Merge remote-tracking branch 'origin/develop' into feature-shortestPathSet

This commit is contained in:
mattijs
2018-03-15 10:03:22 +00:00
4030 changed files with 176487 additions and 63227 deletions

6
.gitmodules vendored Normal file
View File

@ -0,0 +1,6 @@
[submodule "cfmesh"]
path = modules/cfmesh
url = https://develop.openfoam.com/Community/integration-cfmesh.git
[submodule "avalanche"]
path = modules/avalanche
url = https://develop.openfoam.com/Community/avalanche.git

View File

@ -43,6 +43,15 @@ echo "Compile OpenFOAM applications"
echo
applications/Allwmake $targetType $*
# Additional components/modules
if [ -d "$WM_PROJECT_DIR/modules" ]
then
echo "========================================"
echo "Compile OpenFOAM modules"
echo
(cd $WM_PROJECT_DIR/modules 2>/dev/null && wmake -all)
fi
# Some summary information
echo
date "+%Y-%m-%d %H:%M:%S %z" 2>/dev/null || echo "date is unknown"

View File

@ -1,4 +1,4 @@
OpenFOAM-1706
OpenFOAM-1712
==================
Known Build Issues
==================
@ -75,6 +75,33 @@ If your system compiler is too old to build the minimum required gcc or
clang/llvm, it is just simply too old.
---------------------------------
ThirdParty clang without gmp/mpfr
---------------------------------
If using ThirdParty clang without gmp/mpfr, the ThirdParty makeCGAL
script will need to be run manually and specify that there is no
gmp/mpfr. Eg,
cd $WM_THIRD_PARTY_DIR
./makeCGAL gmp-none mpfr-none
Subequent compilation with Allwmake will now run largely without any
problems, except that the components linking against CGAL
(foamyMesh and surfaceBooleanFeatures) will also try to link against
a nonexistent mpfr library. As a workaround, the link-dependency can
be removed in wmake/rules/General/CGAL :
CGAL_LIBS = \
-L$(BOOST_ARCH_PATH)/lib \
-L$(BOOST_ARCH_PATH)/lib$(WM_COMPILER_LIB_ARCH) \
-L$(CGAL_ARCH_PATH)/lib \
-L$(CGAL_ARCH_PATH)/lib$(WM_COMPILER_LIB_ARCH) \
-lCGAL
This is a temporary inconvenience until a more robust solution is found.
-------------------------
Building with spack
-------------------------

View File

@ -1,7 +1,8 @@
# About OpenFOAM
OpenFOAM is a free, open source CFD software [released and developed primarily by OpenCFD Ltd](http://www.openfoam.com) since 2004. It has a large user base across most areas of engineering and science, from both commercial and academic organisations. OpenFOAM has an extensive range of features to solve anything from complex fluid flows involving chemical reactions, turbulence and heat transfer, to acoustics, solid mechanics and electromagnetics. [More...](http://www.openfoam.com/documentation)
OpenFOAM+ is professionally released every six months to include customer sponsored developments and contributions from the community, including the OpenFOAM Foundation. Releases designated OpenFOAM+ contain several man years of client-sponsored developments of which much has been transferred to, but not released in the OpenFOAM Foundation branch.
OpenFOAM is professionally released every six months to include customer sponsored developments and contributions from the community - individual and group contributors, fork re-integrations including from FOAM-extend and OpenFOAM Foundation Ltd - in this Official Release sanctioned by the OpenFOAM Worldwide Trademark Owner aiming towards one OpenFOAM.
# Copyright
@ -9,7 +10,7 @@ OpenFOAM is free software: you can redistribute it and/or modify it under the te
# OpenFOAM Trademark
OpenCFD Ltd grants use of the OpenFOAM trademark by Third Parties on a licence basis. ESI Group and the OpenFOAM Foundation Ltd are currently permitted to use the Name and agreed Domain Name. For information on trademark use, please refer to the [trademark policy guidelines](http://www.openfoam.com/legal/trademark-policy.php).
OpenCFD Ltd grants use of its OpenFOAM trademark by Third Parties on a licence basis. ESI Group and OpenFOAM Foundation Ltd are currently permitted to use the Name and agreed Domain Name. For information on trademark use, please refer to the [trademark policy guidelines](http://www.openfoam.com/legal/trademark-policy.php).
Please [contact OpenCFD](http://www.openfoam.com/contact) if you have any questions on the use of the OpenFOAM trademark.

View File

@ -28,7 +28,7 @@ surfaceScalarField phi
fvc::flux(U)
);
if (args.optionFound("initialiseUBCs"))
if (args.found("initialiseUBCs"))
{
U.correctBoundaryConditions();
phi = fvc::flux(U);
@ -41,7 +41,7 @@ if (args.optionFound("initialiseUBCs"))
word pName("p");
// Update name of the pressure field from the command-line option
args.optionReadIfPresent("pName", pName);
args.readIfPresent("pName", pName);
// Infer the pressure BCs from the velocity
wordList pBCTypes

View File

@ -0,0 +1,3 @@
potentialFoam.C
EXE = $(FOAM_APPBIN)/overPotentialFoam

View File

@ -0,0 +1,12 @@
EXE_INC = \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/dynamicFvMesh/lnInclude \
-I$(LIB_SRC)/overset/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/sampling/lnInclude
EXE_LIBS = \
-lfiniteVolume \
-lmeshTools \
-lsampling \
-loverset

View File

@ -0,0 +1,9 @@
const dictionary& potentialFlow
(
mesh.solutionDict().subDict("potentialFlow")
);
const int nNonOrthCorr
(
potentialFlow.lookupOrDefault<int>("nNonOrthogonalCorrectors", 0)
);

View File

@ -0,0 +1,146 @@
Info<< "Reading velocity field U\n" << endl;
volVectorField U
(
IOobject
(
"U",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
// Initialise the velocity internal field to zero
U = dimensionedVector("0", U.dimensions(), Zero);
surfaceScalarField phi
(
IOobject
(
"phi",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
fvc::flux(U)
);
if (args.found("initialiseUBCs"))
{
U.correctBoundaryConditions();
phi = fvc::flux(U);
}
// Construct a pressure field
// If it is available read it otherwise construct from the velocity BCs
// converting fixed-value BCs to zero-gradient and vice versa.
word pName("p");
// Update name of the pressure field from the command-line option
args.readIfPresent("pName", pName);
// Infer the pressure BCs from the velocity
wordList pBCTypes
(
U.boundaryField().size(),
fixedValueFvPatchScalarField::typeName
);
forAll(U.boundaryField(), patchi)
{
if (U.boundaryField()[patchi].fixesValue())
{
pBCTypes[patchi] = zeroGradientFvPatchScalarField::typeName;
}
}
// Note that registerObject is false for the pressure field. The pressure
// field in this solver doesn't have a physical value during the solution.
// It shouldn't be looked up and used by sub models or boundary conditions.
Info<< "Constructing pressure field " << pName << nl << endl;
volScalarField p
(
IOobject
(
pName,
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::NO_WRITE,
false
),
mesh,
dimensionedScalar(pName, sqr(dimVelocity), 0),
pBCTypes
);
// Infer the velocity potential BCs from the pressure
wordList PhiBCTypes
(
p.boundaryField().size(),
zeroGradientFvPatchScalarField::typeName
);
forAll(p.boundaryField(), patchi)
{
if (p.boundaryField()[patchi].fixesValue())
{
PhiBCTypes[patchi] = fixedValueFvPatchScalarField::typeName;
}
}
Info<< "Constructing velocity potential field Phi\n" << endl;
volScalarField Phi
(
IOobject
(
"Phi",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::NO_WRITE
),
mesh,
dimensionedScalar("Phi", dimLength*dimVelocity, 0),
PhiBCTypes
);
label PhiRefCell = 0;
scalar PhiRefValue = 0;
setRefCell
(
Phi,
potentialFlow.dict(),
PhiRefCell,
PhiRefValue
);
mesh.setFluxRequired(Phi.name());
#include "createMRF.H"
// Add overset specific interpolations
{
dictionary oversetDict;
oversetDict.add("Phi", true);
oversetDict.add("U", true);
const_cast<dictionary&>
(
mesh.schemesDict()
).add
(
"oversetInterpolationRequired",
oversetDict,
true
);
}
// Mask field for zeroing out contributions on hole cells
#include "createCellMask.H"
// Create bool field with interpolated cells
#include "createInterpolatedCells.H"

View File

@ -0,0 +1,260 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2017 OpenCFD Ltd
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
potentialFoam
Group
grpBasicSolvers
Description
Potential flow solver which solves for the velocity potential, to
calculate the flux-field, from which the velocity field is obtained by
reconstructing the flux.
\heading Solver details
The potential flow solution is typically employed to generate initial fields
for full Navier-Stokes codes. The flow is evolved using the equation:
\f[
\laplacian \Phi = \div(\vec{U})
\f]
Where:
\vartable
\Phi | Velocity potential [m2/s]
\vec{U} | Velocity [m/s]
\endvartable
The corresponding pressure field could be calculated from the divergence
of the Euler equation:
\f[
\laplacian p + \div(\div(\vec{U}\otimes\vec{U})) = 0
\f]
but this generates excessive pressure variation in regions of large
velocity gradient normal to the flow direction. A better option is to
calculate the pressure field corresponding to velocity variation along the
stream-lines:
\f[
\laplacian p + \div(\vec{F}\cdot\div(\vec{U}\otimes\vec{U})) = 0
\f]
where the flow direction tensor \f$\vec{F}\f$ is obtained from
\f[
\vec{F} = \hat{\vec{U}}\otimes\hat{\vec{U}}
\f]
\heading Required fields
\plaintable
U | Velocity [m/s]
\endplaintable
\heading Optional fields
\plaintable
p | Kinematic pressure [m2/s2]
Phi | Velocity potential [m2/s]
| Generated from p (if present) or U if not present
\endplaintable
\heading Options
\plaintable
-writep | write the Euler pressure
-writePhi | Write the final velocity potential
-initialiseUBCs | Update the velocity boundaries before solving for Phi
\endplaintable
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "pisoControl.H"
#include "dynamicFvMesh.H"
#include "cellCellStencilObject.H"
#include "localMin.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
argList::addOption
(
"pName",
"pName",
"Name of the pressure field"
);
argList::addBoolOption
(
"initialiseUBCs",
"Initialise U boundary conditions"
);
argList::addBoolOption
(
"writePhi",
"Write the final velocity potential field"
);
argList::addBoolOption
(
"writep",
"Calculate and write the Euler pressure field"
);
argList::addBoolOption
(
"withFunctionObjects",
"execute functionObjects"
);
#include "setRootCase.H"
#include "createTime.H"
#include "createNamedDynamicFvMesh.H"
pisoControl potentialFlow(mesh, "potentialFlow");
#include "createFields.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< nl << "Calculating potential flow" << endl;
mesh.update();
surfaceScalarField faceMask(localMin<scalar>(mesh).interpolate(cellMask));
// Since solver contains no time loop it would never execute
// function objects so do it ourselves
runTime.functionObjects().start();
MRF.makeRelative(phi);
adjustPhi(phi, U, p);
// Non-orthogonal velocity potential corrector loop
while (potentialFlow.correct())
{
phi = fvc::flux(U);
while (potentialFlow.correctNonOrthogonal())
{
fvScalarMatrix PhiEqn
(
fvm::laplacian(faceMask, Phi)
==
fvc::div(phi)
);
PhiEqn.setReference(PhiRefCell, PhiRefValue);
PhiEqn.solve();
if (potentialFlow.finalNonOrthogonalIter())
{
phi -= PhiEqn.flux();
}
}
MRF.makeAbsolute(phi);
Info<< "Continuity error = "
<< mag(fvc::div(phi))().weightedAverage(mesh.V()).value()
<< endl;
U = fvc::reconstruct(phi);
U.correctBoundaryConditions();
Info<< "Interpolated velocity error = "
<< (sqrt(sum(sqr(fvc::flux(U) - phi)))/sum(mesh.magSf())).value()
<< endl;
}
// Write U and phi
U.write();
phi.write();
// Optionally write Phi
if (args.found("writePhi"))
{
Phi.write();
}
// Calculate the pressure field from the Euler equation
if (args.found("writep"))
{
Info<< nl << "Calculating approximate pressure field" << endl;
label pRefCell = 0;
scalar pRefValue = 0.0;
setRefCell
(
p,
potentialFlow.dict(),
pRefCell,
pRefValue
);
// Calculate the flow-direction filter tensor
volScalarField magSqrU(magSqr(U));
volSymmTensorField F(sqr(U)/(magSqrU + SMALL*average(magSqrU)));
// Calculate the divergence of the flow-direction filtered div(U*U)
// Filtering with the flow-direction generates a more reasonable
// pressure distribution in regions of high velocity gradient in the
// direction of the flow
volScalarField divDivUU
(
fvc::div
(
F & fvc::div(phi, U),
"div(div(phi,U))"
)
);
// Solve a Poisson equation for the approximate pressure
while (potentialFlow.correctNonOrthogonal())
{
fvScalarMatrix pEqn
(
fvm::laplacian(p) + divDivUU
);
pEqn.setReference(pRefCell, pRefValue);
pEqn.solve();
}
p.write();
}
runTime.functionObjects().end();
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //

View File

@ -181,13 +181,13 @@ int main(int argc, char *argv[])
phi.write();
// Optionally write Phi
if (args.optionFound("writePhi"))
if (args.found("writePhi"))
{
Phi.write();
}
// Calculate the pressure field from the Euler equation
if (args.optionFound("writep"))
if (args.found("writep"))
{
Info<< nl << "Calculating approximate pressure field" << endl;

View File

@ -165,7 +165,7 @@ IOdictionary PDRProperties
autoPtr<PDRDragModel> drag = PDRDragModel::New
(
PDRProperties,
turbulence,
*turbulence,
rho,
U,
phi
@ -176,7 +176,7 @@ autoPtr<XiModel> flameWrinkling = XiModel::New
(
PDRProperties,
thermo,
turbulence,
*turbulence,
Su,
rho,
b,

View File

@ -42,7 +42,7 @@ Description
#include "OFstream.H"
#include "thermoPhysicsTypes.H"
#include "basicMultiComponentMixture.H"
#include "cellModeller.H"
#include "cellModel.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

View File

@ -1,8 +1,5 @@
Info<< "Constructing single cell mesh" << nl << endl;
labelList owner(6, label(0));
labelList neighbour(0);
pointField points(8);
points[0] = vector(0, 0, 0);
points[1] = vector(1, 0, 0);
@ -13,8 +10,7 @@ points[5] = vector(1, 0, 1);
points[6] = vector(1, 1, 1);
points[7] = vector(0, 1, 1);
const cellModel& hexa = *(cellModeller::lookup("hex"));
faceList faces = hexa.modelFaces();
faceList faces = cellModel::ref(cellModel::HEX).modelFaces();
fvMesh mesh
(
@ -25,10 +21,10 @@ fvMesh mesh
runTime,
IOobject::READ_IF_PRESENT
),
xferMove<Field<vector>>(points),
faces.xfer(),
owner.xfer(),
neighbour.xfer()
std::move(points),
std::move(faces),
labelList(6, Zero), // owner
labelList() // neighbour
);
List<polyPatch*> patches(1);

View File

@ -209,16 +209,14 @@ void Foam::smoluchowskiJumpTFvPatchScalarField::write(Ostream& os) const
{
fvPatchScalarField::write(os);
writeEntryIfDifferent<word>(os, "U", "U", UName_);
writeEntryIfDifferent<word>(os, "rho", "rho", rhoName_);
writeEntryIfDifferent<word>(os, "psi", "thermo:psi", psiName_);
writeEntryIfDifferent<word>(os, "mu", "thermo:mu", muName_);
os.writeEntryIfDifferent<word>("U", "U", UName_);
os.writeEntryIfDifferent<word>("rho", "rho", rhoName_);
os.writeEntryIfDifferent<word>("psi", "thermo:psi", psiName_);
os.writeEntryIfDifferent<word>("mu", "thermo:mu", muName_);
os.writeKeyword("accommodationCoeff")
<< accommodationCoeff_ << token::END_STATEMENT << nl;
os.writeEntry("accommodationCoeff", accommodationCoeff_);
Twall_.writeEntry("Twall", os);
os.writeKeyword("gamma")
<< gamma_ << token::END_STATEMENT << nl;
os.writeEntry("gamma", gamma_);
writeEntry("value", os);
}

View File

@ -32,8 +32,8 @@ SourceFiles
\*---------------------------------------------------------------------------*/
#ifndef smoluchowskiJumpTFvPatchScalarFields_H
#define smoluchowskiJumpTFvPatchScalarFields_H
#ifndef smoluchowskiJumpTFvPatchScalarField_H
#define smoluchowskiJumpTFvPatchScalarField_H
#include "mixedFvPatchFields.H"
@ -43,7 +43,7 @@ namespace Foam
{
/*---------------------------------------------------------------------------*\
Class smoluchowskiJumpTFvPatch Declaration
Class smoluchowskiJumpTFvPatchScalarField Declaration
\*---------------------------------------------------------------------------*/
class smoluchowskiJumpTFvPatchScalarField
@ -74,6 +74,7 @@ class smoluchowskiJumpTFvPatchScalarField
//- Heat capacity ratio (default 1.4)
scalar gamma_;
public:
//- Runtime type information

View File

@ -200,18 +200,16 @@ void Foam::maxwellSlipUFvPatchVectorField::updateCoeffs()
void Foam::maxwellSlipUFvPatchVectorField::write(Ostream& os) const
{
fvPatchVectorField::write(os);
writeEntryIfDifferent<word>(os, "T", "T", TName_);
writeEntryIfDifferent<word>(os, "rho", "rho", rhoName_);
writeEntryIfDifferent<word>(os, "psi", "thermo:psi", psiName_);
writeEntryIfDifferent<word>(os, "mu", "thermo:mu", muName_);
writeEntryIfDifferent<word>(os, "tauMC", "tauMC", tauMCName_);
os.writeEntryIfDifferent<word>("T", "T", TName_);
os.writeEntryIfDifferent<word>("rho", "rho", rhoName_);
os.writeEntryIfDifferent<word>("psi", "thermo:psi", psiName_);
os.writeEntryIfDifferent<word>("mu", "thermo:mu", muName_);
os.writeEntryIfDifferent<word>("tauMC", "tauMC", tauMCName_);
os.writeKeyword("accommodationCoeff")
<< accommodationCoeff_ << token::END_STATEMENT << nl;
os.writeEntry("accommodationCoeff", accommodationCoeff_);
Uwall_.writeEntry("Uwall", os);
os.writeKeyword("thermalCreep")
<< thermalCreep_ << token::END_STATEMENT << nl;
os.writeKeyword("curvature") << curvature_ << token::END_STATEMENT << nl;
os.writeEntry("thermalCreep", thermalCreep_);
os.writeEntry("curvature", curvature_);
refValue().writeEntry("refValue", os);
valueFraction().writeEntry("valueFraction", os);

View File

@ -117,8 +117,8 @@ void Foam::fixedRhoFvPatchScalarField::write(Ostream& os) const
{
fvPatchScalarField::write(os);
writeEntryIfDifferent<word>(os, "p", "p", this->pName_);
writeEntryIfDifferent<word>(os, "psi", "thermo:psi", psiName_);
os.writeEntryIfDifferent<word>("p", "p", pName_);
os.writeEntryIfDifferent<word>("psi", "thermo:psi", psiName_);
writeEntry("value", os);
}

View File

@ -113,6 +113,9 @@ int main(int argc, char *argv[])
phiv_pos -= mesh.phi();
phiv_neg -= mesh.phi();
}
// Note: extracted out the orientation so becomes unoriented
phiv_pos.setOriented(false);
phiv_neg.setOriented(false);
volScalarField c("c", sqrt(thermo.Cp()/thermo.Cv()*rPsi));
surfaceScalarField cSf_pos
@ -120,14 +123,11 @@ int main(int argc, char *argv[])
"cSf_pos",
interpolate(c, pos, T.name())*mesh.magSf()
);
cSf_pos.setOriented();
surfaceScalarField cSf_neg
(
"cSf_neg",
interpolate(c, neg, T.name())*mesh.magSf()
);
cSf_neg.setOriented();
surfaceScalarField ap
(
@ -168,11 +168,12 @@ int main(int argc, char *argv[])
phi = aphiv_pos*rho_pos + aphiv_neg*rho_neg;
surfaceVectorField phiUp
(
(aphiv_pos*rhoU_pos + aphiv_neg*rhoU_neg)
+ (a_pos*p_pos + a_neg*p_neg)*mesh.Sf()
);
surfaceVectorField phiU(aphiv_pos*rhoU_pos + aphiv_neg*rhoU_neg);
// Note: reassembled orientation from the pos and neg parts so becomes
// oriented
phiU.setOriented(true);
surfaceVectorField phiUp(phiU + (a_pos*p_pos + a_neg*p_neg)*mesh.Sf());
surfaceScalarField phiEp
(
@ -185,7 +186,10 @@ int main(int argc, char *argv[])
// Make flux for pressure-work absolute
if (mesh.moving())
{
phiEp += mesh.phi()*(a_pos*p_pos + a_neg*p_neg);
surfaceScalarField phia(a_pos*p_pos + a_neg*p_neg);
phia.setOriented(true);
phiEp += mesh.phi()*phia;
}
volScalarField muEff("muEff", turbulence->muEff());

View File

@ -93,7 +93,10 @@ int main(int argc, char *argv[])
surfaceScalarField p_neg("p_neg", rho_neg*rPsi_neg);
surfaceScalarField phiv_pos("phiv_pos", U_pos & mesh.Sf());
// Note: extracted out the orientation so becomes unoriented
phiv_pos.setOriented(false);
surfaceScalarField phiv_neg("phiv_neg", U_neg & mesh.Sf());
phiv_neg.setOriented(false);
volScalarField c("c", sqrt(thermo.Cp()/thermo.Cv()*rPsi));
surfaceScalarField cSf_pos
@ -101,20 +104,19 @@ int main(int argc, char *argv[])
"cSf_pos",
interpolate(c, pos, T.name())*mesh.magSf()
);
cSf_pos.setOriented();
surfaceScalarField cSf_neg
(
"cSf_neg",
interpolate(c, neg, T.name())*mesh.magSf()
);
cSf_neg.setOriented();
surfaceScalarField ap
(
"ap",
max(max(phiv_pos + cSf_pos, phiv_neg + cSf_neg), v_zero)
);
surfaceScalarField am
(
"am",
@ -163,11 +165,12 @@ int main(int argc, char *argv[])
phi = aphiv_pos*rho_pos + aphiv_neg*rho_neg;
surfaceVectorField phiUp
(
(aphiv_pos*rhoU_pos + aphiv_neg*rhoU_neg)
+ (a_pos*p_pos + a_neg*p_neg)*mesh.Sf()
);
surfaceVectorField phiU(aphiv_pos*rhoU_pos + aphiv_neg*rhoU_neg);
// Note: reassembled orientation from the pos and neg parts so becomes
// oriented
phiU.setOriented(true);
surfaceVectorField phiUp(phiU + (a_pos*p_pos + a_neg*p_neg)*mesh.Sf());
surfaceScalarField phiEp
(

View File

@ -61,18 +61,6 @@ dimensionedScalar rhoMin
)
);
Info<< "Creating turbulence model\n" << endl;
autoPtr<compressible::turbulenceModel> turbulence
(
compressible::turbulenceModel::New
(
rho,
U,
phi,
thermo
)
);
mesh.setFluxRequired(p.name());
Info<< "Creating field dpdt\n" << endl;
@ -115,3 +103,15 @@ volScalarField K("K", 0.5*magSqr(U));
// Mask field for zeroing out contributions on hole cells
#include "createCellMask.H"
Info<< "Creating turbulence model\n" << endl;
autoPtr<compressible::turbulenceModel> turbulence
(
compressible::turbulenceModel::New
(
rho,
U,
phi,
thermo
)
);

View File

@ -7,8 +7,8 @@ surfaceScalarField faceMask(localMin<scalar>(mesh).interpolate(cellMask));
volScalarField rAU(1.0/UEqn.A());
surfaceScalarField rhorAUf("rhorAUf", faceMask*fvc::interpolate(rho*rAU));
volVectorField HbyA("HbyA", constrainHbyA(rAU*UEqn.H(), U, p));
//mesh.interpolate(HbyA);
volVectorField HbyA("HbyA", U);
HbyA = constrainHbyA(cellMask*rAU*UEqn.H(), U, p);
if (pimple.nCorrPISO() <= 1)
{

View File

@ -0,0 +1,3 @@
rhoSimpleFoam.C
EXE = $(FOAM_APPBIN)/overRhoSimpleFoam

View File

@ -0,0 +1,27 @@
EXE_INC = \
-I.. \
-I$(LIB_SRC)/transportModels/compressible/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/basic/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/turbulenceModels/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/compressible/lnInclude \
-I$(LIB_SRC)/finiteVolume/cfdTools \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/sampling/lnInclude \
-I$(LIB_SRC)/dynamicFvMesh/lnInclude \
-I$(LIB_SRC)/dynamicMesh/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/overset/lnInclude
EXE_LIBS = \
-lcompressibleTransportModels \
-lfluidThermophysicalModels \
-lspecie \
-lturbulenceModels \
-lcompressibleTurbulenceModels \
-lfiniteVolume \
-lsampling \
-lmeshTools \
-lfvOptions \
-loverset \
-ldynamicFvMesh \
-ltopoChangerFvMesh

View File

@ -0,0 +1,23 @@
// Solve the Momentum equation
MRF.correctBoundaryVelocity(U);
tmp<fvVectorMatrix> tUEqn
(
fvm::div(phi, U)
+ MRF.DDt(rho, U)
+ turbulence->divDevRhoReff(U)
==
fvOptions(rho, U)
);
fvVectorMatrix& UEqn = tUEqn.ref();
UEqn.relax();
fvOptions.constrain(UEqn);
if (simple.momentumPredictor())
{
solve(UEqn == -cellMask*fvc::grad(p));
}
fvOptions.correct(U);

View File

@ -0,0 +1 @@
const volScalarField& psi = thermo.psi();

View File

@ -0,0 +1,91 @@
Info<< "Reading thermophysical properties\n" << endl;
autoPtr<fluidThermo> pThermo
(
fluidThermo::New(mesh)
);
fluidThermo& thermo = pThermo();
thermo.validate(args.executable(), "h", "e");
volScalarField& p = thermo.p();
volScalarField rho
(
IOobject
(
"rho",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
thermo.rho()
);
Info<< "Reading field U\n" << endl;
volVectorField U
(
IOobject
(
"U",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
#include "compressibleCreatePhi.H"
pressureControl pressureControl(p, rho, simple.dict());
mesh.setFluxRequired(p.name());
Info<< "Creating turbulence model\n" << endl;
autoPtr<compressible::turbulenceModel> turbulence
(
compressible::turbulenceModel::New
(
rho,
U,
phi,
thermo
)
);
dimensionedScalar initialMass = fvc::domainIntegrate(rho);
#include "createMRF.H"
//- Overset specific
// Add solver-specific interpolations
{
dictionary oversetDict;
oversetDict.add("U", true);
oversetDict.add("p", true);
oversetDict.add("HbyA", true);
oversetDict.add("grad(p)", true);
oversetDict.add("rho", true);
const_cast<dictionary&>
(
mesh.schemesDict()
).add
(
"oversetInterpolationRequired",
oversetDict,
true
);
}
// Mask field for zeroing out contributions on hole cells
#include "createCellMask.H"
#include "createInterpolatedCells.H"
bool adjustFringe
(
simple.dict().lookupOrDefault("oversetAdjustPhi", false)
);

View File

@ -0,0 +1,22 @@
Info<< "Create dynamic mesh for time = "
<< runTime.timeName() << nl << endl;
autoPtr<dynamicFvMesh> meshPtr
(
dynamicFvMesh::New
(
IOobject
(
dynamicFvMesh::defaultRegion,
runTime.timeName(),
runTime,
IOobject::MUST_READ
)
)
);
dynamicFvMesh& mesh = meshPtr();
// Calculate initial mesh-to-mesh mapping. Note that this should be
// done under the hood, e.g. as a MeshObject
mesh.update();

View File

@ -0,0 +1,123 @@
{
surfaceScalarField faceMask(localMin<scalar>(mesh).interpolate(cellMask));
volScalarField rAU(1.0/UEqn.A());
surfaceScalarField rhorAUf("rhorAUf", faceMask*fvc::interpolate(rho*rAU));
volVectorField HbyA("HbyA", U);
HbyA = constrainHbyA(cellMask*rAU*UEqn.H(), U, p);
tUEqn.clear();
bool closedVolume = false;
surfaceScalarField phiHbyA("phiHbyA", fvc::interpolate(rho)*fvc::flux(HbyA));
MRF.makeRelative(fvc::interpolate(rho), phiHbyA);
// Update the pressure BCs to ensure flux consistency
constrainPressure(p, rho, U, phiHbyA, rhorAUf, MRF);
if (simple.transonic())
{
surfaceScalarField phid
(
"phid",
(fvc::interpolate(psi)/fvc::interpolate(rho))*phiHbyA
);
phiHbyA -= fvc::interpolate(psi*p)*phiHbyA/fvc::interpolate(rho);
while (simple.correctNonOrthogonal())
{
fvScalarMatrix pEqn
(
fvc::div(phiHbyA)
+ fvm::div(phid, p)
- fvm::laplacian(rhorAUf, p)
==
fvOptions(psi, p, rho.name())
);
// Relax the pressure equation to ensure diagonal-dominance
pEqn.relax();
pEqn.setReference
(
pressureControl.refCell(),
pressureControl.refValue()
);
pEqn.solve();
if (simple.finalNonOrthogonalIter())
{
phi = phiHbyA + pEqn.flux();
}
}
}
else
{
closedVolume = adjustPhi(phiHbyA, U, p);
if (adjustFringe)
{
oversetAdjustPhi(phiHbyA, U);
}
while (simple.correctNonOrthogonal())
{
fvScalarMatrix pEqn
(
fvc::div(phiHbyA)
- fvm::laplacian(rhorAUf, p)
==
fvOptions(psi, p, rho.name())
);
pEqn.setReference
(
pressureControl.refCell(),
pressureControl.refValue()
);
pEqn.solve();
if (simple.finalNonOrthogonalIter())
{
phi = phiHbyA + pEqn.flux();
}
}
}
#include "incompressible/continuityErrs.H"
// Explicitly relax pressure for momentum corrector
p.relax();
volVectorField gradP(fvc::grad(p));
U = HbyA - rAU*cellMask*gradP;
U.correctBoundaryConditions();
fvOptions.correct(U);
bool pLimited = pressureControl.limit(p);
// For closed-volume cases adjust the pressure and density levels
// to obey overall mass continuity
if (closedVolume)
{
p += (initialMass - fvc::domainIntegrate(psi*p))
/fvc::domainIntegrate(psi);
}
if (pLimited || closedVolume)
{
p.correctBoundaryConditions();
}
rho = thermo.rho();
if (!simple.transonic())
{
rho.relax();
}
}

View File

@ -0,0 +1,92 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2017 OpenCFD Ltd
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
overRhoSimpleFoam
Group
grpCompressibleSolvers
Description
Overset steady-state solver for turbulent flow of compressible fluids.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "dynamicFvMesh.H"
#include "fluidThermo.H"
#include "turbulentFluidThermoModel.H"
#include "simpleControl.H"
#include "pressureControl.H"
#include "fvOptions.H"
#include "cellCellStencilObject.H"
#include "localMin.H"
#include "oversetAdjustPhi.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
#define CREATE_MESH createUpdatedDynamicFvMesh.H
#include "postProcess.H"
#include "setRootCase.H"
#include "createTime.H"
#include "createUpdatedDynamicFvMesh.H"
#include "createControl.H"
#include "createFields.H"
#include "createFieldRefs.H"
#include "createFvOptions.H"
#include "initContinuityErrs.H"
turbulence->validate();
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
while (simple.loop())
{
Info<< "Time = " << runTime.timeName() << nl << endl;
// Pressure-velocity SIMPLE corrector
#include "UEqn.H"
#include "EEqn.H"
#include "pEqn.H"
turbulence->correct();
runTime.write();
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //

View File

@ -3,7 +3,7 @@
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2015 OpenFOAM Foundation
\\/ M anipulation |
\\/ M anipulation | Copyright (C) 2017 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
@ -39,6 +39,7 @@ The available solvers are grouped into the following categories:
- \ref grpLagrangianSolvers
- \ref grpMultiphaseSolvers
- \ref grpStressAnalysisSolvers
- \ref grpFiniteAreaSolvers
\*---------------------------------------------------------------------------*/

View File

@ -3,7 +3,7 @@
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2015 OpenFOAM Foundation
\\/ M anipulation |
\\/ M anipulation | Copyright (C) 2017 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
@ -34,4 +34,10 @@ License
This group contains moving mesh solvers solvers
@}
\defgroup grpFiniteAreaSolvers Finite area solvers
@{
\ingroup grpSolvers
This group contains finite area solvers
@}
\*---------------------------------------------------------------------------*/

View File

@ -86,7 +86,7 @@ int main(int argc, char *argv[])
psi.write();
if (!args.optionFound("noH") || args.optionFound("HdotGradH"))
if (!args.found("noH") || args.found("HdotGradH"))
{
volVectorField H
(
@ -99,7 +99,7 @@ int main(int argc, char *argv[])
fvc::reconstruct(fvc::snGrad(psi)*mesh.magSf())
);
if (!args.optionFound("noH"))
if (!args.found("noH"))
{
Info<< nl
<< "Creating field H for time "
@ -108,7 +108,7 @@ int main(int argc, char *argv[])
H.write();
}
if (args.optionFound("HdotGradH"))
if (args.found("HdotGradH"))
{
Info<< nl
<< "Creating field HdotGradH for time "
@ -129,7 +129,7 @@ int main(int argc, char *argv[])
}
}
if (!args.optionFound("noB"))
if (!args.found("noB"))
{
Info<< nl
<< "Creating field B for time "

View File

@ -0,0 +1,3 @@
liquidFilmFoam.C
EXE = $(FOAM_APPBIN)/liquidFilmFoam

View File

@ -0,0 +1,10 @@
EXE_INC = \
-I$(LIB_SRC)/finiteArea/lnInclude \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/cfdTools/general/lnInclude
EXE_LIBS = \
-lfiniteArea \
-lfiniteVolume \
-lmeshTools

View File

@ -0,0 +1,7 @@
{
// Stabilisation of friction factor calculation
// Friction factor is defined with standard gravity
frictionFactor.primitiveFieldRef() =
mag(2*9.81*sqr(manningField.primitiveField())/
pow(mag(h.primitiveField()) + 1e-7, 1.0/3.0));
}

View File

@ -0,0 +1,13 @@
{
scalar CoNumSigma = max
(
sqrt
(
2*M_PI*sigma*sqr(aMesh.edgeInterpolation::deltaCoeffs())
*aMesh.edgeInterpolation::deltaCoeffs()
/rhol
)
).value()*runTime.deltaT().value();
Info<< "Max Capillary Courant Number = " << CoNumSigma << '\n' << endl;
}

View File

@ -0,0 +1,158 @@
Info<< "Reading field h" << endl;
areaScalarField h
(
IOobject
(
"h",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
aMesh
);
Info<< "Reading field Us" << endl;
areaVectorField Us
(
IOobject
(
"Us",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
aMesh
);
edgeScalarField phis
(
IOobject
(
"phis",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
fac::interpolate(Us) & aMesh.Le()
);
edgeScalarField phi2s
(
IOobject
(
"phi2s",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
fac::interpolate(h*Us) & aMesh.Le()
);
const areaVectorField& Ns = aMesh.faceAreaNormals();
areaVectorField Gs(g - Ns*(Ns & g));
areaScalarField Gn(mag(g - Gs));
// Mass source
areaScalarField Sm
(
IOobject
(
"Sm",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
aMesh,
dimensionedScalar("Sm", dimLength/dimTime, 0)
);
// Mass sink
areaScalarField Sd
(
IOobject
(
"Sd",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
aMesh,
dimensionedScalar("Sd", dimLength/dimTime, 0)
);
areaVectorField Ug
(
IOobject
(
"Sg",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
aMesh,
dimensionedVector("Ug", dimVelocity, vector::zero)
);
// Surface pressure
areaScalarField ps
(
IOobject
(
"ps",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
rhol*Gn*h - sigma*fac::laplacian(h)
);
// Friction factor
areaScalarField dotProduct
(
aMesh.faceAreaNormals() & (g/mag(g))
);
Info<< "View factor: min = " << min(dotProduct.internalField())
<< " max = " << max(dotProduct.internalField()) << endl;
areaScalarField manningField
(
IOobject
(
"manningField",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
aMesh
);
areaScalarField frictionFactor
(
IOobject
(
"frictionFactor",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
aMesh,
dimensionedScalar("one", dimless, 0.01)
);
aMesh.setFluxRequired("h");

View File

@ -0,0 +1,31 @@
volVectorField U
(
IOobject
(
"U",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedVector("0", dimVelocity, vector::zero)
);
volScalarField H
(
IOobject
(
"H",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("0", dimLength, 0)
);
// Create volume-to surface mapping object
volSurfaceMapping vsm(aMesh);

View File

@ -0,0 +1,160 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd |
\\/ M anipulation |
-------------------------------------------------------------------------------
| Copyright (C) 2016-2017 Wikki Ltd
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
liquidFilmFoam
Group
grpFiniteAreaSolvers
Description
Transient solver for incompressible, laminar flow of Newtonian fluids in
liquid film formulation.
Author
Zeljko Tukovic, FMENA
Hrvoje Jasak, Wikki Ltd.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "faCFD.H"
#include "loopControl.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
#include "setRootCase.H"
#include "createTime.H"
#include "createMesh.H"
#include "createFaMesh.H"
#include "readGravitationalAcceleration.H"
#include "readTransportProperties.H"
#include "createFaFields.H"
#include "createFvFields.H"
#include "createTimeControls.H"
Info<< "\nStarting time loop\n" << endl;
while (runTime.run())
{
#include "readSolutionControls.H"
#include "readTimeControls.H"
#include "surfaceCourantNo.H"
#include "capillaryCourantNo.H"
#include "setDeltaT.H"
runTime++;
Info<< "Time = " << runTime.timeName() << nl << endl;
while (iters.loop())
{
phi2s = fac::interpolate(h)*phis;
#include "calcFrictionFactor.H"
faVectorMatrix UsEqn
(
fam::ddt(h, Us)
+ fam::div(phi2s, Us)
+ fam::Sp(0.0125*frictionFactor*mag(Us), Us)
==
Gs*h
- fam::Sp(Sd, Us)
);
UsEqn.relax();
solve(UsEqn == - fac::grad(ps*h)/rhol + ps*fac::grad(h)/rhol);
areaScalarField UsA(UsEqn.A());
Us = UsEqn.H()/UsA;
Us.correctBoundaryConditions();
phis =
(fac::interpolate(Us) & aMesh.Le())
- fac::interpolate(1.0/(rhol*UsA))*fac::lnGrad(ps*h)*aMesh.magLe()
+ fac::interpolate(ps/(rhol*UsA))*fac::lnGrad(h)*aMesh.magLe();
faScalarMatrix hEqn
(
fam::ddt(h)
+ fam::div(phis, h)
==
Sm
- fam::Sp
(
Sd/(h + dimensionedScalar("small", dimLength, SMALL)),
h
)
);
hEqn.relax();
hEqn.solve();
phi2s = hEqn.flux();
// Bound h
h.primitiveFieldRef() = max
(
max
(
h.primitiveField(),
fac::average(max(h, h0))().primitiveField()
*pos(h0.value() - h.primitiveField())
),
h0.value()
);
ps = rhol*Gn*h - sigma*fac::laplacian(h);
ps.correctBoundaryConditions();
Us -= (1.0/(rhol*UsA))*fac::grad(ps*h)
- (ps/(rhol*UsA))*fac::grad(h);
Us.correctBoundaryConditions();
}
if (runTime.outputTime())
{
vsm.mapToVolume(h, H.boundaryFieldRef());
vsm.mapToVolume(Us, U.boundaryFieldRef());
runTime.write();
}
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //

View File

@ -0,0 +1 @@
loopControl iters(runTime, aMesh.solutionDict(), "solution");

View File

@ -0,0 +1,41 @@
IOdictionary transportProperties
(
IOobject
(
"transportProperties",
runTime.constant(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
)
);
dimensionedScalar mug
(
transportProperties.lookup("mug")
);
dimensionedScalar mul
(
transportProperties.lookup("mul")
);
dimensionedScalar sigma
(
transportProperties.lookup("sigma")
);
dimensionedScalar rhol
(
transportProperties.lookup("rhol")
);
dimensionedScalar rhog
(
transportProperties.lookup("rhog")
);
dimensionedScalar h0
(
transportProperties.lookup("h0")
);

View File

@ -0,0 +1,63 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd |
\\/ M anipulation |
-------------------------------------------------------------------------------
| Copyright (C) 2016-2017 Wikki Ltd
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Global
surfaceCourantNo
Author
Hrvoje Jasak, Wikki Ltd.
Description
Calculates and outputs the mean and maximum Courant Numbers for the
Finite Area method.
\*---------------------------------------------------------------------------*/
scalar CoNum = 0.0;
scalar meanCoNum = 0.0;
scalar velMag = 0.0;
if (aMesh.nInternalEdges())
{
edgeScalarField SfUfbyDelta
(
aMesh.edgeInterpolation::deltaCoeffs()*mag(phis)
);
CoNum = max(SfUfbyDelta/aMesh.magLe())
.value()*runTime.deltaT().value();
meanCoNum = (sum(SfUfbyDelta)/sum(aMesh.magLe()))
.value()*runTime.deltaT().value();
velMag = max(mag(phis)/aMesh.magLe()).value();
}
Info<< "Courant Number mean: " << meanCoNum
<< " max: " << CoNum
<< " velocity magnitude: " << velMag << endl;
// ************************************************************************* //

View File

@ -0,0 +1,3 @@
surfactantFoam.C
EXE = $(FOAM_APPBIN)/sphereSurfactantFoam

View File

@ -0,0 +1,10 @@
EXE_INC = \
-I$(LIB_SRC)/finiteArea/lnInclude \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/cfdTools/general/lnInclude
EXE_LIBS = \
-lfiniteArea \
-lfiniteVolume \
-lmeshTools

View File

@ -0,0 +1,78 @@
Info<< "Reading field Cs" << endl;
areaScalarField Cs
(
IOobject
(
"Cs",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
aMesh
);
dimensioned<scalar> Cs0
(
"Cs0",
dimensionSet(1, -2, 0, 0, 0, 0, 0),
1.0
);
const areaVectorField& R = aMesh.areaCentres();
Cs = Cs0*(1.0 + R.component(vector::X)/mag(R));
dimensioned<scalar> Ds
(
"Ds",
dimensionSet(0, 2, -1, 0, 0, 0, 0),
1.0
);
areaVectorField Us
(
IOobject
(
"Us",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
aMesh,
dimensioned<vector>("Us", dimVelocity, vector::zero)
);
dimensioned<scalar> Uinf("Uinf", dimVelocity, 1.0);
forAll (Us, faceI)
{
Us[faceI].x() =
Uinf.value()*(0.25*(3.0 + sqr(R[faceI].x()/mag(R[faceI]))) - 1.0);
Us[faceI].y() =
Uinf.value()*0.25*R[faceI].x()*R[faceI].y()/sqr(mag(R[faceI]));
Us[faceI].z() =
Uinf.value()*0.25*R[faceI].x()*R[faceI].z()/sqr(mag(R[faceI]));
}
Us -= aMesh.faceAreaNormals()*(aMesh.faceAreaNormals() & Us);
edgeScalarField phis
(
IOobject
(
"phis",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
linearEdgeInterpolate(Us) & aMesh.Le()
);

View File

@ -0,0 +1,2 @@
// Create Finite Area mesh
faMesh aMesh(mesh);

View File

@ -0,0 +1,36 @@
// Create volume-to surface mapping object
volSurfaceMapping vsm(aMesh);
volScalarField Cvf
(
IOobject
(
"Cvf",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("0", dimless/dimLength, 0)
);
vsm.mapToVolume(Cs, Cvf.boundaryFieldRef());
Cvf.write();
volVectorField U
(
IOobject
(
"U",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedVector("zero", dimVelocity, vector::zero)
);
vsm.mapToVolume(Us, U.boundaryFieldRef());
U.write();

View File

@ -0,0 +1,91 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd |
\\/ M anipulation |
-------------------------------------------------------------------------------
| Copyright (C) 2016-2017 Wikki Ltd
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
surfactantFoam for sphere transport
Group
grpFiniteAreaSolvers
Description
Passive scalar transport equation solver on a sphere
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "faCFD.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
#include "setRootCase.H"
#include "createTime.H"
#include "createMesh.H"
#include "createFaMesh.H"
#include "createFaFields.H"
#include "createVolFields.H"
Info<< "Total mass of surfactant: "
<< sum(Cs.internalField()*aMesh.S()) << endl;
Info<< "\nStarting time loop\n" << endl;
while (runTime.loop())
{
Info<< "Time = " << runTime.value() << endl;
faScalarMatrix CsEqn
(
fam::ddt(Cs)
+ fam::div(phis, Cs)
- fam::laplacian(Ds, Cs)
);
CsEqn.solve();
if (runTime.writeTime())
{
vsm.mapToVolume(Cs, Cvf.boundaryFieldRef());
runTime.write();
}
Info<< "Total mass of surfactant: "
<< sum(Cs.internalField()*aMesh.S()) << endl;
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //

View File

@ -0,0 +1,3 @@
surfactantFoam.C
EXE = $(FOAM_APPBIN)/surfactantFoam

View File

@ -0,0 +1,10 @@
EXE_INC = \
-I$(LIB_SRC)/finiteArea/lnInclude \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/cfdTools/general/lnInclude
EXE_LIBS = \
-lfiniteArea \
-lfiniteVolume \
-lmeshTools

View File

@ -0,0 +1,63 @@
Info<< "Reading field Cs" << endl;
areaScalarField Cs
(
IOobject
(
"Cs",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
aMesh
);
Info<< "Reading transportProperties\n" << endl;
IOdictionary transportProperties
(
IOobject
(
"transportProperties",
runTime.constant(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
)
);
Info<< "Reading diffusivity D\n" << endl;
dimensionedScalar Ds
(
transportProperties.lookup("Ds")
);
areaVectorField Us
(
IOobject
(
"Us",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
),
aMesh
);
edgeScalarField phis
(
IOobject
(
"phis",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
linearEdgeInterpolate(Us) & aMesh.Le()
);

View File

@ -0,0 +1,2 @@
// Create Finite Area mesh
faMesh aMesh(mesh);

View File

@ -0,0 +1,36 @@
// Create volume-to surface mapping object
volSurfaceMapping vsm(aMesh);
volScalarField Cvf
(
IOobject
(
"Cvf",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("0", dimless/dimLength, 0)
);
vsm.mapToVolume(Cs, Cvf.boundaryFieldRef());
Cvf.write();
volVectorField U
(
IOobject
(
"U",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedVector("zero", dimVelocity, vector::zero)
);
vsm.mapToVolume(Us, U.boundaryFieldRef());
U.write();

View File

@ -0,0 +1,114 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd |
\\/ M anipulation |
-------------------------------------------------------------------------------
| Copyright (C) 2016-2017 Wikki Ltd
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
surfactantFoam
Group
grpFiniteAreaSolvers
Description
Passive scalar transport equation solver.
\heading Solver details
The equation is given by:
\f[
\ddt{Cs} + \div \left(\vec{U} Cs\right) - \div \left(D_T \grad Cs \right)
= 0
\f]
Where:
\vartable
Cs | Passive scalar
Ds | Diffusion coefficient
\endvartable
\heading Required fields
\plaintable
Cs | Passive scalar
Us | Velocity [m/s]
\endplaintable
Author
Zeljko Tukovic, FMENA
Hrvoje Jasak, Wikki Ltd.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "faCFD.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
#include "setRootCase.H"
#include "createTime.H"
#include "createMesh.H"
#include "createFaMesh.H"
#include "createFaFields.H"
#include "createVolFields.H"
Info<< "Total mass of surfactant: "
<< sum(Cs.internalField()*aMesh.S()) << endl;
Info<< "\nStarting time loop\n" << endl;
while (runTime.loop())
{
Info<< "Time = " << runTime.value() << endl;
faScalarMatrix CsEqn
(
fam::ddt(Cs)
+ fam::div(phis, Cs)
- fam::laplacian(Ds, Cs)
);
CsEqn.solve();
if (runTime.writeTime())
{
vsm.mapToVolume(Cs, Cvf.boundaryFieldRef());
runTime.write();
}
Info<< "Total mass of surfactant: "
<< sum(Cs.internalField()*aMesh.S()) << endl;
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //

View File

@ -3,7 +3,7 @@
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation
\\/ M anipulation |
\\/ M anipulation | Copyright (C) 2017 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
@ -47,6 +47,7 @@ Description
#include "radiationModel.H"
#include "fvOptions.H"
#include "coordinateSystem.H"
#include "loopControl.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
@ -89,11 +90,10 @@ int main(int argc, char *argv[])
}
}
// --- PIMPLE loop
for (int oCorr=0; oCorr<nOuterCorr; oCorr++)
for (int oCorr=0; oCorr<nOuterCorr; ++oCorr)
{
bool finalIter = oCorr == nOuterCorr-1;
const bool finalIter = (oCorr == nOuterCorr-1);
forAll(fluidRegions, i)
{
@ -113,6 +113,35 @@ int main(int argc, char *argv[])
#include "solveSolid.H"
}
// Additional loops for energy solution only
if (!oCorr && nOuterCorr > 1)
{
loopControl looping(runTime, pimple, "energyCoupling");
while (looping.loop())
{
Info<< nl << looping << nl;
forAll(fluidRegions, i)
{
Info<< "\nSolving for fluid region "
<< fluidRegions[i].name() << endl;
#include "setRegionFluidFields.H"
#include "readFluidMultiRegionPIMPLEControls.H"
frozenFlow = true;
#include "solveFluid.H"
}
forAll(solidRegions, i)
{
Info<< "\nSolving for solid region "
<< solidRegions[i].name() << endl;
#include "setRegionSolidFields.H"
#include "readSolidMultiRegionPIMPLEControls.H"
#include "solveSolid.H"
}
}
}
}
runTime.write();

View File

@ -3,7 +3,7 @@
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation
\\/ M anipulation |
\\/ M anipulation | Copyright (C) 2017 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
@ -42,6 +42,7 @@ Description
#include "radiationModel.H"
#include "fvOptions.H"
#include "coordinateSystem.H"
#include "loopControl.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
@ -57,7 +58,6 @@ int main(int argc, char *argv[])
#include "createFields.H"
#include "initContinuityErrs.H"
while (runTime.loop())
{
Info<< "Time = " << runTime.timeName() << nl << endl;
@ -80,6 +80,35 @@ int main(int argc, char *argv[])
#include "solveSolid.H"
}
// Additional loops for energy solution only
{
loopControl looping(runTime, "SIMPLE", "energyCoupling");
while (looping.loop())
{
Info<< nl << looping << nl;
forAll(fluidRegions, i)
{
Info<< "\nSolving for fluid region "
<< fluidRegions[i].name() << endl;
#include "setRegionFluidFields.H"
#include "readFluidMultiRegionSIMPLEControls.H"
frozenFlow = true;
#include "solveFluid.H"
}
forAll(solidRegions, i)
{
Info<< "\nSolving for solid region "
<< solidRegions[i].name() << endl;
#include "setRegionSolidFields.H"
#include "readSolidMultiRegionSIMPLEControls.H"
#include "solveSolid.H"
}
}
}
runTime.write();
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"

View File

@ -16,6 +16,8 @@
fvOptions.constrain(UEqn);
if (momentumPredictor)
{
solve
(
UEqn
@ -30,3 +32,4 @@
);
fvOptions.correct(U);
}

View File

@ -2,3 +2,6 @@
const int nNonOrthCorr =
simple.lookupOrDefault<int>("nNonOrthogonalCorrectors", 0);
const bool momentumPredictor =
simple.lookupOrDefault("momentumPredictor", true);

View File

@ -12,6 +12,14 @@
volScalarField& p = thermo.p();
const volScalarField& psi = thermo.psi();
volScalarField& p_rgh = p_rghFluid[i];
const dimensionedVector& g = gFluid[i];
const volScalarField& gh = ghFluid[i];
const surfaceScalarField& ghf = ghfFluid[i];
radiation::radiationModel& rad = radiation[i];
IOMRFZoneList& MRF = MRFfluid[i];
fv::options& fvOptions = fluidFvOptions[i];
@ -22,14 +30,7 @@
initialMassFluid[i]
);
radiation::radiationModel& rad = radiation[i];
bool frozenFlow = frozenFlowFluid[i];
const label pRefCell = pRefCellFluid[i];
const scalar pRefValue = pRefValueFluid[i];
const bool frozenFlow = frozenFlowFluid[i];
volScalarField& p_rgh = p_rghFluid[i];
const dimensionedVector& g = gFluid[i];
const volScalarField& gh = ghFluid[i];
const surfaceScalarField& ghf = ghfFluid[i];

View File

@ -1,5 +1,5 @@
{
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
for (int nonOrth=0; nonOrth<=nNonOrthCorr; ++nonOrth)
{
fvScalarMatrix hEqn
(
@ -20,9 +20,9 @@
fvOptions.correct(h);
}
}
thermo.correct();
Info<< "Min/max T:" << min(thermo.T()).value() << ' '
<< max(thermo.T()).value() << endl;
}

View File

@ -19,8 +19,8 @@ List<bool> frozenFlowFluid(fluidRegions.size(), false);
PtrList<IOMRFZoneList> MRFfluid(fluidRegions.size());
PtrList<fv::options> fluidFvOptions(fluidRegions.size());
List<label> refCellFluid(fluidRegions.size());
List<scalar> refValueFluid(fluidRegions.size());
List<label> pRefCellFluid(fluidRegions.size());
List<scalar> pRefValueFluid(fluidRegions.size());
// Populate fluid field pointer lists
forAll(fluidRegions, i)
@ -252,8 +252,8 @@ forAll(fluidRegions, i)
turbulence[i].validate();
refCellFluid[i] = 0;
refValueFluid[i] = 0.0;
pRefCellFluid[i] = 0;
pRefValueFluid[i] = 0.0;
if (p_rghFluid[i].needReference())
{
@ -262,8 +262,8 @@ forAll(fluidRegions, i)
thermoFluid[i].p(),
p_rghFluid[i],
pimpleDict,
refCellFluid[i],
refValueFluid[i]
pRefCellFluid[i],
pRefValueFluid[i]
);
}

View File

@ -32,7 +32,8 @@
initialMassFluid[i]
);
const bool frozenFlow = frozenFlowFluid[i];
bool frozenFlow = frozenFlowFluid[i];
const label pRefCell = pRefCellFluid[i];
const scalar pRefValue = pRefValueFluid[i];
const label pRefCell = refCellFluid[i];
const scalar pRefValue = refValueFluid[i];

View File

@ -1,10 +1,10 @@
const wordList solidsNames(rp["solid"]);
const wordList solidNames(rp["solid"]);
PtrList<fvMesh> solidRegions(solidsNames.size());
PtrList<fvMesh> solidRegions(solidNames.size());
forAll(solidsNames, i)
forAll(solidNames, i)
{
Info<< "Create solid mesh for region " << solidsNames[i]
Info<< "Create solid mesh for region " << solidNames[i]
<< " for time = " << runTime.timeName() << nl << endl;
solidRegions.set
@ -14,7 +14,7 @@
(
IOobject
(
solidsNames[i],
solidNames[i],
runTime.timeName(),
runTime,
IOobject::MUST_READ

View File

@ -27,8 +27,8 @@ Description
\*---------------------------------------------------------------------------*/
#ifndef solidRegionDiff_H
#define solidRegionDiff_H
#ifndef solidRegionDiffNo_H
#define solidRegionDiffNo_H
#include "fvMesh.H"

View File

@ -4,7 +4,7 @@ if (finalIter)
}
{
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
for (int nonOrth=0; nonOrth<=nNonOrthCorr; ++nonOrth)
{
fvScalarMatrix hEqn
(
@ -26,12 +26,12 @@ if (finalIter)
fvOptions.correct(h);
}
}
thermo.correct();
Info<< "Min/max T:" << min(thermo.T()).value() << ' '
<< max(thermo.T()).value() << endl;
}
if (finalIter)
{

View File

@ -15,12 +15,16 @@
)
: -dpdt
)
- fvm::laplacian(alphaEff, he)
==
radiation->Sh(thermo, he)
+ fvOptions(rho, he)
);
if (turbulence.valid())
{
EEqn -= fvm::laplacian(turbulence->alphaEff(), he);
}
EEqn.relax();
fvOptions.constrain(EEqn);

View File

@ -35,7 +35,31 @@ volVectorField U
#include "compressibleCreatePhi.H"
#include "setAlphaEff.H"
autoPtr<compressible::turbulenceModel> turbulence;
IOobject turbulencePropertiesHeader
(
"turbulenceProperties",
runTime.constant(),
mesh,
IOobject::MUST_READ_IF_MODIFIED,
IOobject::NO_WRITE,
false
);
if (turbulencePropertiesHeader.typeHeaderOk<IOdictionary>(false))
{
Info<< "Creating turbulence model\n" << endl;
turbulence =
compressible::turbulenceModel::New
(
rho,
U,
phi,
thermo
);
}
#include "createDpdt.H"

View File

@ -1,47 +0,0 @@
Info<< "Creating turbulence model\n" << endl;
tmp<volScalarField> talphaEff;
IOobject turbulencePropertiesHeader
(
"turbulenceProperties",
runTime.constant(),
mesh,
IOobject::MUST_READ_IF_MODIFIED,
IOobject::NO_WRITE,
false
);
if (turbulencePropertiesHeader.typeHeaderOk<IOdictionary>(true))
{
autoPtr<compressible::turbulenceModel> turbulence
(
compressible::turbulenceModel::New
(
rho,
U,
phi,
thermo
)
);
talphaEff = turbulence->alphaEff();
}
else
{
talphaEff = tmp<volScalarField>
(
new volScalarField
(
IOobject
(
"alphaEff",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh,
dimensionedScalar("0", dimMass/dimLength/dimTime, 0.0)
)
);
}

View File

@ -54,8 +54,6 @@ int main(int argc, char *argv[])
#include "createFields.H"
#include "createFvOptions.H"
const volScalarField& alphaEff = talphaEff();
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nEvolving thermodynamics\n" << endl;

View File

@ -101,7 +101,7 @@ if (mesh.changing())
pcorrEqn.setReferences
(
validCells,
scalarList(validCells.size(), 0.0),
scalar(0.0),
true
);
}

View File

@ -20,7 +20,7 @@ surfaceScalarField faceMask(localMin<scalar>(mesh).interpolate(cellMask));
surfaceScalarField rAUf("rAUf", faceMask*fvc::interpolate(rAU));
volVectorField HbyA("HbyA", U);
HbyA = constrainHbyA(rAU*UEqn.H(), U, p);
HbyA = constrainHbyA(cellMask*rAU*UEqn.H(), U, p);
//mesh.interpolate(HbyA);
if (massFluxInterpolation)

View File

@ -54,10 +54,8 @@ Description
int main(int argc, char *argv[])
{
argList::addNote
(
"Experimental version of pimpleDyMFoam with support for overset meshes"
);
#include "postProcess.H"
#include "setRootCase.H"
#include "createTime.H"
#include "createDynamicFvMesh.H"

View File

@ -16,6 +16,9 @@
fvOptions.constrain(UEqn);
if (simple.momentumPredictor())
{
solve(UEqn == -cellMask*fvc::grad(p));
}
fvOptions.correct(U);

View File

@ -5,7 +5,7 @@
surfaceScalarField rAUf("rAUf", faceMask*fvc::interpolate(rAU));
volVectorField HbyA("HbyA", U);
HbyA = constrainHbyA(rAU*UEqn.H(), U, p);
HbyA = constrainHbyA(cellMask*rAU*UEqn.H(), U, p);
//mesh.interpolate(HbyA);
if (massFluxInterpolation)

View File

@ -123,7 +123,7 @@ volScalarField alphac
);
word kinematicCloudName("kinematicCloud");
args.optionReadIfPresent("cloud", kinematicCloudName);
args.readIfPresent("cloud", kinematicCloudName);
Info<< "Constructing kinematicCloud " << kinematicCloudName << endl;
basicKinematicTypeCloud kinematicCloud

View File

@ -58,7 +58,7 @@ volScalarField mu
);
word kinematicCloudName("kinematicCloud");
args.optionReadIfPresent("cloud", kinematicCloudName);
args.readIfPresent("cloud", kinematicCloudName);
Info<< "Constructing kinematicCloud " << kinematicCloudName << endl;
basicKinematicCollidingCloud kinematicCloud

View File

@ -114,7 +114,7 @@ volScalarField Qdot
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("Qdot", dimEnergy/dimTime, 0.0)
dimensionedScalar("Qdot", dimEnergy/dimVolume/dimTime, 0.0)
);
#include "createMRF.H"

View File

@ -51,7 +51,7 @@ autoPtr<compressible::turbulenceModel> turbulence
const word kinematicCloudName
(
args.optionLookupOrDefault<word>("cloud", "kinematicCloud")
args.lookupOrDefault<word>("cloud", "kinematicCloud")
);
Info<< "Constructing kinematicCloud " << kinematicCloudName << endl;

View File

@ -0,0 +1,43 @@
volScalarField::Internal Sp
(
IOobject
(
"Sp",
runTime.timeName(),
mesh
),
mesh,
dimensionedScalar("Sp", dgdt.dimensions(), 0)
);
volScalarField::Internal Su
(
IOobject
(
"Su",
runTime.timeName(),
mesh
),
mesh,
dimensionedScalar("Su", dgdt.dimensions(), 0)
);
forAll(dgdt, celli)
{
if (dgdt[celli] > 0.0 && alpha1[celli] > 0.0)
{
Sp[celli] -= dgdt[celli]*alpha1[celli];
Su[celli] += dgdt[celli]*alpha1[celli];
}
else if (dgdt[celli] < 0.0 && alpha1[celli] < 1.0)
{
Sp[celli] += dgdt[celli]*(1.0 - alpha1[celli]);
}
}
volScalarField::Internal divU
(
mesh.moving()
? fvc::div(phiCN() + mesh.phi())
: fvc::div(phiCN())
);

View File

@ -56,29 +56,13 @@
}
else
{
#include "rhofs.H"
p_rghEqnComp1 =
pos(alpha1)
*(
(
fvc::ddt(alpha1, rho1) + fvc::div(alphaPhi1*rho1f)
- (fvOptions(alpha1, mixture.thermo1().rho())&rho1)
)/rho1
- fvc::ddt(alpha1) - fvc::div(alphaPhi1)
+ (alpha1*psi1/rho1)*correction(fvm::ddt(p_rgh))
);
fvc::ddt(rho1) + psi1*correction(fvm::ddt(p_rgh))
+ fvc::div(phi, rho1) - fvc::Sp(fvc::div(phi), rho1);
p_rghEqnComp2 =
pos(alpha2)
*(
(
fvc::ddt(alpha2, rho2) + fvc::div(alphaPhi2*rho2f)
- (fvOptions(alpha2, mixture.thermo2().rho())&rho2)
)/rho2
- fvc::ddt(alpha2) - fvc::div(alphaPhi2)
+ (alpha2*psi2/rho2)*correction(fvm::ddt(p_rgh))
);
fvc::ddt(rho2) + psi2*correction(fvm::ddt(p_rgh))
+ fvc::div(phi, rho2) - fvc::Sp(fvc::div(phi), rho2);
}
// Cache p_rgh prior to solve for density update
@ -94,7 +78,11 @@
solve
(
p_rghEqnComp1() + p_rghEqnComp2() + p_rghEqnIncomp,
(
(max(alpha1, scalar(0))/rho1)*p_rghEqnComp1()
+ (max(alpha2, scalar(0))/rho2)*p_rghEqnComp2()
)
+ p_rghEqnIncomp,
mesh.solver(p_rgh.select(pimple.finalInnerIter()))
);
@ -105,8 +93,8 @@
dgdt =
(
alpha1*(p_rghEqnComp2 & p_rgh)
- alpha2*(p_rghEqnComp1 & p_rgh)
pos(alpha2)*(p_rghEqnComp2 & p_rgh)/rho2
- pos(alpha1)*(p_rghEqnComp1 & p_rgh)/rho1
);
phi = phiHbyA + p_rghEqnIncomp.flux();
@ -131,8 +119,11 @@
rho = alpha1*rho1 + alpha2*rho2;
// Correct p_rgh for consistency with p and the updated densities
p = max(p_rgh + rho*gh, pMin);
p_rgh = p - rho*gh;
p_rgh.correctBoundaryConditions();
K = 0.5*magSqr(U);
}

View File

@ -89,22 +89,22 @@ public:
const rhoThermo& thermo1() const
{
return thermo1_();
return *thermo1_;
}
const rhoThermo& thermo2() const
{
return thermo2_();
return *thermo2_;
}
rhoThermo& thermo1()
{
return thermo1_();
return *thermo1_;
}
rhoThermo& thermo2()
{
return thermo2_();
return *thermo2_;
}
//- Correct the thermodynamics of each phase

View File

@ -125,8 +125,7 @@ alphaContactAngleFvPatchScalarField::alphaContactAngleFvPatchScalarField
void alphaContactAngleFvPatchScalarField::write(Ostream& os) const
{
fvPatchScalarField::write(os);
os.writeKeyword("thetaProperties")
<< thetaProps_ << token::END_STATEMENT << nl;
os.writeEntry("thetaProperties", thetaProps_);
writeEntry("value", os);
}

View File

@ -62,15 +62,8 @@ public:
{
public:
class hash
:
public Hash<interfacePair>
struct hash
{
public:
hash()
{}
label operator()(const interfacePair& key) const
{
return word::hash()(key.first()) + word::hash()(key.second());
@ -80,8 +73,7 @@ public:
// Constructors
interfacePair()
{}
interfacePair() {} // = default
interfacePair(const word& alpha1Name, const word& alpha2Name)
:

View File

@ -81,7 +81,7 @@ Foam::phaseModel::phaseModel
Foam::autoPtr<Foam::phaseModel> Foam::phaseModel::clone() const
{
NotImplemented;
return autoPtr<phaseModel>(nullptr);
return autoPtr<phaseModel>();
}

View File

@ -100,7 +100,7 @@ public:
autoPtr<phaseModel> operator()(Istream& is) const
{
return autoPtr<phaseModel>(new phaseModel(is, p_, T_));
return autoPtr<phaseModel>::New(is, p_, T_);
}
};
@ -120,13 +120,13 @@ public:
//- Return const-access to phase rhoThermo
const rhoThermo& thermo() const
{
return thermo_();
return *thermo_;
}
//- Return access to phase rhoThermo
rhoThermo& thermo()
{
return thermo_();
return *thermo_;
}
//- Return const-access to phase divergence

View File

@ -106,13 +106,13 @@ public:
//- Return const-access to the mixture viscosityModel
const mixtureViscosityModel& muModel() const
{
return muModel_();
return *muModel_;
}
//- Return const-access to the continuous-phase viscosityModel
const viscosityModel& nucModel() const
{
return nucModel_();
return *nucModel_;
}
//- Return const-access to the dispersed-phase density

View File

@ -29,8 +29,10 @@ volVectorField U
#include "createPhi.H"
// Creating e based thermo
autoPtr<twoPhaseMixtureEThermo> thermo;
thermo.set(new twoPhaseMixtureEThermo(U, phi));
autoPtr<twoPhaseMixtureEThermo> thermo
(
new twoPhaseMixtureEThermo(U, phi)
);
// Create mixture and
Info<< "Creating temperaturePhaseChangeTwoPhaseMixture\n" << endl;

View File

@ -35,8 +35,8 @@ SourceFiles
\*---------------------------------------------------------------------------*/
#ifndef flashThermo_H
#define flashThermo_H
#ifndef twoPhaseMixtureEThermo_H
#define twoPhaseMixtureEThermo_H
#include "volFields.H"

View File

@ -181,19 +181,19 @@ public:
//- Return const-access to phase1 viscosityModel
const viscosityModel& nuModel1() const
{
return nuModel1_();
return *nuModel1_;
}
//- Return const-access to phase2 viscosityModel
const viscosityModel& nuModel2() const
{
return nuModel2_();
return *nuModel2_;
}
//- Return const-access to phase3 viscosityModel
const viscosityModel& nuModel3() const
{
return nuModel3_();
return *nuModel3_;
}
//- Return the dynamic laminar viscosity

View File

@ -110,7 +110,7 @@
pcorrEqn.setReferences
(
validCells,
scalarList(validCells.size(), 0.0),
scalar(0.0),
true
);
}

View File

@ -1,6 +1,6 @@
#include "readTimeControls.H"
correctPhi = pimple.dict().lookupOrDefault<Switch>("correctPhi", true);
correctPhi = pimple.dict().lookupOrDefault<Switch>("correctPhi", false);
checkMeshCourantNo =
pimple.dict().lookupOrDefault<Switch>("checkMeshCourantNo", false);

View File

@ -17,4 +17,5 @@ EXE_LIBS = \
-lfiniteVolume \
-lfvOptions \
-lmeshTools \
-lsampling
-lsampling \
-lwaveModels

View File

@ -125,8 +125,7 @@ alphaContactAngleFvPatchScalarField::alphaContactAngleFvPatchScalarField
void alphaContactAngleFvPatchScalarField::write(Ostream& os) const
{
fvPatchScalarField::write(os);
os.writeKeyword("thetaProperties")
<< thetaProps_ << token::END_STATEMENT << nl;
os.writeEntry("thetaProperties", thetaProps_);
writeEntry("value", os);
}

View File

@ -32,8 +32,8 @@ SourceFiles
\*---------------------------------------------------------------------------*/
#ifndef constant_H
#define constant_H
#ifndef diameterModels_constant_H
#define diameterModels_constant_H
#include "diameterModel.H"

View File

@ -22,7 +22,7 @@ License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Class
Foam::isothermal
Foam::diameterModels::isothermal
Description
Isothermal dispersed-phase particle diameter model.
@ -32,8 +32,8 @@ SourceFiles
\*---------------------------------------------------------------------------*/
#ifndef isothermal_H
#define isothermal_H
#ifndef diameterModels_isothermal_H
#define diameterModels_isothermal_H
#include "diameterModel.H"

View File

@ -74,30 +74,16 @@ public:
{
public:
class symmHash
:
public Hash<interfacePair>
struct symmHash
{
public:
symmHash()
{}
label operator()(const interfacePair& key) const
{
return word::hash()(key.first()) + word::hash()(key.second());
}
};
class hash
:
public Hash<interfacePair>
struct hash
{
public:
hash()
{}
label operator()(const interfacePair& key) const
{
return word::hash()(key.first(), word::hash()(key.second()));
@ -107,8 +93,7 @@ public:
// Constructors
interfacePair()
{}
interfacePair() {} // = default
interfacePair(const word& alpha1Name, const word& alpha2Name)
:
@ -233,8 +218,7 @@ public:
//- Destructor
virtual ~multiphaseSystem()
{}
virtual ~multiphaseSystem() = default;
// Member Functions

View File

@ -205,7 +205,7 @@ Foam::phaseModel::~phaseModel()
Foam::autoPtr<Foam::phaseModel> Foam::phaseModel::clone() const
{
NotImplemented;
return autoPtr<phaseModel>(nullptr);
return autoPtr<phaseModel>();
}

View File

@ -190,12 +190,12 @@ public:
const surfaceScalarField& phi() const
{
return phiPtr_();
return *phiPtr_;
}
surfaceScalarField& phi()
{
return phiPtr_();
return *phiPtr_;
}
const surfaceScalarField& alphaPhi() const

View File

@ -125,8 +125,7 @@ alphaContactAngleFvPatchScalarField::alphaContactAngleFvPatchScalarField
void alphaContactAngleFvPatchScalarField::write(Ostream& os) const
{
fvPatchScalarField::write(os);
os.writeKeyword("thetaProperties")
<< thetaProps_ << token::END_STATEMENT << nl;
os.writeEntry("thetaProperties", thetaProps_);
writeEntry("value", os);
}

Some files were not shown because too many files have changed in this diff Show More