Creation of OpenFOAM-dev repository 15/04/2008

This commit is contained in:
OpenFOAM-admin
2008-04-15 18:56:58 +01:00
commit 3170c7c0c9
9896 changed files with 4016171 additions and 0 deletions

View File

@ -0,0 +1,363 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 1991-2007 OpenCFD Ltd.
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Description
private member of meshToMesh.
Calculates mesh to mesh addressing pattern (for each cell from one mesh
find the closest cell centre in the other mesh).
\*---------------------------------------------------------------------------*/
#include "meshToMesh.H"
#include "SubField.H"
#include "octree.H"
#include "octreeDataCell.H"
#include "octreeDataFace.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
void meshToMesh::calcAddressing()
{
if (debug)
{
Info<< "meshToMesh::calculateAddressing() : "
<< "calculating mesh-to-mesh cell addressing" << endl;
}
// set reference to cells
const cellList& fromCells = fromMesh_.cells();
const pointField& fromPoints = fromMesh_.points();
// In an attempt to preserve the efficiency of linear search and prevent
// failure, a RESCUE mechanism will be set up. Here, we shall mark all
// cells next to the solid boundaries. If such a cell is found as the
// closest, the relationship between the origin and cell will be examined.
// If the origin is outside the cell, a global n-squared search is
// triggered.
// SETTING UP RESCUE
// visit all boundaries and mark the cell next to the boundary.
if (debug)
{
Info<< "meshToMesh::calculateAddressing() : "
<< "Setting up rescue" << endl;
}
List<bool> boundaryCell(fromCells.size(), false);
// set reference to boundary
const polyPatchList& patchesFrom = fromMesh_.boundaryMesh();
forAll (patchesFrom, patchI)
{
// get reference to cells next to the boundary
const unallocLabelList& bCells = patchesFrom[patchI].faceCells();
forAll (bCells, faceI)
{
boundaryCell[bCells[faceI]] = true;
}
}
treeBoundBox meshBb(fromPoints);
scalar typDim = meshBb.avgDim()/(2.0*cbrt(scalar(fromCells.size())));
treeBoundBox shiftedBb
(
meshBb.min(),
meshBb.max() + vector(typDim, typDim, typDim)
);
if (debug)
{
Info<< "\nMesh" << endl;
Info<< " bounding box : " << meshBb << endl;
Info<< " bounding box (shifted) : " << shiftedBb << endl;
Info<< " typical dimension :" << shiftedBb.typDim() << endl;
}
// Wrap indices and mesh information into helper object
octreeDataCell shapes(fromMesh_);
octree<octreeDataCell> oc
(
shiftedBb, // overall bounding box
shapes, // all information needed to do checks on cells
1, // min. levels
10.0, // max. size of leaves
10.0 // maximum ratio of cubes v.s. cells
);
if (debug)
{
oc.printStats(Info);
}
cellAddresses
(
cellAddressing_,
toMesh_.cellCentres(),
fromMesh_,
boundaryCell,
oc
);
forAll (toMesh_.boundaryMesh(), patchi)
{
const polyPatch& toPatch = toMesh_.boundaryMesh()[patchi];
if (cuttingPatches_.found(toPatch.name()))
{
boundaryAddressing_[patchi].setSize(toPatch.size());
cellAddresses
(
boundaryAddressing_[patchi],
toPatch.faceCentres(),
fromMesh_,
boundaryCell,
oc
);
}
else if
(
patchMap_.found(toPatch.name())
&& fromMeshPatches_.found(patchMap_.find(toPatch.name())())
)
{
const polyPatch& fromPatch = fromMesh_.boundaryMesh()
[
fromMeshPatches_.find(patchMap_.find(toPatch.name())())()
];
if (fromPatch.size() == 0)
{
WarningIn("meshToMesh::calcAddressing()")
<< "Source patch " << fromPatch.name()
<< " has no faces. Not performing mapping for it."
<< endl;
boundaryAddressing_[patchi] = -1;
}
else
{
treeBoundBox wallBb(fromPatch.localPoints());
scalar typDim =
wallBb.avgDim()/(2.0*sqrt(scalar(fromPatch.size())));
treeBoundBox shiftedBb
(
wallBb.min(),
wallBb.max() + vector(typDim, typDim, typDim)
);
// Wrap data for octree into container
octreeDataFace shapes(fromPatch);
octree<octreeDataFace> oc
(
shiftedBb, // overall search domain
shapes, // all information needed to do checks on cells
1, // min levels
20.0, // maximum ratio of cubes v.s. cells
2.0
);
const vectorField::subField centresToBoundary =
toPatch.faceCentres();
boundaryAddressing_[patchi].setSize(toPatch.size());
treeBoundBox tightest;
scalar tightestDist;
forAll(toPatch, toi)
{
tightest = wallBb; // starting search bb
tightestDist = Foam::GREAT; // starting max distance
boundaryAddressing_[patchi][toi] = oc.findNearest
(
centresToBoundary[toi],
tightest,
tightestDist
);
}
}
}
}
if (debug)
{
Info<< "meshToMesh::calculateAddressing() : "
<< "finished calculating mesh-to-mesh acell ddressing" << endl;
}
}
void meshToMesh::cellAddresses
(
labelList& cellAddressing_,
const pointField& points,
const fvMesh& fromMesh,
const List<bool>& boundaryCell,
const octree<octreeDataCell>& oc
) const
{
// the implemented search method is a simple neighbour array search.
// It starts from a cell zero, searches its neighbours and finds one
// which is nearer to the target point than the current position.
// The location of the "current position" is reset to that cell and
// search through the neighbours continues. The search is finished
// when all the neighbours of the cell are farther from the target
// point than the current cell
// set curCell label to zero (start)
register label curCell = 0;
// set reference to cell to cell addressing
const vectorField& centresFrom = fromMesh.cellCentres();
const labelListList& cc = fromMesh.cellCells();
forAll (points, toI)
{
// pick up target position
const vector& p = points[toI];
// set the sqr-distance
scalar distSqr = magSqr(p - centresFrom[curCell]);
bool closer;
do
{
closer = false;
// set the current list of neighbouring cells
const labelList& neighbours = cc[curCell];
forAll (neighbours, nI)
{
scalar curDistSqr =
magSqr(p - centresFrom[neighbours[nI]]);
// search through all the neighbours.
// If the cell is closer, reset current cell and distance
if (curDistSqr < (1 - SMALL)*distSqr)
{
curCell = neighbours[nI];
distSqr = curDistSqr;
closer = true; // a closer neighbour has been found
}
}
} while (closer);
cellAddressing_[toI] = -1;
// Check point is actually in the nearest cell
if (fromMesh.pointInCell(p, curCell))
{
cellAddressing_[toI] = curCell;
}
else
{
// If curCell is a boundary cell then the point maybe either outside
// the domain or in an other region of the doamin, either way use
// the octree search to find it.
if (boundaryCell[curCell])
{
cellAddressing_[toI] = oc.find(p);
}
else
{
// If not on the boundary search the neighbours
bool found = false;
// set the current list of neighbouring cells
const labelList& neighbours = cc[curCell];
forAll (neighbours, nI)
{
// search through all the neighbours.
// If point is in neighbour reset current cell
if (fromMesh.pointInCell(p, neighbours[nI]))
{
cellAddressing_[toI] = neighbours[nI];
found = true;
break;
}
}
if (!found)
{
// If still not found search the neighbour-neighbours
// set the current list of neighbouring cells
const labelList& neighbours = cc[curCell];
forAll (neighbours, nI)
{
// set the current list of neighbour-neighbouring cells
const labelList& nn = cc[neighbours[nI]];
forAll (nn, nI)
{
// search through all the neighbours.
// If point is in neighbour reset current cell
if (fromMesh.pointInCell(p, nn[nI]))
{
cellAddressing_[toI] = nn[nI];
found = true;
break;
}
}
if (found) break;
}
}
if (!found)
{
// Still not found so us the octree
cellAddressing_[toI] = oc.find(p);
}
}
}
}
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// ************************************************************************* //

View File

@ -0,0 +1,125 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 1991-2007 OpenCFD Ltd.
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
\*---------------------------------------------------------------------------*/
#include "meshToMesh.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
void meshToMesh::calculateInverseDistanceWeights() const
{
if (debug)
{
Info<< "meshToMesh::calculateInverseDistanceWeights() : "
<< "calculating inverse distance weighting factors" << endl;
}
if (inverseDistanceWeightsPtr_)
{
FatalErrorIn("meshToMesh::calculateInverseDistanceWeights()")
<< "weighting factors already calculated"
<< exit(FatalError);
}
inverseDistanceWeightsPtr_ = new scalarListList(toMesh_.nCells());
scalarListList& invDistCoeffs = *inverseDistanceWeightsPtr_;
// get reference to source mesh data
const labelListList& cc = fromMesh_.cellCells();
const vectorField& centreFrom = fromMesh_.C().internalField();
const vectorField& centreTo = toMesh_.C().internalField();
forAll (cellAddressing_, celli)
{
if (cellAddressing_[celli] != -1)
{
const vector& target = centreTo[celli];
scalar m = mag(target - centreFrom[cellAddressing_[celli]]);
const labelList& neighbours = cc[cellAddressing_[celli]];
// if the nearest cell is a boundary cell or there is a direct hit,
// pick up the value
if
(
m < directHitTol // Direct hit
|| neighbours.size() == 0
)
{
invDistCoeffs[celli].setSize(1);
invDistCoeffs[celli][0] = 1.0;
}
else
{
invDistCoeffs[celli].setSize(neighbours.size() + 1);
// The first coefficient corresponds to the centre cell.
// The rest is ordered in the same way as the cellCells list.
scalar invDist = 1.0/m;
invDistCoeffs[celli][0] = invDist;
scalar sumInvDist = invDist;
// now add the neighbours
forAll (neighbours, ni)
{
invDist = 1.0/mag(target - centreFrom[neighbours[ni]]);
invDistCoeffs[celli][ni + 1] = invDist;
sumInvDist += invDist;
}
// divide by the total inverse-distance
forAll (invDistCoeffs[celli], i)
{
invDistCoeffs[celli][i] /= sumInvDist;
}
}
}
}
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
const scalarListList& meshToMesh::inverseDistanceWeights() const
{
if (!inverseDistanceWeightsPtr_)
{
calculateInverseDistanceWeights();
}
return *inverseDistanceWeightsPtr_;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// ************************************************************************* //

View File

@ -0,0 +1,216 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 1991-2007 OpenCFD Ltd.
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
\*---------------------------------------------------------------------------*/
#include "meshToMesh.H"
#include "processorFvPatch.H"
#include "demandDrivenData.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
defineTypeNameAndDebug(meshToMesh, 0);
const scalar meshToMesh::directHitTol = 1e-5;
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
meshToMesh::meshToMesh
(
const fvMesh& meshFrom,
const fvMesh& meshTo,
const HashTable<word>& patchMap,
const wordList& cuttingPatchNames
)
:
fromMesh_(meshFrom),
toMesh_(meshTo),
patchMap_(patchMap),
fromPointMesh_(meshFrom),
cellAddressing_(toMesh_.nCells()),
boundaryAddressing_(toMesh_.boundaryMesh().size()),
inverseDistanceWeightsPtr_(NULL)
{
forAll (fromMesh_.boundaryMesh(), patchi)
{
fromMeshPatches_.insert
(
fromMesh_.boundaryMesh()[patchi].name(),
patchi
);
}
forAll (toMesh_.boundaryMesh(), patchi)
{
toMeshPatches_.insert
(
toMesh_.boundaryMesh()[patchi].name(),
patchi
);
}
forAll (cuttingPatchNames, i)
{
if (toMeshPatches_.found(cuttingPatchNames[i]))
{
cuttingPatches_.insert
(
cuttingPatchNames[i],
toMeshPatches_.find(cuttingPatchNames[i])()
);
}
else
{
WarningIn
(
"meshToMesh::meshToMesh"
"(const fvMesh& meshFrom, const fvMesh& meshTo,"
"const HashTable<word>& patchMap,"
"const wordList& cuttingPatchNames)"
) << "Cannot find cutting-patch " << cuttingPatchNames[i]
<< " in destination mesh" << endl;
}
}
forAll (toMesh_.boundaryMesh(), patchi)
{
// Add the processor patches in the toMesh to the cuttingPatches list
if (toMesh_.boundaryMesh()[patchi].type() == processorFvPatch::typeName)
{
cuttingPatches_.insert
(
toMesh_.boundaryMesh()[patchi].name(),
patchi
);
}
}
calcAddressing();
}
meshToMesh::meshToMesh
(
const fvMesh& meshFrom,
const fvMesh& meshTo
)
:
fromMesh_(meshFrom),
toMesh_(meshTo),
fromPointMesh_(meshFrom),
cellAddressing_(toMesh_.nCells()),
boundaryAddressing_(toMesh_.boundaryMesh().size()),
inverseDistanceWeightsPtr_(NULL)
{
// check whether both meshes have got the same number
// of boundary patches
if (fromMesh_.boundary().size() != toMesh_.boundary().size())
{
FatalErrorIn
(
"meshToMesh::meshToMesh"
"(const fvMesh& meshFrom, const fvMesh& meshTo)"
) << "Incompatible meshes: different number of patches, "
<< "fromMesh = " << fromMesh_.boundary().size()
<< ", toMesh = " << toMesh_.boundary().size()
<< exit(FatalError);
}
forAll (fromMesh_.boundaryMesh(), patchi)
{
if
(
fromMesh_.boundaryMesh()[patchi].name()
!= toMesh_.boundaryMesh()[patchi].name()
)
{
FatalErrorIn
(
"meshToMesh::meshToMesh"
"(const fvMesh& meshFrom, const fvMesh& meshTo)"
) << "Incompatible meshes: different patch names for patch "
<< patchi
<< ", fromMesh = " << fromMesh_.boundary()[patchi].name()
<< ", toMesh = " << toMesh_.boundary()[patchi].name()
<< exit(FatalError);
}
if
(
fromMesh_.boundaryMesh()[patchi].type()
!= toMesh_.boundaryMesh()[patchi].type()
)
{
FatalErrorIn
(
"meshToMesh::meshToMesh"
"(const fvMesh& meshFrom, const fvMesh& meshTo)"
) << "Incompatible meshes: different patch types for patch "
<< patchi
<< ", fromMesh = " << fromMesh_.boundary()[patchi].type()
<< ", toMesh = " << toMesh_.boundary()[patchi].type()
<< exit(FatalError);
}
fromMeshPatches_.insert
(
fromMesh_.boundaryMesh()[patchi].name(),
patchi
);
toMeshPatches_.insert
(
toMesh_.boundaryMesh()[patchi].name(),
patchi
);
patchMap_.insert
(
toMesh_.boundaryMesh()[patchi].name(),
fromMesh_.boundaryMesh()[patchi].name()
);
}
calcAddressing();
}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
meshToMesh::~meshToMesh()
{
deleteDemandDrivenData(inverseDistanceWeightsPtr_);
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// ************************************************************************* //

View File

@ -0,0 +1,325 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 1991-2007 OpenCFD Ltd.
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Class
Foam::meshToMesh
Description
mesh to mesh interpolation class.
SourceFiles
meshToMesh.C
calculateMeshToMeshAddressing.C
calculateMeshToMeshWeights.C
meshToMeshInterpolate.C
\*---------------------------------------------------------------------------*/
#ifndef meshtoMesh_H
#define meshtoMesh_H
#include "fvMesh.H"
#include "pointMesh.H"
#include "HashTable.H"
#include "fvPatchMapper.H"
#include "scalarList.H"
#include "className.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
template<class Type>
class octree;
class octreeDataCell;
/*---------------------------------------------------------------------------*\
Class meshToMesh Declaration
\*---------------------------------------------------------------------------*/
class meshToMesh
{
// Private data
// mesh references
const fvMesh& fromMesh_;
const fvMesh& toMesh_;
//- fromMesh patch labels
HashTable<label> fromMeshPatches_;
//- toMesh patch labels
HashTable<label> toMeshPatches_;
//- Patch map
HashTable<word> patchMap_;
//- toMesh patch labels which cut the from-mesh
HashTable<label> cuttingPatches_;
//- Point mesh used for interpolation
pointMesh fromPointMesh_;
//- Cell addressing
labelList cellAddressing_;
//- Boundary addressing
labelListList boundaryAddressing_;
//- Inverse-distance interpolation weights
mutable scalarListList* inverseDistanceWeightsPtr_;
// Private Member Functions
void calcAddressing();
void cellAddresses
(
labelList& cells,
const pointField& points,
const fvMesh& fromMesh,
const List<bool>& boundaryCell,
const octree<octreeDataCell>& oc
) const;
void calculateInverseDistanceWeights() const;
const scalarListList& inverseDistanceWeights() const;
// Private static data members
//- Direct hit tolerance
static const scalar directHitTol;
public:
// Declare name of the class and its debug switch
ClassName("meshToMesh");
//- Enumeration specifying required accuracy
enum order
{
MAP,
INTERPOLATE,
CELL_POINT_INTERPOLATE
};
// Constructors
//- Construct from the two meshes, the patch name map for the patches
// to be interpolated and the names of the toMesh-patches which
// cut the fromMesh
meshToMesh
(
const fvMesh& fromMesh,
const fvMesh& toMesh,
const HashTable<word>& patchMap,
const wordList& cuttingPatchNames
);
//- Construct from the two meshes assuming there is an exact mapping
// between the patches
meshToMesh
(
const fvMesh& fromMesh,
const fvMesh& toMesh
);
// Destructor
~meshToMesh();
//- Patch-field interpolation class
class patchFieldInterpolator
:
public fvPatchFieldMapper
{
const labelList& directAddressing_;
public:
// Constructors
//- Construct given addressing
patchFieldInterpolator(const labelList& addr)
:
directAddressing_(addr)
{}
// Destructor
virtual ~patchFieldInterpolator()
{}
// Member Functions
label size() const
{
return directAddressing_.size();
}
bool direct() const
{
return true;
}
const labelList& directAddressing() const
{
return directAddressing_;
}
};
// Member Functions
// Access
const fvMesh& fromMesh() const
{
return fromMesh_;
}
const fvMesh& toMesh() const
{
return toMesh_;
}
//- From toMesh cells to fromMesh cells
const labelList& cellAddressing() const
{
return cellAddressing_;
}
// Interpolation
//- Map field
template<class Type>
void mapField
(
Field<Type>&,
const Field<Type>&,
const labelList& adr
) const;
//- Interpolate field using inverse-distance weights
template<class Type>
void interpolateField
(
Field<Type>&,
const GeometricField<Type, fvPatchField, volMesh>&,
const labelList& adr,
const scalarListList& weights
) const;
//- Interpolate field using cell-point interpolation
template<class Type>
void interpolateField
(
Field<Type>&,
const GeometricField<Type, fvPatchField, volMesh>&,
const labelList& adr,
const vectorField& centres
) const;
//- Interpolate internal volume field
template<class Type>
void interpolateInternalField
(
Field<Type>&,
const GeometricField<Type, fvPatchField, volMesh>&,
order=INTERPOLATE
) const;
template<class Type>
void interpolateInternalField
(
Field<Type>&,
const tmp<GeometricField<Type, fvPatchField, volMesh> >&,
order=INTERPOLATE
) const;
//- Interpolate volume field
template<class Type>
void interpolate
(
GeometricField<Type, fvPatchField, volMesh>&,
const GeometricField<Type, fvPatchField, volMesh>&,
order=INTERPOLATE
) const;
template<class Type>
void interpolate
(
GeometricField<Type, fvPatchField, volMesh>&,
const tmp<GeometricField<Type, fvPatchField, volMesh> >&,
order=INTERPOLATE
) const;
//- Interpolate volume field
template<class Type>
tmp<GeometricField<Type, fvPatchField, volMesh> > interpolate
(
const GeometricField<Type, fvPatchField, volMesh>&,
order=INTERPOLATE
) const;
template<class Type>
tmp<GeometricField<Type, fvPatchField, volMesh> > interpolate
(
const tmp<GeometricField<Type, fvPatchField, volMesh> >&,
order=INTERPOLATE
) const;
};
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#ifdef NoRepository
# include "meshToMeshInterpolate.C"
#endif
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#endif
// ************************************************************************* //

View File

@ -0,0 +1,415 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 1991-2007 OpenCFD Ltd.
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
\*---------------------------------------------------------------------------*/
#include "meshToMesh.H"
#include "volFields.H"
#include "volPointInterpolation.H"
#include "interpolationCellPoint.H"
#include "SubField.H"
#include "mixedFvPatchField.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
template<class Type>
void meshToMesh::mapField
(
Field<Type>& toF,
const Field<Type>& fromVf,
const labelList& adr
) const
{
// Direct mapping of nearest-cell values
forAll(toF, celli)
{
if (adr[celli] != -1)
{
toF[celli] = fromVf[adr[celli]];
}
}
//toF.map(fromVf, adr);
}
template<class Type>
void meshToMesh::interpolateField
(
Field<Type>& toF,
const GeometricField<Type, fvPatchField, volMesh>& fromVf,
const labelList& adr,
const scalarListList& weights
) const
{
// Inverse distance weighted interpolation
// get reference to cellCells
const labelListList& cc = fromMesh_.cellCells();
forAll (toF, celli)
{
if (adr[celli] != -1)
{
const labelList& neighbours = cc[adr[celli]];
const scalarList& w = weights[celli];
toF[celli] = fromVf[adr[celli]]*w[0];
for (label ni = 1; ni < w.size(); ni++)
{
toF[celli] += fromVf[neighbours[ni - 1]]*w[ni];
}
}
}
}
template<class Type>
void meshToMesh::interpolateField
(
Field<Type>& toF,
const GeometricField<Type, fvPatchField, volMesh>& fromVf,
const labelList& adr,
const vectorField& centres
) const
{
// Cell-Point interpolation
volPointInterpolation vpi(fromMesh_, fromPointMesh_);
interpolationCellPoint<Type> interpolator
(
vpi,
fromVf
);
forAll (toF, celli)
{
if (adr[celli] != -1)
{
toF[celli] = interpolator.interpolate
(
centres[celli],
adr[celli]
);
}
}
}
template<class Type>
void meshToMesh::interpolateInternalField
(
Field<Type>& toF,
const GeometricField<Type, fvPatchField, volMesh>& fromVf,
meshToMesh::order ord
) const
{
if (fromVf.mesh() != fromMesh_)
{
FatalErrorIn
(
"meshToMesh::interpolateInternalField(Field<Type>& toF, "
"const GeometricField<Type, fvPatchField, volMesh>& fromVf, "
"meshToMesh::order ord) const"
) << "the argument field does not correspond to the right mesh. "
<< "Field size: " << fromVf.size()
<< " mesh size: " << fromMesh_.nCells()
<< exit(FatalError);
}
if (toF.size() != toMesh_.nCells())
{
FatalErrorIn
(
"meshToMesh::interpolateInternalField(Field<Type>& toF, "
"const GeometricField<Type, fvPatchField, volMesh>& fromVf, "
"meshToMesh::order ord) const"
) << "the argument field does not correspond to the right mesh. "
<< "Field size: " << toF.size()
<< " mesh size: " << toMesh_.nCells()
<< exit(FatalError);
}
switch(ord)
{
case MAP:
mapField(toF, fromVf, cellAddressing_);
break;
case INTERPOLATE:
interpolateField
(
toF,
fromVf,
cellAddressing_,
inverseDistanceWeights()
);
break;
case CELL_POINT_INTERPOLATE:
interpolateField
(
toF,
fromVf,
cellAddressing_,
toMesh_.cellCentres()
);
break;
default:
FatalErrorIn
(
"meshToMesh::interpolateInternalField(Field<Type>& toF, "
"const GeometricField<Type, fvPatchField, volMesh>& fromVf, "
"meshToMesh::order ord) const"
) << "unknown interpolation scheme " << ord
<< exit(FatalError);
}
}
template<class Type>
void meshToMesh::interpolateInternalField
(
Field<Type>& toF,
const tmp<GeometricField<Type, fvPatchField, volMesh> >& tfromVf,
meshToMesh::order ord
) const
{
interpolateInternalField(toF, tfromVf(), ord);
tfromVf.clear();
}
template<class Type>
void meshToMesh::interpolate
(
GeometricField<Type, fvPatchField, volMesh>& toVf,
const GeometricField<Type, fvPatchField, volMesh>& fromVf,
meshToMesh::order ord
) const
{
interpolateInternalField(toVf, fromVf, ord);
forAll (toMesh_.boundaryMesh(), patchi)
{
const fvPatch& toPatch = toMesh_.boundary()[patchi];
if (cuttingPatches_.found(toPatch.name()))
{
switch(ord)
{
case MAP:
mapField
(
toVf.boundaryField()[patchi],
fromVf,
boundaryAddressing_[patchi]
);
break;
case INTERPOLATE:
interpolateField
(
toVf.boundaryField()[patchi],
fromVf,
boundaryAddressing_[patchi],
toPatch.Cf()
);
break;
case CELL_POINT_INTERPOLATE:
interpolateField
(
toVf.boundaryField()[patchi],
fromVf,
boundaryAddressing_[patchi],
toPatch.Cf()
);
break;
default:
FatalErrorIn
(
"meshToMesh::interpolate("
"GeometricField<Type, fvPatchField, volMesh>& toVf, "
"const GeometricField<Type, fvPatchField, volMesh>& "
"fromVf, meshToMesh::order ord) const"
) << "unknown interpolation scheme " << ord
<< exit(FatalError);
}
if (isA<mixedFvPatchField<Type> >(toVf.boundaryField()[patchi]))
{
refCast<mixedFvPatchField<Type> >
(
toVf.boundaryField()[patchi]
).refValue() = toVf.boundaryField()[patchi];
}
}
else if
(
patchMap_.found(toPatch.name())
&& fromMeshPatches_.found(patchMap_.find(toPatch.name())())
)
{
/*
toVf.boundaryField()[patchi].map
(
fromVf.boundaryField()
[
fromMeshPatches_.find(patchMap_.find(toPatch.name())())()
],
boundaryAddressing_[patchi]
);
*/
mapField
(
toVf.boundaryField()[patchi],
fromVf.boundaryField()
[
fromMeshPatches_.find(patchMap_.find(toPatch.name())())()
],
boundaryAddressing_[patchi]
);
}
}
}
template<class Type>
void meshToMesh::interpolate
(
GeometricField<Type, fvPatchField, volMesh>& toVf,
const tmp<GeometricField<Type, fvPatchField, volMesh> >& tfromVf,
meshToMesh::order ord
) const
{
interpolate(toVf, tfromVf(), ord);
tfromVf.clear();
}
template<class Type>
tmp<GeometricField<Type, fvPatchField, volMesh> > meshToMesh::interpolate
(
const GeometricField<Type, fvPatchField, volMesh>& fromVf,
meshToMesh::order ord
) const
{
// Create and map the internal-field values
Field<Type> internalField(toMesh_.nCells());
interpolateInternalField(internalField, fromVf, ord);
// check whether both meshes have got the same number
// of boundary patches
if (fromMesh_.boundary().size() != toMesh_.boundary().size())
{
FatalErrorIn
(
"meshToMesh::interpolate"
"(const GeometricField<Type, fvPatchField, volMesh>& fromVf,"
"meshToMesh::order ord) const"
) << "Incompatible meshes: different number of boundaries, "
"only internal field may be interpolated"
<< exit(FatalError);
}
// Create and map the patch field values
PtrList<fvPatchField<Type> > patchFields
(
boundaryAddressing_.size()
);
forAll (boundaryAddressing_, patchI)
{
patchFields.set
(
patchI,
fvPatchField<Type>::New
(
fromVf.boundaryField()[patchI],
toMesh_.boundary()[patchI],
DimensionedField<Type, volMesh>::null(),
patchFieldInterpolator
(
boundaryAddressing_[patchI]
)
)
);
}
// Create the complete field from the pieces
tmp<GeometricField<Type, fvPatchField, volMesh> > ttoF
(
new GeometricField<Type, fvPatchField, volMesh>
(
IOobject
(
"interpolated(" + fromVf.name() + ')',
toMesh_.time().timeName(),
toMesh_,
IOobject::NO_READ,
IOobject::NO_WRITE
),
toMesh_,
fromVf.dimensions(),
internalField,
patchFields
)
);
return ttoF;
}
template<class Type>
tmp<GeometricField<Type, fvPatchField, volMesh> > meshToMesh::interpolate
(
const tmp<GeometricField<Type, fvPatchField, volMesh> >& tfromVf,
meshToMesh::order ord
) const
{
tmp<GeometricField<Type, fvPatchField, volMesh> > tint =
interpolate(tfromVf(), ord);
tfromVf.clear();
return tint;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// ************************************************************************* //