)
// {
// // Check if any new meshes need to be read.
// fvMesh::readUpdateState procStat = meshes_[procI].readUpdate();
// /*
// if (procStat != fvMesh::UNCHANGED)
// {
// Info<< "Processor " << procI
// << " at time " << databases_[procI].timeName()
// << " detected mesh change " << procStat
// << endl;
// }
// */
// // Combine into overall mesh change status
// if (stat == fvMesh::UNCHANGED)
// {
// stat = procStat;
// }
// else
// {
// if (stat != procStat)
// {
// FatalErrorIn("processorFaMeshes::readUpdate()")
// << "Processor " << procI
// << " has a different polyMesh at time "
// << databases_[procI].timeName()
// << " compared to any previous processors." << nl
// << "Please check time " << databases_[procI].timeName()
// << " directories on all processors for consistent"
// << " mesh files."
// << exit(FatalError);
// }
// }
// }
// if
// (
// stat == fvMesh::TOPO_CHANGE
// || stat == fvMesh::TOPO_PATCH_CHANGE
// )
// {
// // Reread all meshes and addresssing
// read();
// }
// return stat;
// }
// void Foam::processorFaMeshes::reconstructPoints(fvMesh& mesh)
// {
// // Read the field for all the processors
// PtrList<pointIOField> procsPoints(meshes_.size());
// forAll (meshes_, procI)
// {
// procsPoints.set
// (
// procI,
// new pointIOField
// (
// IOobject
// (
// "points",
// meshes_[procI].time().timeName(),
// polyMesh::meshSubDir,
// meshes_[procI],
// IOobject::MUST_READ,
// IOobject::NO_WRITE
// )
// )
// );
// }
// // Create the new points
// vectorField newPoints(mesh.nPoints());
// forAll (meshes_, procI)
// {
// const vectorField& procPoints = procsPoints[procI];
// // Set the cell values in the reconstructed field
// const labelList& pointProcAddressingI = pointProcAddressing_[procI];
// if (pointProcAddressingI.size() != procPoints.size())
// {
// FatalErrorIn("processorFaMeshes")
// << "problem :"
// << " pointProcAddressingI:" << pointProcAddressingI.size()
// << " procPoints:" << procPoints.size()
// << abort(FatalError);
// }
// forAll(pointProcAddressingI, pointI)
// {
// newPoints[pointProcAddressingI[pointI]] = procPoints[pointI];
// }
// }
// mesh.movePoints(newPoints);
// mesh.write();
// }
// ************************************************************************* //

View File

@ -0,0 +1,142 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd |
\\/ M anipulation |
-------------------------------------------------------------------------------
| Copyright (C) 2016-2017 Wikki Ltd
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Class
processorFaMeshes
Description
Container for processor mesh addressing.
Author
Zeljko Tukovic, FSB Zagreb
SourceFiles
processorFaMeshes.C
\*---------------------------------------------------------------------------*/
#ifndef processorFaMeshes_H
#define processorFaMeshes_H
#include "PtrList.H"
#include "fvMesh.H"
#include "faMesh.H"
#include "IOobjectList.H"
#include "labelIOList.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
/*---------------------------------------------------------------------------*\
Class processorFaMeshes Declaration
\*---------------------------------------------------------------------------*/
class processorFaMeshes
{
// Private data
//- List of processor finite volume meshes
const PtrList<fvMesh>& fvMeshes_;
//- List of processor finite area meshes
PtrList<faMesh> meshes_;
//- List of processor point addressing lists
PtrList<labelIOList> pointProcAddressing_;
//- List of processor face addressing lists
PtrList<labelIOList> edgeProcAddressing_;
//- List of processor cell addressing lists
PtrList<labelIOList> faceProcAddressing_;
//- List of processor boundary addressing lists
PtrList<labelIOList> boundaryProcAddressing_;
// Private Member Functions
//- Read all meshes
void read();
//- Disallow default bitwise copy construct
processorFaMeshes(const processorFaMeshes&);
//- Disallow default bitwise assignment
void operator=(const processorFaMeshes&);
public:
// Constructors
//- Construct from components
processorFaMeshes(const PtrList<fvMesh>& processorFvMeshes);
// Member Functions
//- Update the meshes based on the mesh files saved in
// time directories
// fvMesh::readUpdateState readUpdate();
//- Reconstruct point position after motion in parallel
// void reconstructPoints(faMesh& mesh);
PtrList<faMesh>& meshes()
{
return meshes_;
}
const PtrList<labelIOList>& pointProcAddressing() const
{
return pointProcAddressing_;
}
PtrList<labelIOList>& edgeProcAddressing()
{
return edgeProcAddressing_;
}
const PtrList<labelIOList>& faceProcAddressing() const
{
return faceProcAddressing_;
}
const PtrList<labelIOList>& boundaryProcAddressing() const
{
return boundaryProcAddressing_;
}
};
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#endif
// ************************************************************************* //

View File

@ -44,6 +44,11 @@ Description
#include "pointFieldReconstructor.H" #include "pointFieldReconstructor.H"
#include "reconstructLagrangian.H" #include "reconstructLagrangian.H"
#include "faCFD.H"
#include "faMesh.H"
#include "processorFaMeshes.H"
#include "faFieldReconstructor.H"
#include "cellSet.H" #include "cellSet.H"
#include "faceSet.H" #include "faceSet.H"
#include "pointSet.H" #include "pointSet.H"
@ -710,6 +715,47 @@ int main(int argc, char *argv[])
} }
// If there are any FA fields, reconstruct them
if
(
objects.lookupClass(areaScalarField::typeName).size()
|| objects.lookupClass(areaVectorField::typeName).size()
|| objects.lookupClass(areaSphericalTensorField::typeName).size()
|| objects.lookupClass(areaSymmTensorField::typeName).size()
|| objects.lookupClass(areaTensorField::typeName).size()
|| objects.lookupClass(edgeScalarField::typeName).size()
)
{
Info << "Reconstructing FA fields" << nl << endl;
faMesh aMesh(mesh);
processorFaMeshes procFaMeshes(procMeshes.meshes());
faFieldReconstructor faReconstructor
(
aMesh,
procFaMeshes.meshes(),
procFaMeshes.edgeProcAddressing(),
procFaMeshes.faceProcAddressing(),
procFaMeshes.boundaryProcAddressing()
);
faReconstructor.reconstructFaAreaFields<scalar>(objects);
faReconstructor.reconstructFaAreaFields<vector>(objects);
faReconstructor
.reconstructFaAreaFields<sphericalTensor>(objects);
faReconstructor.reconstructFaAreaFields<symmTensor>(objects);
faReconstructor.reconstructFaAreaFields<tensor>(objects);
faReconstructor.reconstructFaEdgeFields<scalar>(objects);
}
else
{
Info << "No FA fields" << nl << endl;
}
if (!noReconstructSets) if (!noReconstructSets)
{ {
// Scan to find all sets // Scan to find all sets

View File

@ -97,25 +97,6 @@ using namespace Foam;
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
// file-scope helper
static bool inFileNameList
(
const fileNameList& nameList,
const word& name
)
{
forAll(nameList, i)
{
if (nameList[i] == name)
{
return true;
}
}
return false;
}
int main(int argc, char *argv[]) int main(int argc, char *argv[])
{ {
timeSelector::addOptions(); timeSelector::addOptions();
@ -641,7 +622,7 @@ int main(int argc, char *argv[])
Info<< "Write " << cloudName << " ("; Info<< "Write " << cloudName << " (";
bool cloudExists = inFileNameList(currentCloudDirs, cloudName); bool cloudExists = currentCloudDirs.found(cloudName);
reduce(cloudExists, orOp<bool>()); reduce(cloudExists, orOp<bool>());
{ {

View File

@ -3,11 +3,13 @@ EXE_INC = \
-I$(LIB_SRC)/conversion/lnInclude \ -I$(LIB_SRC)/conversion/lnInclude \
-I$(LIB_SRC)/lagrangian/basic/lnInclude \ -I$(LIB_SRC)/lagrangian/basic/lnInclude \
-I$(LIB_SRC)/finiteVolume/lnInclude \ -I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/finiteArea/lnInclude \
-I$(LIB_SRC)/dynamicMesh/lnInclude \ -I$(LIB_SRC)/dynamicMesh/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude -I$(LIB_SRC)/meshTools/lnInclude
EXE_LIBS = \ EXE_LIBS = \
-lconversion \ -lconversion \
-ldynamicMesh \ -ldynamicMesh \
-lfiniteArea \
-llagrangian \ -llagrangian \
-lgenericPatchFields -lgenericPatchFields

View File

@ -155,6 +155,7 @@ Note
#include "Cloud.H" #include "Cloud.H"
#include "passiveParticle.H" #include "passiveParticle.H"
#include "stringOps.H" #include "stringOps.H"
#include "areaFields.H"
#include "meshSubsetHelper.H" #include "meshSubsetHelper.H"
#include "readFields.H" #include "readFields.H"
@ -862,6 +863,119 @@ int main(int argc, char *argv[])
); );
// Finite-area mesh and fields - need not exist
autoPtr<faMesh> aMeshPtr;
{
const bool throwing = FatalError.throwExceptions();
try
{
aMeshPtr.reset(new faMesh(meshRef.baseMesh()));
}
catch (Foam::error& err)
{
aMeshPtr.clear();
}
FatalError.throwExceptions(throwing);
}
if (aMeshPtr.valid())
{
// Construct the area fields
PtrList<const areaScalarField> aScalarFld;
PtrList<const areaVectorField> aVectorFld;
PtrList<const areaSphericalTensorField> aSphTensorf;
PtrList<const areaSymmTensorField> aSymTensorFld;
PtrList<const areaTensorField> aTensorFld;
const faMesh& aMesh = aMeshPtr();
if (!specifiedFields || selectedFields.size())
{
readFields
(
aMesh,
objects,
selectedFields,
aScalarFld
);
print(" areaScalar :", Info, aScalarFld);
readFields
(
aMesh,
objects,
selectedFields,
aVectorFld
);
print(" areaVector :", Info, aVectorFld);
readFields
(
aMesh,
objects,
selectedFields,
aSphTensorf
);
print(" areaSphericalTensor :", Info, aSphTensorf);
readFields
(
aMesh,
objects,
selectedFields,
aSymTensorFld
);
print(" areaSymmTensor :", Info, aSymTensorFld);
readFields
(
aMesh,
objects,
selectedFields,
aTensorFld
);
print(" areaTensor :", Info, aTensorFld);
}
const label nAreaFields =
(
aScalarFld.size()
+ aVectorFld.size()
+ aSphTensorf.size()
+ aSymTensorFld.size()
+ aTensorFld.size()
);
fileName outputName(fvPath/"finiteArea");
mkDir(outputName);
const auto& pp = aMesh.patch();
vtk::surfaceMeshWriter writer
(
pp,
aMesh.name(),
outputName/"finiteArea" + "_" + timeDesc,
fmtType
);
// Number of fields
writer.beginCellData(nAreaFields);
writer.write(aScalarFld);
writer.write(aVectorFld);
writer.write(aSphTensorf);
writer.write(aSymTensorFld);
writer.write(aTensorFld);
writer.endCellData();
writer.writeFooter();
}
PtrList<const pointScalarField> pScalarFld; PtrList<const pointScalarField> pScalarFld;
PtrList<const pointVectorField> pVectorFld; PtrList<const pointVectorField> pVectorFld;
PtrList<const pointSphericalTensorField> pSphTensorFld; PtrList<const pointSphericalTensorField> pSphTensorFld;

View File

@ -72,6 +72,38 @@ label readFields
} }
template<class GeoField>
void readFields
(
const typename GeoField::Mesh& mesh,
const IOobjectList& objects,
const HashSet<word>& selectedFields,
PtrList<const GeoField>& fields
)
{
// Search list of objects for fields of type GeomField
IOobjectList fieldObjects(objects.lookupClass(GeoField::typeName));
// Construct the fields
fields.setSize(fieldObjects.size());
label nFields = 0;
forAllIters(fieldObjects, iter)
{
if (selectedFields.empty() || selectedFields.found(iter()->name()))
{
fields.set
(
nFields++,
new GeoField(*iter(), mesh)
);
}
}
fields.setSize(nFields);
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam } // End namespace Foam

View File

@ -13,6 +13,7 @@ include_directories(
$ENV{WM_PROJECT_DIR}/src/OpenFOAM/lnInclude $ENV{WM_PROJECT_DIR}/src/OpenFOAM/lnInclude
$ENV{WM_PROJECT_DIR}/src/OSspecific/$ENV{WM_OSTYPE}/lnInclude $ENV{WM_PROJECT_DIR}/src/OSspecific/$ENV{WM_OSTYPE}/lnInclude
$ENV{WM_PROJECT_DIR}/src/conversion/lnInclude $ENV{WM_PROJECT_DIR}/src/conversion/lnInclude
$ENV{WM_PROJECT_DIR}/src/finiteArea/lnInclude
$ENV{WM_PROJECT_DIR}/src/finiteVolume/lnInclude $ENV{WM_PROJECT_DIR}/src/finiteVolume/lnInclude
${PROJECT_SOURCE_DIR}/../foamPv ${PROJECT_SOURCE_DIR}/../foamPv
${PROJECT_SOURCE_DIR}/../vtkPVFoam ${PROJECT_SOURCE_DIR}/../vtkPVFoam
@ -66,6 +67,7 @@ target_link_libraries(
vtkPVFoam-pv${PARAVIEW_VERSION_MAJOR}.${PARAVIEW_VERSION_MINOR} vtkPVFoam-pv${PARAVIEW_VERSION_MAJOR}.${PARAVIEW_VERSION_MINOR}
foamPv-pv${PARAVIEW_VERSION_MAJOR}.${PARAVIEW_VERSION_MINOR} foamPv-pv${PARAVIEW_VERSION_MAJOR}.${PARAVIEW_VERSION_MINOR}
conversion conversion
finiteArea
finiteVolume finiteVolume
OpenFOAM OpenFOAM
) )

View File

@ -309,16 +309,16 @@ int vtkPVFoamReader::RequestData
// Get the requested time step. // Get the requested time step.
// We only support requests for a single time step // We only support requests for a single time step
int nRequestTime = 0; std::vector<double> requestTime;
double requestTime[nInfo]; requestTime.reserve(nInfo);
// taking port0 as the lead for other outputs would be nice, but fails when // taking port0 as the lead for other outputs would be nice, but fails when
// a filter is added - we need to check everything // a filter is added - we need to check everything
// but since PREVIOUS_UPDATE_TIME_STEPS() is protected, relay the logic // but since PREVIOUS_UPDATE_TIME_STEPS() is protected, relay the logic
// to the vtkPVFoam::setTime() method // to the vtkPVFoam::setTime() method
for (int infoI = 0; infoI < nInfo; ++infoI) for (int infoi = 0; infoi < nInfo; ++infoi)
{ {
vtkInformation *outInfo = outputVector->GetInformationObject(infoI); vtkInformation *outInfo = outputVector->GetInformationObject(infoi);
const int nsteps = const int nsteps =
outInfo->Length(vtkStreamingDemandDrivenPipeline::TIME_STEPS()); outInfo->Length(vtkStreamingDemandDrivenPipeline::TIME_STEPS());
@ -329,7 +329,7 @@ int vtkPVFoamReader::RequestData
&& nsteps > 0 && nsteps > 0
) )
{ {
requestTime[nRequestTime] = const double timeValue =
( (
1 == nsteps 1 == nsteps
// Only one time-step available, UPDATE_TIME_STEP is unreliable // Only one time-step available, UPDATE_TIME_STEP is unreliable
@ -337,16 +337,13 @@ int vtkPVFoamReader::RequestData
: outInfo->Get(vtkStreamingDemandDrivenPipeline::UPDATE_TIME_STEP()) : outInfo->Get(vtkStreamingDemandDrivenPipeline::UPDATE_TIME_STEP())
); );
// outInfo->Set(vtkDataObject::DATA_TIME_STEP(), requestTime[nRequestTime]); // outInfo->Set(vtkDataObject::DATA_TIME_STEP(), timeValue);
// this->SetTimeValue(requestedTimeValue); // this->SetTimeValue(timeValue);
++nRequestTime; requestTime.push_back(timeValue);
} }
} }
if (nRequestTime) backend_->setTime(requestTime);
{
backend_->setTime(nRequestTime, requestTime);
}
vtkMultiBlockDataSet* output = vtkMultiBlockDataSet::SafeDownCast vtkMultiBlockDataSet* output = vtkMultiBlockDataSet::SafeDownCast
( (

View File

@ -25,9 +25,9 @@ Class
vtkPVFoamReader vtkPVFoamReader
Description Description
reads a dataset in OpenFOAM format Reads a dataset in OpenFOAM format
vtkPVblockMeshReader creates an multiblock dataset. vtkPVFoamReader creates an multiblock dataset.
It uses the OpenFOAM infrastructure (fvMesh, etc) to handle mesh and It uses the OpenFOAM infrastructure (fvMesh, etc) to handle mesh and
field data. field data.

View File

@ -43,6 +43,35 @@ namespace Foam
defineTypeNameAndDebug(foamPvCore, 0); defineTypeNameAndDebug(foamPvCore, 0);
} }
// * * * * * * * * * * * * * Static Member Functions * * * * * * * * * * * * //
Foam::Ostream& Foam::foamPvCore::printDataArraySelection
(
Ostream& os,
vtkDataArraySelection* select
)
{
if (!select)
{
return os;
}
const int n = select->GetNumberOfArrays();
os << n << '(';
for (int i=0; i < n; ++i)
{
if (i) os << ' ';
os << select->GetArrayName(i) << '='
<< (select->GetArraySetting(i) ? 1 : 0);
}
os << ')';
return os;
}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * // // * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
void Foam::foamPvCore::addToBlock void Foam::foamPvCore::addToBlock
@ -229,10 +258,8 @@ Foam::word Foam::foamPvCore::getFoamName(const std::string& str)
// Already checked for valid/invalid chars // Already checked for valid/invalid chars
return word(str.substr(beg, beg+end), false); return word(str.substr(beg, beg+end), false);
} }
else
{ return word::null;
return word::null;
}
} }

View File

@ -119,13 +119,51 @@ public:
setStart(startAt); setStart(startAt);
} }
//- Increment the size //- Increment the size
void operator+=(label n) void operator+=(label n)
{ {
setSize(size() + n); setSize(size() + n);
} }
//- True if the labelRange intersects any key in the Map
template<class T>
bool intersects(const Map<T>& map) const
{
for (const label idx : *this)
{
if (map.found(idx))
{
return true;
}
}
return false;
}
//- The intersection ids with keys in the Map
template<class T>
List<label> intersection(const Map<T>& map) const
{
List<label> indices(Foam::min(map.size(), this->size()));
if (indices.size())
{
label n = 0;
for (const label idx : *this)
{
if (map.found(idx))
{
indices[n++] = idx;
}
}
indices.setSize(n);
}
return indices;
}
}; // End class arrayRange }; // End class arrayRange
@ -139,6 +177,7 @@ private:
//- Disallow default bitwise assignment //- Disallow default bitwise assignment
void operator=(const foamPvCore&) = delete; void operator=(const foamPvCore&) = delete;
public: public:
//- Static data members //- Static data members
@ -146,8 +185,15 @@ public:
//- Construct null //- Construct null
foamPvCore() foamPvCore() = default;
{}
//- Print information about vtkDataArraySelection
static Ostream& printDataArraySelection
(
Ostream& os,
vtkDataArraySelection* select
);
//- Convenience method for the VTK multiblock API //- Convenience method for the VTK multiblock API

View File

@ -152,7 +152,8 @@ void Foam::foamPvCore::setSelectedArrayEntries
) )
{ {
const int n = select->GetNumberOfArrays(); const int n = select->GetNumberOfArrays();
// disable everything not explicitly enabled
// Disable everything not explicitly enabled
select->DisableAllArrays(); select->DisableAllArrays();
// Loop through entries, enabling as required // Loop through entries, enabling as required

View File

@ -29,7 +29,7 @@ Description
#ifndef foamPvFields_H #ifndef foamPvFields_H
#define foamPvFields_H #define foamPvFields_H
#include "volFields.H" #include "symmTensor.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
@ -40,28 +40,18 @@ namespace Foam
Class foamPvFields Declaration Class foamPvFields Declaration
\*---------------------------------------------------------------------------*/ \*---------------------------------------------------------------------------*/
class foamPvFields struct foamPvFields
{ {
// Private Member Functions
//- Disallow default bitwise copy construct
foamPvFields(const foamPvFields&) = delete;
//- Disallow default bitwise assignment
void operator=(const foamPvFields&) = delete;
public:
//- Remapping for some data types //- Remapping for some data types
template<class Type> template<class Type>
inline static void remapTuple(float vec[]) inline static void remapTuple(float vec[])
{} {}
};
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
}; // End class foamPvFields
// Template specialization for symmTensor // Template specialization for symmTensor
template<> template<>
inline void Foam::foamPvFields::remapTuple<Foam::symmTensor>(float vec[]) inline void Foam::foamPvFields::remapTuple<Foam::symmTensor>(float vec[])

View File

@ -4,6 +4,7 @@ EXE_INC = \
${c++LESSWARN} \ ${c++LESSWARN} \
-I$(LIB_SRC)/meshTools/lnInclude \ -I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/finiteVolume/lnInclude \ -I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/finiteArea/lnInclude \
-I$(LIB_SRC)/dynamicMesh/lnInclude \ -I$(LIB_SRC)/dynamicMesh/lnInclude \
-I$(LIB_SRC)/lagrangian/basic/lnInclude \ -I$(LIB_SRC)/lagrangian/basic/lnInclude \
-I$(LIB_SRC)/fileFormats/lnInclude \ -I$(LIB_SRC)/fileFormats/lnInclude \
@ -14,6 +15,7 @@ EXE_INC = \
-I../PVFoamReader -I../PVFoamReader
LIB_LIBS = \ LIB_LIBS = \
-lfiniteArea \
-ldynamicMesh \ -ldynamicMesh \
-lconversion \ -lconversion \
-lgenericPatchFields \ -lgenericPatchFields \

View File

@ -27,9 +27,12 @@ License
#include "vtkPVFoamReader.h" #include "vtkPVFoamReader.h"
// OpenFOAM includes // OpenFOAM includes
#include "areaFaMesh.H"
#include "faMesh.H"
#include "fvMesh.H" #include "fvMesh.H"
#include "Time.H" #include "Time.H"
#include "patchZones.H" #include "patchZones.H"
#include "IOobjectList.H"
// VTK includes // VTK includes
#include "vtkDataArraySelection.h" #include "vtkDataArraySelection.h"
@ -108,7 +111,7 @@ void Foam::vtkPVFoam::resetCounters()
// Reset array range information (ids and sizes) // Reset array range information (ids and sizes)
rangeVolume_.reset(); rangeVolume_.reset();
rangePatches_.reset(); rangePatches_.reset();
rangeLagrangian_.reset(); rangeClouds_.reset();
rangeCellZones_.reset(); rangeCellZones_.reset();
rangeFaceZones_.reset(); rangeFaceZones_.reset();
rangePointZones_.reset(); rangePointZones_.reset();
@ -131,50 +134,49 @@ bool Foam::vtkPVFoam::addOutputBlock
vtkSmartPointer<vtkMultiBlockDataSet> block; vtkSmartPointer<vtkMultiBlockDataSet> block;
int datasetNo = 0; int datasetNo = 0;
for (auto partId : selector) const List<label> partIds = selector.intersection(selectedPartIds_);
for (const auto partId : partIds)
{ {
if (selectedPartIds_.found(partId)) const auto& longName = selectedPartIds_[partId];
const word shortName = getFoamName(longName);
auto iter = cache.find(longName);
if (iter.found() && iter.object().dataset)
{ {
const auto& longName = selectedPartIds_[partId]; auto dataset = iter.object().dataset;
const word shortName = getFoamName(longName);
auto iter = cache.find(longName); if (singleDataset)
if (iter.found() && iter.object().dataset)
{ {
auto dataset = iter.object().dataset; output->SetBlock(blockNo, dataset);
output->GetMetaData(blockNo)->Set
if (singleDataset)
{
output->SetBlock(blockNo, dataset);
output->GetMetaData(blockNo)->Set
(
vtkCompositeDataSet::NAME(),
shortName.c_str()
);
++datasetNo;
break;
}
else if (datasetNo == 0)
{
block = vtkSmartPointer<vtkMultiBlockDataSet>::New();
output->SetBlock(blockNo, block);
output->GetMetaData(blockNo)->Set
(
vtkCompositeDataSet::NAME(),
selector.name()
);
}
block->SetBlock(datasetNo, dataset);
block->GetMetaData(datasetNo)->Set
( (
vtkCompositeDataSet::NAME(), vtkCompositeDataSet::NAME(),
shortName.c_str() shortName.c_str()
); );
++datasetNo; ++datasetNo;
break;
} }
else if (datasetNo == 0)
{
block = vtkSmartPointer<vtkMultiBlockDataSet>::New();
output->SetBlock(blockNo, block);
output->GetMetaData(blockNo)->Set
(
vtkCompositeDataSet::NAME(),
selector.name()
);
}
block->SetBlock(datasetNo, dataset);
block->GetMetaData(datasetNo)->Set
(
vtkCompositeDataSet::NAME(),
shortName.c_str()
);
++datasetNo;
} }
} }
@ -182,17 +184,22 @@ bool Foam::vtkPVFoam::addOutputBlock
} }
int Foam::vtkPVFoam::setTime(int nRequest, const double requestTimes[]) int Foam::vtkPVFoam::setTime(const std::vector<double>& requestTimes)
{ {
if (requestTimes.empty())
{
return 0;
}
Time& runTime = dbPtr_(); Time& runTime = dbPtr_();
// Get times list // Get times list
instantList Times = runTime.times(); instantList Times = runTime.times();
int nearestIndex = timeIndex_; int nearestIndex = timeIndex_;
for (int requestI = 0; requestI < nRequest; ++requestI) for (const double& timeValue : requestTimes)
{ {
int index = Time::findClosestTimeIndex(Times, requestTimes[requestI]); const int index = Time::findClosestTimeIndex(Times, timeValue);
if (index >= 0 && index != timeIndex_) if (index >= 0 && index != timeIndex_)
{ {
nearestIndex = index; nearestIndex = index;
@ -208,13 +215,15 @@ int Foam::vtkPVFoam::setTime(int nRequest, const double requestTimes[])
if (debug) if (debug)
{ {
Info<< "<beg> setTime("; Info<< "<beg> setTime(";
for (int requestI = 0; requestI < nRequest; ++requestI) unsigned reqi = 0;
for (const double& timeValue : requestTimes)
{ {
if (requestI) Info<< ", "; if (reqi) Info<< ", ";
Info<< requestTimes[requestI]; Info<< timeValue;
++reqi;
} }
Info<< ") - previousIndex = " << timeIndex_ Info<< ") - previousIndex = " << timeIndex_
<< ", nearestIndex = " << nearestIndex << endl; << ", nearestIndex = " << nearestIndex << nl;
} }
// See what has changed // See what has changed
@ -223,8 +232,13 @@ int Foam::vtkPVFoam::setTime(int nRequest, const double requestTimes[])
timeIndex_ = nearestIndex; timeIndex_ = nearestIndex;
runTime.setTime(Times[nearestIndex], nearestIndex); runTime.setTime(Times[nearestIndex], nearestIndex);
// When the changes, so do the fields // When mesh changes, so do fields
meshState_ = meshPtr_ ? meshPtr_->readUpdate() : polyMesh::TOPO_CHANGE; meshState_ =
(
volMeshPtr_
? volMeshPtr_->readUpdate()
: polyMesh::TOPO_CHANGE
);
reader_->UpdateProgress(0.05); reader_->UpdateProgress(0.05);
@ -237,7 +251,7 @@ int Foam::vtkPVFoam::setTime(int nRequest, const double requestTimes[])
Info<< "<end> setTime() - selectedTime=" Info<< "<end> setTime() - selectedTime="
<< Times[nearestIndex].name() << " index=" << timeIndex_ << Times[nearestIndex].name() << " index=" << timeIndex_
<< "/" << Times.size() << "/" << Times.size()
<< " meshUpdateState=" << updateStateName(meshState_) << endl; << " meshUpdateState=" << updateStateName(meshState_) << nl;
} }
return nearestIndex; return nearestIndex;
@ -260,15 +274,17 @@ Foam::vtkPVFoam::vtkPVFoam
: :
reader_(reader), reader_(reader),
dbPtr_(nullptr), dbPtr_(nullptr),
meshPtr_(nullptr), volMeshPtr_(nullptr),
areaMeshPtr_(nullptr),
meshRegion_(polyMesh::defaultRegion), meshRegion_(polyMesh::defaultRegion),
meshDir_(polyMesh::meshSubDir), meshDir_(polyMesh::meshSubDir),
timeIndex_(-1), timeIndex_(-1),
decomposePoly_(false), decomposePoly_(false),
meshState_(polyMesh::TOPO_CHANGE), meshState_(polyMesh::TOPO_CHANGE),
rangeVolume_("unzoned"), rangeVolume_("volMesh"),
rangeArea_("areaMesh"),
rangePatches_("patch"), rangePatches_("patch"),
rangeLagrangian_("lagrangian"), rangeClouds_("lagrangian"),
rangeCellZones_("cellZone"), rangeCellZones_("cellZone"),
rangeFaceZones_("faceZone"), rangeFaceZones_("faceZone"),
rangePointZones_("pointZone"), rangePointZones_("pointZone"),
@ -278,7 +294,7 @@ Foam::vtkPVFoam::vtkPVFoam
{ {
if (debug) if (debug)
{ {
Info<< "vtkPVFoam - " << FileName << endl; Info<< "vtkPVFoam - " << FileName << nl;
printMemory(); printMemory();
} }
@ -315,13 +331,13 @@ Foam::vtkPVFoam::vtkPVFoam
// could be stringent and insist the prefix match the directory name... // could be stringent and insist the prefix match the directory name...
// Note: cannot use fileName::name() due to the embedded '{}' // Note: cannot use fileName::name() due to the embedded '{}'
string caseName(fileName(FileName).lessExt()); string caseName(fileName(FileName).lessExt());
string::size_type beg = caseName.find_last_of("/{"); const auto beg = caseName.find_last_of("/{");
string::size_type end = caseName.find('}', beg); const auto end = caseName.find('}', beg);
if if
( (
beg != string::npos && caseName[beg] == '{' beg != std::string::npos && caseName[beg] == '{'
&& end != string::npos && end == caseName.size()-1 && end != std::string::npos && end == caseName.size()-1
) )
{ {
meshRegion_ = caseName.substr(beg+1, end-beg-1); meshRegion_ = caseName.substr(beg+1, end-beg-1);
@ -343,7 +359,7 @@ Foam::vtkPVFoam::vtkPVFoam
Info<< "fullCasePath=" << fullCasePath << nl Info<< "fullCasePath=" << fullCasePath << nl
<< "FOAM_CASE=" << getEnv("FOAM_CASE") << nl << "FOAM_CASE=" << getEnv("FOAM_CASE") << nl
<< "FOAM_CASENAME=" << getEnv("FOAM_CASENAME") << nl << "FOAM_CASENAME=" << getEnv("FOAM_CASENAME") << nl
<< "region=" << meshRegion_ << endl; << "region=" << meshRegion_ << nl;
} }
// Create time object // Create time object
@ -369,10 +385,11 @@ Foam::vtkPVFoam::~vtkPVFoam()
{ {
if (debug) if (debug)
{ {
Info<< "~vtkPVFoam" << endl; Info<< "~vtkPVFoam" << nl;
} }
delete meshPtr_; delete volMeshPtr_;
delete areaMeshPtr_;
} }
@ -383,64 +400,62 @@ void Foam::vtkPVFoam::updateInfo()
if (debug) if (debug)
{ {
Info<< "<beg> updateInfo" Info<< "<beg> updateInfo"
<< " [meshPtr=" << (meshPtr_ ? "set" : "nullptr") << "] timeIndex=" << " [volMeshPtr=" << (volMeshPtr_ ? "set" : "nullptr")
<< timeIndex_ << endl; << "] timeIndex="
<< timeIndex_ << nl;
} }
resetCounters(); resetCounters();
vtkDataArraySelection* partSelection = reader_->GetPartSelection(); // Part selection
// there are two ways to ensure we have the correct list of parts:
// 1. remove everything and then set particular entries 'on'
// 2. build a 'char **' list and call SetArraysWithDefault()
//
// Nr. 2 has the potential advantage of not touching the modification
// time of the vtkDataArraySelection, but the qt/paraview proxy
// layer doesn't care about that anyhow.
HashSet<string> enabled;
if (!partSelection->GetNumberOfArrays() && !meshPtr_)
{ {
// Fake enable 'internalMesh' on the first call vtkDataArraySelection* select = reader_->GetPartSelection();
enabled = { "internalMesh" };
} // There are two ways to ensure we have the correct list of parts:
else // 1. remove everything and then set particular entries 'on'
{ // 2. build a 'char **' list and call SetArraysWithDefault()
// preserve the enabled selections //
enabled = getSelectedArraySet(partSelection); // Nr. 2 has the potential advantage of not touching the modification
// time of the vtkDataArraySelection, but the qt/paraview proxy
// layer doesn't care about that anyhow.
HashSet<string> enabled;
if (!select->GetNumberOfArrays() && !volMeshPtr_)
{
// Fake enable 'internalMesh' on the first call
enabled = { "internalMesh" };
}
else
{
// Preserve the enabled selections
enabled = getSelectedArraySet(select);
}
select->RemoveAllArrays(); // Clear existing list
// Update mesh parts list - add Lagrangian at the bottom
updateInfoInternalMesh(select);
updateInfoPatches(select, enabled);
updateInfoSets(select);
updateInfoZones(select);
updateInfoAreaMesh(select);
updateInfoLagrangian(select);
setSelectedArrayEntries(select, enabled); // Adjust/restore selected
} }
// Clear current mesh parts list // Volume and area fields - includes save/restore of selected
partSelection->RemoveAllArrays(); updateInfoContinuumFields(reader_->GetVolFieldSelection());
// Update mesh parts list - add Lagrangian at the bottom // Point fields - includes save/restore of selected
updateInfoInternalMesh(partSelection); updateInfoPointFields(reader_->GetPointFieldSelection());
updateInfoPatches(partSelection, enabled);
updateInfoSets(partSelection);
updateInfoZones(partSelection);
updateInfoLagrangian(partSelection);
// Adjust/restore the enabled selections // Lagrangian fields - includes save/restore of selected
setSelectedArrayEntries(partSelection, enabled); updateInfoLagrangianFields(reader_->GetLagrangianFieldSelection());
// Update volume, point and lagrangian fields
updateInfoFields<fvPatchField, volMesh>
(
reader_->GetVolFieldSelection()
);
updateInfoFields<pointPatchField, pointMesh>
(
reader_->GetPointFieldSelection()
);
updateInfoLagrangianFields
(
reader_->GetLagrangianFieldSelection()
);
if (debug) if (debug)
{ {
Info<< "<end> updateInfo" << endl; Info<< "<end> updateInfo" << nl;
} }
} }
@ -531,26 +546,29 @@ void Foam::vtkPVFoam::Update
{ {
if (debug) if (debug)
{ {
Info<< "<beg> updateFoamMesh" << endl; Info<< "<beg> updateFoamMesh" << nl;
printMemory(); printMemory();
} }
if (!caching) if (!caching)
{ {
delete meshPtr_; delete volMeshPtr_;
meshPtr_ = nullptr; delete areaMeshPtr_;
volMeshPtr_ = nullptr;
areaMeshPtr_ = nullptr;
} }
// Check to see if the OpenFOAM mesh has been created // Check to see if the OpenFOAM mesh has been created
if (!meshPtr_) if (!volMeshPtr_)
{ {
if (debug) if (debug)
{ {
Info<< "Creating OpenFOAM mesh for region " << meshRegion_ Info<< "Creating OpenFOAM mesh for region " << meshRegion_
<< " at time=" << dbPtr_().timeName() << endl; << " at time=" << dbPtr_().timeName() << nl;
} }
meshPtr_ = new fvMesh volMeshPtr_ = new fvMesh
( (
IOobject IOobject
( (
@ -567,13 +585,27 @@ void Foam::vtkPVFoam::Update
{ {
if (debug) if (debug)
{ {
Info<< "Using existing OpenFOAM mesh" << endl; Info<< "Using existing OpenFOAM mesh" << nl;
} }
} }
if (rangeArea_.intersects(selectedPartIds_))
{
if (!areaMeshPtr_)
{
areaMeshPtr_ = new faMesh(*volMeshPtr_);
}
}
else
{
delete areaMeshPtr_;
areaMeshPtr_ = nullptr;
}
if (debug) if (debug)
{ {
Info<< "<end> updateFoamMesh" << endl; Info<< "<end> updateFoamMesh" << nl;
printMemory(); printMemory();
} }
} }
@ -600,6 +632,8 @@ void Foam::vtkPVFoam::Update
reader_->UpdateProgress(0.7); reader_->UpdateProgress(0.7);
} }
convertMeshArea();
convertMeshLagrangian(); convertMeshLagrangian();
reader_->UpdateProgress(0.8); reader_->UpdateProgress(0.8);
@ -607,8 +641,9 @@ void Foam::vtkPVFoam::Update
// Update fields // Update fields
convertVolFields(); convertVolFields();
convertPointFields(); convertPointFields();
convertLagrangianFields(); convertAreaFields();
convertLagrangianFields();
// Assemble multiblock output // Assemble multiblock output
addOutputBlock(output, cachedVtu_, rangeVolume_, true); // One dataset addOutputBlock(output, cachedVtu_, rangeVolume_, true); // One dataset
@ -619,16 +654,17 @@ void Foam::vtkPVFoam::Update
addOutputBlock(output, cachedVtu_, rangeCellSets_); addOutputBlock(output, cachedVtu_, rangeCellSets_);
addOutputBlock(output, cachedVtp_, rangeFaceSets_); addOutputBlock(output, cachedVtp_, rangeFaceSets_);
addOutputBlock(output, cachedVtp_, rangePointSets_); addOutputBlock(output, cachedVtp_, rangePointSets_);
addOutputBlock(output, cachedVtp_, rangeArea_);
addOutputBlock addOutputBlock
( (
(outputLagrangian ? outputLagrangian : output), (outputLagrangian ? outputLagrangian : output),
cachedVtp_, cachedVtp_,
rangeLagrangian_ rangeClouds_
); );
if (debug) if (debug)
{ {
Info<< "done reader part" << nl << endl; Info<< "done reader part" << nl << nl;
} }
reader_->UpdateProgress(0.95); reader_->UpdateProgress(0.95);
@ -655,8 +691,11 @@ void Foam::vtkPVFoam::UpdateFinalize()
{ {
if (!reader_->GetMeshCaching()) if (!reader_->GetMeshCaching())
{ {
delete meshPtr_; delete volMeshPtr_;
meshPtr_ = nullptr; delete areaMeshPtr_;
volMeshPtr_ = nullptr;
areaMeshPtr_ = nullptr;
} }
reader_->UpdateProgress(1.0); reader_->UpdateProgress(1.0);
@ -674,20 +713,20 @@ std::vector<double> Foam::vtkPVFoam::findTimes(const bool skipZero) const
// find the first time for which this mesh appears to exist // find the first time for which this mesh appears to exist
label begIndex = timeLst.size(); label begIndex = timeLst.size();
forAll(timeLst, timeI) forAll(timeLst, timei)
{ {
if if
( (
IOobject IOobject
( (
"points", "points",
timeLst[timeI].name(), timeLst[timei].name(),
meshDir_, meshDir_,
runTime runTime
).typeHeaderOk<pointIOField>(false, false) ).typeHeaderOk<pointIOField>(false, false)
) )
{ {
begIndex = timeI; begIndex = timei;
break; break;
} }
} }
@ -735,15 +774,15 @@ void Foam::vtkPVFoam::renderPatchNames
const bool show const bool show
) )
{ {
// always remove old actors first // Always remove old actors first
forAll(patchTextActors_, patchi) for (auto& actor : patchTextActors_)
{ {
renderer->RemoveViewProp(patchTextActors_[patchi]); renderer->RemoveViewProp(actor);
} }
patchTextActors_.clear(); patchTextActors_.clear();
if (show && meshPtr_) if (show && volMeshPtr_)
{ {
// get the display patches, strip off any prefix/suffix // get the display patches, strip off any prefix/suffix
hashedWordList selectedPatches = getSelected hashedWordList selectedPatches = getSelected
@ -757,7 +796,7 @@ void Foam::vtkPVFoam::renderPatchNames
return; return;
} }
const polyBoundaryMesh& pbMesh = meshPtr_->boundaryMesh(); const polyBoundaryMesh& pbMesh = volMeshPtr_->boundaryMesh();
// Find the total number of zones // Find the total number of zones
// Each zone will take the patch name // Each zone will take the patch name
@ -784,19 +823,19 @@ void Foam::vtkPVFoam::renderPatchNames
boolList featEdge(pp.nEdges(), false); boolList featEdge(pp.nEdges(), false);
forAll(edgeFaces, edgeI) forAll(edgeFaces, edgei)
{ {
const labelList& eFaces = edgeFaces[edgeI]; const labelList& eFaces = edgeFaces[edgei];
if (eFaces.size() == 1) if (eFaces.size() == 1)
{ {
// Note: could also do ones with > 2 faces but this gives // Note: could also do ones with > 2 faces but this gives
// too many zones for baffles // too many zones for baffles
featEdge[edgeI] = true; featEdge[edgei] = true;
} }
else if (mag(n[eFaces[0]] & n[eFaces[1]]) < 0.5) else if (mag(n[eFaces[0]] & n[eFaces[1]]) < 0.5)
{ {
featEdge[edgeI] = true; featEdge[edgei] = true;
} }
} }
@ -808,7 +847,7 @@ void Foam::vtkPVFoam::renderPatchNames
labelList zoneNFaces(pZones.nZones(), 0); labelList zoneNFaces(pZones.nZones(), 0);
// Create storage for additional zone centres // Create storage for additional zone centres
forAll(zoneNFaces, zoneI) forAll(zoneNFaces, zonei)
{ {
zoneCentre[patchi].append(Zero); zoneCentre[patchi].append(Zero);
} }
@ -816,14 +855,14 @@ void Foam::vtkPVFoam::renderPatchNames
// Do averaging per individual zone // Do averaging per individual zone
forAll(pp, facei) forAll(pp, facei)
{ {
label zoneI = pZones[facei]; const label zonei = pZones[facei];
zoneCentre[patchi][zoneI] += pp[facei].centre(pp.points()); zoneCentre[patchi][zonei] += pp[facei].centre(pp.points());
zoneNFaces[zoneI]++; zoneNFaces[zonei]++;
} }
forAll(zoneCentre[patchi], zoneI) forAll(zoneCentre[patchi], zonei)
{ {
zoneCentre[patchi][zoneI] /= zoneNFaces[zoneI]; zoneCentre[patchi][zonei] /= zoneNFaces[zonei];
} }
} }
@ -842,7 +881,7 @@ void Foam::vtkPVFoam::renderPatchNames
if (debug) if (debug)
{ {
Info<< "displayed zone centres = " << displayZoneI << nl Info<< "displayed zone centres = " << displayZoneI << nl
<< "zones per patch = " << nZones << endl; << "zones per patch = " << nZones << nl;
} }
// Set the size of the patch labels to max number of zones // Set the size of the patch labels to max number of zones
@ -850,7 +889,7 @@ void Foam::vtkPVFoam::renderPatchNames
if (debug) if (debug)
{ {
Info<< "constructing patch labels" << endl; Info<< "constructing patch labels" << nl;
} }
// Actor index // Actor index
@ -875,7 +914,7 @@ void Foam::vtkPVFoam::renderPatchNames
{ {
Info<< "patch name = " << pp.name() << nl Info<< "patch name = " << pp.name() << nl
<< "anchor = " << zoneCentre[patchi][globalZoneI] << nl << "anchor = " << zoneCentre[patchi][globalZoneI] << nl
<< "globalZoneI = " << globalZoneI << endl; << "globalZoneI = " << globalZoneI << nl;
} }
// Into a list for later removal // Into a list for later removal
@ -892,9 +931,9 @@ void Foam::vtkPVFoam::renderPatchNames
} }
// Add text to each renderer // Add text to each renderer
forAll(patchTextActors_, actori) for (auto& actor : patchTextActors_)
{ {
renderer->AddViewProp(patchTextActors_[actori]); renderer->AddViewProp(actor);
} }
} }
@ -902,10 +941,10 @@ void Foam::vtkPVFoam::renderPatchNames
void Foam::vtkPVFoam::PrintSelf(ostream& os, vtkIndent indent) const void Foam::vtkPVFoam::PrintSelf(ostream& os, vtkIndent indent) const
{ {
os << indent << "Number of nodes: " os << indent << "Number of nodes: "
<< (meshPtr_ ? meshPtr_->nPoints() : 0) << "\n"; << (volMeshPtr_ ? volMeshPtr_->nPoints() : 0) << "\n";
os << indent << "Number of cells: " os << indent << "Number of cells: "
<< (meshPtr_ ? meshPtr_->nCells() : 0) << "\n"; << (volMeshPtr_ ? volMeshPtr_->nCells() : 0) << "\n";
os << indent << "Number of available time steps: " os << indent << "Number of available time steps: "
<< (dbPtr_.valid() ? dbPtr_().times().size() : 0) << "\n"; << (dbPtr_.valid() ? dbPtr_().times().size() : 0) << "\n";
@ -918,8 +957,8 @@ void Foam::vtkPVFoam::printInfo() const
{ {
std::cout std::cout
<< "Region: " << meshRegion_ << "\n" << "Region: " << meshRegion_ << "\n"
<< "nPoints: " << (meshPtr_ ? meshPtr_->nPoints() : 0) << "\n" << "nPoints: " << (volMeshPtr_ ? volMeshPtr_->nPoints() : 0) << "\n"
<< "nCells: " << (meshPtr_ ? meshPtr_->nCells() : 0) << "\n" << "nCells: " << (volMeshPtr_ ? volMeshPtr_->nCells() : 0) << "\n"
<< "nTimes: " << "nTimes: "
<< (dbPtr_.valid() ? dbPtr_().times().size() : 0) << "\n"; << (dbPtr_.valid() ? dbPtr_().times().size() : 0) << "\n";

Some files were not shown because too many files have changed in this diff Show More