mirror of
https://develop.openfoam.com/Development/openfoam.git
synced 2025-11-28 03:28:01 +00:00
ENH: Added new steadyReactingParcelFoam solver
This commit is contained in:
@ -0,0 +1,3 @@
|
||||
steadyReactingParcelFoam.C
|
||||
|
||||
EXE = $(FOAM_APPBIN)/steadyReactingParcelFoam
|
||||
@ -0,0 +1,43 @@
|
||||
EXE_INC = \
|
||||
-I$(LIB_SRC)/finiteVolume/lnInclude \
|
||||
-I${LIB_SRC}/meshTools/lnInclude \
|
||||
-I$(LIB_SRC)/turbulenceModels/compressible/turbulenceModel \
|
||||
-I$(LIB_SRC)/lagrangian/basic/lnInclude \
|
||||
-I$(LIB_SRC)/lagrangian/intermediate/lnInclude \
|
||||
-I$(LIB_SRC)/lagrangian/coalCombustion/lnInclude \
|
||||
-I$(LIB_SRC)/thermophysicalModels/pdfs/lnInclude \
|
||||
-I$(LIB_SRC)/thermophysicalModels/specie/lnInclude \
|
||||
-I$(LIB_SRC)/thermophysicalModels/basic/lnInclude \
|
||||
-I$(LIB_SRC)/thermophysicalModels/liquids/lnInclude \
|
||||
-I$(LIB_SRC)/thermophysicalModels/liquidMixture/lnInclude \
|
||||
-I$(LIB_SRC)/thermophysicalModels/solids/lnInclude \
|
||||
-I$(LIB_SRC)/thermophysicalModels/solidMixture/lnInclude \
|
||||
-I$(LIB_SRC)/thermophysicalModels/thermophysicalFunctions/lnInclude \
|
||||
-I$(LIB_SRC)/thermophysicalModels/reactionThermo/lnInclude \
|
||||
-I$(LIB_SRC)/thermophysicalModels/SLGThermo/lnInclude \
|
||||
-I$(LIB_SRC)/thermophysicalModels/chemistryModel/lnInclude \
|
||||
-I$(LIB_SRC)/thermophysicalModels/radiation/lnInclude \
|
||||
-I$(LIB_SRC)/ODE/lnInclude \
|
||||
-I$(LIB_SRC)/surfaceFilmModels/lnInclude
|
||||
|
||||
EXE_LIBS = \
|
||||
-lfiniteVolume \
|
||||
-lmeshTools \
|
||||
-lcompressibleTurbulenceModel \
|
||||
-lcompressibleRASModels \
|
||||
-lcompressibleLESModels \
|
||||
-llagrangian \
|
||||
-llagrangianIntermediate \
|
||||
-lspecie \
|
||||
-lbasicThermophysicalModels \
|
||||
-lliquids \
|
||||
-lliquidMixture \
|
||||
-lsolids \
|
||||
-lsolidMixture \
|
||||
-lthermophysicalFunctions \
|
||||
-lreactionThermophysicalModels \
|
||||
-lSLGThermo \
|
||||
-lchemistryModel \
|
||||
-lradiation \
|
||||
-lODE \
|
||||
-lsurfaceFilmModels
|
||||
@ -0,0 +1,19 @@
|
||||
fvVectorMatrix UEqn
|
||||
(
|
||||
// fvm::ddt(rho, U)
|
||||
pZones.ddt(rho, U)
|
||||
+ fvm::div(phi, U)
|
||||
+ turbulence->divDevRhoReff(U)
|
||||
==
|
||||
rho.dimensionedInternalField()*g
|
||||
+ parcels.SU(U)
|
||||
+ momentumSource.Su()
|
||||
);
|
||||
|
||||
pZones.addResistance(UEqn);
|
||||
|
||||
if (momentumPredictor)
|
||||
{
|
||||
solve(UEqn == -fvc::grad(p));
|
||||
}
|
||||
|
||||
@ -0,0 +1,47 @@
|
||||
|
||||
tmp<fv::convectionScheme<scalar> > mvConvection
|
||||
(
|
||||
fv::convectionScheme<scalar>::New
|
||||
(
|
||||
mesh,
|
||||
fields,
|
||||
phi,
|
||||
mesh.divScheme("div(phi,Yi_h)")
|
||||
)
|
||||
);
|
||||
|
||||
|
||||
if (solveSpecies)
|
||||
{
|
||||
label inertIndex = -1;
|
||||
volScalarField Yt = 0.0*Y[0];
|
||||
|
||||
forAll(Y, i)
|
||||
{
|
||||
if (Y[i].name() != inertSpecie)
|
||||
{
|
||||
volScalarField& Yi = Y[i];
|
||||
solve
|
||||
(
|
||||
fvm::ddt(rho, Yi)
|
||||
+ mvConvection->fvmDiv(phi, Yi)
|
||||
- fvm::laplacian(turbulence->muEff(), Yi)
|
||||
==
|
||||
parcels.SYi(i, Yi)
|
||||
+ kappa*chemistry.RR(i)().dimensionedInternalField()
|
||||
+ massSource.Su(i),
|
||||
mesh.solver("Yi")
|
||||
);
|
||||
|
||||
Yi.max(0.0);
|
||||
Yt += Yi;
|
||||
}
|
||||
else
|
||||
{
|
||||
inertIndex = i;
|
||||
}
|
||||
}
|
||||
|
||||
Y[inertIndex] = scalar(1) - Yt;
|
||||
Y[inertIndex].max(0.0);
|
||||
}
|
||||
@ -0,0 +1,27 @@
|
||||
{
|
||||
Info<< "Solving chemistry" << endl;
|
||||
|
||||
chemistry.solve
|
||||
(
|
||||
runTime.value() - runTime.deltaTValue(),
|
||||
runTime.deltaTValue()
|
||||
);
|
||||
|
||||
// turbulent time scale
|
||||
if (turbulentReaction)
|
||||
{
|
||||
DimensionedField<scalar, volMesh> tk =
|
||||
Cmix*sqrt(turbulence->muEff()/rho/turbulence->epsilon());
|
||||
DimensionedField<scalar, volMesh> tc =
|
||||
chemistry.tc()().dimensionedInternalField();
|
||||
|
||||
// Chalmers PaSR model
|
||||
kappa = (runTime.deltaT() + tc)/(runTime.deltaT() + tc + tk);
|
||||
}
|
||||
else
|
||||
{
|
||||
kappa = 1.0;
|
||||
}
|
||||
|
||||
chemistrySh = kappa*chemistry.Sh()();
|
||||
}
|
||||
@ -0,0 +1,9 @@
|
||||
Info<< "\nConstructing reacting cloud" << endl;
|
||||
basicReactingMultiphaseCloud parcels
|
||||
(
|
||||
"reactingCloud1",
|
||||
rho,
|
||||
U,
|
||||
g,
|
||||
slgThermo
|
||||
);
|
||||
@ -0,0 +1,27 @@
|
||||
Info<< "Creating mass source\n" << endl;
|
||||
scalarTimeActivatedExplicitSourceList massSource
|
||||
(
|
||||
"mass",
|
||||
mesh,
|
||||
dimMass/dimTime/dimVolume,
|
||||
composition.species()
|
||||
);
|
||||
|
||||
|
||||
Info<< "Creating momentum source\n" << endl;
|
||||
vectorTimeActivatedExplicitSourceList momentumSource
|
||||
(
|
||||
"momentum",
|
||||
mesh,
|
||||
dimMass*dimVelocity/dimTime/dimVolume,
|
||||
"U"
|
||||
);
|
||||
|
||||
Info<< "Creating energy source\n" << endl;
|
||||
scalarTimeActivatedExplicitSourceList energySource
|
||||
(
|
||||
"energy",
|
||||
mesh,
|
||||
dimEnergy/dimTime/dimVolume,
|
||||
"h"
|
||||
);
|
||||
@ -0,0 +1,149 @@
|
||||
Info<< "Reading thermophysical properties\n" << endl;
|
||||
|
||||
autoPtr<rhoChemistryModel> pChemistry
|
||||
(
|
||||
rhoChemistryModel::New(mesh)
|
||||
);
|
||||
rhoChemistryModel& chemistry = pChemistry();
|
||||
|
||||
hsReactionThermo& thermo = chemistry.thermo();
|
||||
|
||||
SLGThermo slgThermo(mesh, thermo);
|
||||
|
||||
basicMultiComponentMixture& composition = thermo.composition();
|
||||
PtrList<volScalarField>& Y = composition.Y();
|
||||
|
||||
const word inertSpecie(thermo.lookup("inertSpecie"));
|
||||
|
||||
if (!composition.contains(inertSpecie))
|
||||
{
|
||||
FatalErrorIn(args.executable())
|
||||
<< "Specified inert specie '" << inertSpecie << "' not found in "
|
||||
<< "species list. Available species:" << composition.species()
|
||||
<< exit(FatalError);
|
||||
}
|
||||
|
||||
volScalarField& p = thermo.p();
|
||||
volScalarField& hs = thermo.hs();
|
||||
const volScalarField& T = thermo.T();
|
||||
const volScalarField& psi = thermo.psi();
|
||||
|
||||
volScalarField rho
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"rho",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::NO_READ,
|
||||
IOobject::AUTO_WRITE
|
||||
),
|
||||
thermo.rho()
|
||||
);
|
||||
|
||||
Info<< "\nReading field U\n" << endl;
|
||||
volVectorField U
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"U",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::MUST_READ,
|
||||
IOobject::AUTO_WRITE
|
||||
),
|
||||
mesh
|
||||
);
|
||||
|
||||
#include "compressibleCreatePhi.H"
|
||||
|
||||
DimensionedField<scalar, volMesh> kappa
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"kappa",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::NO_READ,
|
||||
IOobject::AUTO_WRITE
|
||||
),
|
||||
mesh,
|
||||
dimensionedScalar("zero", dimless, 0.0)
|
||||
);
|
||||
|
||||
dimensionedScalar rhoMax
|
||||
(
|
||||
mesh.solutionDict().subDict("PIMPLE").lookup("rhoMax")
|
||||
);
|
||||
|
||||
dimensionedScalar rhoMin
|
||||
(
|
||||
mesh.solutionDict().subDict("PIMPLE").lookup("rhoMin")
|
||||
);
|
||||
|
||||
Info<< "Creating turbulence model\n" << endl;
|
||||
autoPtr<compressible::turbulenceModel> turbulence
|
||||
(
|
||||
compressible::turbulenceModel::New
|
||||
(
|
||||
rho,
|
||||
U,
|
||||
phi,
|
||||
thermo
|
||||
)
|
||||
);
|
||||
|
||||
Info<< "Creating multi-variate interpolation scheme\n" << endl;
|
||||
multivariateSurfaceInterpolationScheme<scalar>::fieldTable fields;
|
||||
|
||||
forAll(Y, i)
|
||||
{
|
||||
fields.add(Y[i]);
|
||||
}
|
||||
fields.add(hs);
|
||||
|
||||
DimensionedField<scalar, volMesh> chemistrySh
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"chemistry::Sh",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::NO_READ,
|
||||
IOobject::NO_WRITE
|
||||
),
|
||||
mesh,
|
||||
dimensionedScalar("chemistrySh", dimEnergy/dimTime/dimVolume, 0.0)
|
||||
);
|
||||
|
||||
volScalarField invTauFlow
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"invTauFlow",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::READ_IF_PRESENT,
|
||||
IOobject::AUTO_WRITE
|
||||
),
|
||||
mesh,
|
||||
dimensionedScalar("one", dimless/dimTime, 1),
|
||||
zeroGradientFvPatchScalarField::typeName
|
||||
);
|
||||
|
||||
Info<< "Creating field DpDt\n" << endl;
|
||||
volScalarField DpDt
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"DpDt",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::NO_READ,
|
||||
IOobject::NO_WRITE
|
||||
),
|
||||
mesh,
|
||||
dimensionedScalar("zero", dimPressure/dimTime, 0.0)
|
||||
);
|
||||
|
||||
#include "setPressureWork.H"
|
||||
@ -0,0 +1,3 @@
|
||||
Info<< "Creating porous zones" << nl << endl;
|
||||
|
||||
porousZones pZones(mesh);
|
||||
@ -0,0 +1,23 @@
|
||||
{
|
||||
fvScalarMatrix hsEqn
|
||||
(
|
||||
fvm::ddt(rho, hs)
|
||||
+ mvConvection->fvmDiv(phi, hs)
|
||||
- fvm::laplacian(turbulence->alphaEff(), hs)
|
||||
==
|
||||
DpDt
|
||||
+ parcels.Sh(hs)
|
||||
+ radiation->Shs(thermo)
|
||||
+ energySource.Su()
|
||||
+ chemistrySh
|
||||
);
|
||||
|
||||
hsEqn.solve();
|
||||
|
||||
thermo.correct();
|
||||
|
||||
radiation->correct();
|
||||
|
||||
Info<< "T gas min/max = " << min(T).value() << ", "
|
||||
<< max(T).value() << endl;
|
||||
}
|
||||
@ -0,0 +1,60 @@
|
||||
{
|
||||
rho = thermo.rho();
|
||||
|
||||
// Thermodynamic density needs to be updated by psi*d(p) after the
|
||||
// pressure solution - done in 2 parts. Part 1:
|
||||
thermo.rho() -= psi*p;
|
||||
|
||||
volScalarField rAU = 1.0/UEqn.A();
|
||||
U = rAU*UEqn.H();
|
||||
|
||||
if (pZones.size() > 0)
|
||||
{
|
||||
// ddtPhiCorr not well defined for cases with porosity
|
||||
phi = fvc::interpolate(rho)*(fvc::interpolate(U) & mesh.Sf());
|
||||
}
|
||||
else
|
||||
{
|
||||
phi =
|
||||
fvc::interpolate(rho)
|
||||
*(
|
||||
(fvc::interpolate(U) & mesh.Sf())
|
||||
+ fvc::ddtPhiCorr(rAU, rho, U, phi)
|
||||
);
|
||||
}
|
||||
|
||||
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
|
||||
{
|
||||
fvScalarMatrix pEqn
|
||||
(
|
||||
fvc::ddt(rho) + psi*correction(fvm::ddt(p))
|
||||
+ fvc::div(phi)
|
||||
- fvm::laplacian(rho*rAU, p)
|
||||
==
|
||||
parcels.Srho()
|
||||
+ massSource.SuTot()
|
||||
);
|
||||
|
||||
pEqn.solve();
|
||||
|
||||
if (nonOrth == nNonOrthCorr)
|
||||
{
|
||||
phi += pEqn.flux();
|
||||
}
|
||||
}
|
||||
|
||||
// Second part of thermodynamic density update
|
||||
thermo.rho() += psi*p;
|
||||
|
||||
#include "rhoEqn.H" // NOTE: flux and time scales now inconsistent
|
||||
#include "compressibleContinuityErrs.H"
|
||||
|
||||
U -= rAU*fvc::grad(p);
|
||||
U.correctBoundaryConditions();
|
||||
|
||||
rho = thermo.rho();
|
||||
rho = max(rho, rhoMin);
|
||||
rho = min(rho, rhoMax);
|
||||
|
||||
#include "setPressureWork.H"
|
||||
}
|
||||
@ -0,0 +1,7 @@
|
||||
dictionary additional = mesh.solutionDict().subDict("additional");
|
||||
|
||||
bool eWork = additional.lookupOrDefault("eWork", true);
|
||||
bool hWork = additional.lookupOrDefault("hWork", true);
|
||||
|
||||
// flag to activate solve transport for each specie (Y vector)
|
||||
bool solveSpecies = additional.lookupOrDefault("solveSpecies", true);
|
||||
@ -0,0 +1,23 @@
|
||||
Info<< "Reading chemistry properties\n" << endl;
|
||||
|
||||
IOdictionary chemistryProperties
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"chemistryProperties",
|
||||
runTime.constant(),
|
||||
mesh,
|
||||
IOobject::MUST_READ_IF_MODIFIED,
|
||||
IOobject::NO_WRITE,
|
||||
false
|
||||
)
|
||||
);
|
||||
|
||||
Switch turbulentReaction(chemistryProperties.lookup("turbulentReaction"));
|
||||
|
||||
dimensionedScalar Cmix("Cmix", dimless, 1.0);
|
||||
|
||||
if (turbulentReaction)
|
||||
{
|
||||
chemistryProperties.lookup("Cmix") >> Cmix;
|
||||
}
|
||||
@ -0,0 +1,71 @@
|
||||
/*---------------------------------------------------------------------------*\
|
||||
========= |
|
||||
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
||||
\\ / O peration |
|
||||
\\ / A nd | Copyright (C) 2010-2010 OpenCFD Ltd.
|
||||
\\/ M anipulation |
|
||||
-------------------------------------------------------------------------------
|
||||
License
|
||||
This file is part of OpenFOAM.
|
||||
|
||||
OpenFOAM is free software; you can redistribute it and/or modify it
|
||||
under the terms of the GNU General Public License as published by the
|
||||
Free Software Foundation; either version 2 of the License, or (at your
|
||||
option) any later version.
|
||||
|
||||
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
||||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OpenFOAM; if not, write to the Free Software Foundation,
|
||||
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
// Maximum flow Courant number
|
||||
scalar maxCo(readScalar(runTime.controlDict().lookup("maxCo")));
|
||||
|
||||
// Maximum time scale
|
||||
scalar maxDeltaT = readScalar(runTime.controlDict().lookup("maxDeltaT"));
|
||||
|
||||
// Smoothing parameter (0-1) when smoothing iterations > 0
|
||||
scalar alphaTauSmooth
|
||||
(
|
||||
runTime.controlDict().lookupOrDefault("alphaTauSmooth", 0.1)
|
||||
);
|
||||
|
||||
// Maximum change in cell density per iteration (relative to previous value)
|
||||
scalar alphaTauRho
|
||||
(
|
||||
runTime.controlDict().lookupOrDefault("alphaTauRho", 0.05)
|
||||
);
|
||||
|
||||
// Maximum change in cell velocity per iteration (relative to previous value)
|
||||
scalar alphaTauU
|
||||
(
|
||||
runTime.controlDict().lookupOrDefault("alphaTauU", 0.05)
|
||||
);
|
||||
|
||||
// Maximum change in cell temperature per iteration (relative to previous value)
|
||||
scalar alphaTauTemp
|
||||
(
|
||||
runTime.controlDict().lookupOrDefault("alphaTauTemp", 0.05)
|
||||
);
|
||||
|
||||
// Max specie mass fraction that can be consumed/gained per chemistry
|
||||
// integration step
|
||||
scalar alphaTauSpecie
|
||||
(
|
||||
runTime.controlDict().lookupOrDefault("alphaTauSpecie", 0.05)
|
||||
);
|
||||
|
||||
// Maximum unboundedness allowed (fraction of 1)
|
||||
scalar specieMaxUnbound
|
||||
(
|
||||
runTime.controlDict().lookupOrDefault("specieMaxUnbound", 0.01)
|
||||
);
|
||||
|
||||
|
||||
// ************************************************************************* //
|
||||
@ -0,0 +1,45 @@
|
||||
/*---------------------------------------------------------------------------*\
|
||||
========= |
|
||||
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
||||
\\ / O peration |
|
||||
\\ / A nd | Copyright (C) 2008-2010 OpenCFD Ltd.
|
||||
\\/ M anipulation |
|
||||
-------------------------------------------------------------------------------
|
||||
License
|
||||
This file is part of OpenFOAM.
|
||||
|
||||
OpenFOAM is free software: you can redistribute it and/or modify it
|
||||
under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
||||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
Global
|
||||
rhoEqn
|
||||
|
||||
Description
|
||||
Solve the continuity for density.
|
||||
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
{
|
||||
fvScalarMatrix rhoEqn
|
||||
(
|
||||
fvm::ddt(rho)
|
||||
+ fvc::div(phi)
|
||||
==
|
||||
parcels.Srho(rho)
|
||||
+ massSource.SuTot()
|
||||
);
|
||||
|
||||
rhoEqn.solve();
|
||||
}
|
||||
|
||||
// ************************************************************************* //
|
||||
@ -0,0 +1,10 @@
|
||||
DpDt == dimensionedScalar("zero", DpDt.dimensions(), 0.0);
|
||||
|
||||
if (eWork)
|
||||
{
|
||||
DpDt += -p*fvc::div(phi/fvc::interpolate(rho));
|
||||
}
|
||||
if (hWork)
|
||||
{
|
||||
DpDt += fvc::div(phi/fvc::interpolate(rho)*fvc::interpolate(p));
|
||||
}
|
||||
@ -0,0 +1,123 @@
|
||||
/*---------------------------------------------------------------------------*\
|
||||
========= |
|
||||
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
||||
\\ / O peration |
|
||||
\\ / A nd | Copyright (C) 2008-2010 OpenCFD Ltd.
|
||||
\\/ M anipulation |
|
||||
-------------------------------------------------------------------------------
|
||||
License
|
||||
This file is part of OpenFOAM.
|
||||
|
||||
OpenFOAM is free software: you can redistribute it and/or modify it
|
||||
under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
||||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
Application
|
||||
porousExplicitSourceReactingParcelFoam
|
||||
|
||||
Description
|
||||
Transient PISO solver for compressible, laminar or turbulent flow with
|
||||
reacting multiphase Lagrangian parcels for porous media, including explicit
|
||||
sources for mass, momentum and energy
|
||||
|
||||
The solver includes:
|
||||
- reacting multiphase parcel cloud
|
||||
- porous media
|
||||
- mass, momentum and energy sources
|
||||
|
||||
Note: ddtPhiCorr not used here when porous zones are active
|
||||
- not well defined for porous calculations
|
||||
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
#include "fvCFD.H"
|
||||
#include "hReactionThermo.H"
|
||||
#include "turbulenceModel.H"
|
||||
#include "basicReactingMultiphaseCloud.H"
|
||||
#include "rhoChemistryModel.H"
|
||||
#include "chemistrySolver.H"
|
||||
#include "radiationModel.H"
|
||||
#include "porousZones.H"
|
||||
#include "timeActivatedExplicitSource.H"
|
||||
#include "SLGThermo.H"
|
||||
#include "fvcSmooth.H"
|
||||
|
||||
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
#include "setRootCase.H"
|
||||
|
||||
#include "createTime.H"
|
||||
#include "createMesh.H"
|
||||
#include "readGravitationalAcceleration.H"
|
||||
#include "readTimeControls.H"
|
||||
#include "readAdditionalSolutionControls.H"
|
||||
#include "createFields.H"
|
||||
#include "createRadiationModel.H"
|
||||
#include "createClouds.H"
|
||||
#include "createExplicitSources.H"
|
||||
#include "createPorousZones.H"
|
||||
#include "initContinuityErrs.H"
|
||||
|
||||
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
||||
|
||||
Info<< "\nStarting time loop\n" << endl;
|
||||
|
||||
while (runTime.run())
|
||||
{
|
||||
#include "readSIMPLEControls.H"
|
||||
#include "readChemistryProperties.H"
|
||||
#include "readAdditionalSolutionControls.H"
|
||||
#include "readTimeControls.H"
|
||||
|
||||
runTime++;
|
||||
|
||||
Info<< "Time = " << runTime.timeName() << nl << endl;
|
||||
|
||||
p.storePrevIter();
|
||||
|
||||
// --- Pressure-velocity corrector
|
||||
{
|
||||
parcels.evolve();
|
||||
|
||||
#include "chemistry.H"
|
||||
|
||||
#include "timeScales.H"
|
||||
|
||||
#include "rhoEqn.H"
|
||||
#include "UEqn.H"
|
||||
#include "YEqn.H"
|
||||
#include "hsEqn.H"
|
||||
|
||||
#include "pEqn.H"
|
||||
|
||||
turbulence->correct();
|
||||
}
|
||||
|
||||
if (runTime.write())
|
||||
{
|
||||
chemistry.dQ()().write();
|
||||
}
|
||||
|
||||
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
|
||||
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
|
||||
<< nl << endl;
|
||||
}
|
||||
|
||||
Info<< "End\n" << endl;
|
||||
|
||||
return(0);
|
||||
}
|
||||
|
||||
|
||||
// ************************************************************************* //
|
||||
@ -0,0 +1,229 @@
|
||||
/*---------------------------------------------------------------------------*\
|
||||
========= |
|
||||
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
||||
\\ / O peration |
|
||||
\\ / A nd | Copyright (C) 2010-2010 OpenCFD Ltd.
|
||||
\\/ M anipulation |
|
||||
-------------------------------------------------------------------------------
|
||||
License
|
||||
This file is part of OpenFOAM.
|
||||
|
||||
OpenFOAM is free software; you can redistribute it and/or modify it
|
||||
under the terms of the GNU General Public License as published by the
|
||||
Free Software Foundation; either version 2 of the License, or (at your
|
||||
option) any later version.
|
||||
|
||||
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
||||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OpenFOAM; if not, write to the Free Software Foundation,
|
||||
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
Info<< "Time scales min/max:" << endl;
|
||||
|
||||
|
||||
{
|
||||
// Cache old time scale field
|
||||
tmp<volScalarField> tinvTauFlow0
|
||||
(
|
||||
new volScalarField
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"invTauFlow0",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::NO_READ,
|
||||
IOobject::NO_WRITE,
|
||||
false
|
||||
),
|
||||
invTauFlow
|
||||
)
|
||||
);
|
||||
const volScalarField& invTauFlow0 = tinvTauFlow0();
|
||||
|
||||
|
||||
// Flow time scale
|
||||
// ~~~~~~~~~~~~~~~
|
||||
{
|
||||
invTauFlow =
|
||||
fvc::surfaceSum
|
||||
(
|
||||
mag(phi)*mesh.deltaCoeffs()/(maxCo*mesh.magSf())
|
||||
)
|
||||
/rho;
|
||||
|
||||
invTauFlow.max(1.0/maxDeltaT);
|
||||
|
||||
Info<< " Flow = " << gMin(1/invTauFlow.internalField()) << ", "
|
||||
<< gMax(1/invTauFlow.internalField()) << endl;
|
||||
}
|
||||
|
||||
|
||||
// Mass source time scale
|
||||
// ~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
{
|
||||
scalarField tau =
|
||||
runTime.deltaTValue()*mag(parcels.Srho() + massSource.SuTot());
|
||||
|
||||
tau = alphaTauRho*rho/(tau + ROOTVSMALL);
|
||||
|
||||
Info<< " Density = " << min(maxDeltaT, gMin(tau)) << ", "
|
||||
<< min(maxDeltaT, gMax(tau)) << endl;
|
||||
|
||||
invTauFlow.internalField() = max(invTauFlow.internalField(), 1/tau);
|
||||
}
|
||||
|
||||
|
||||
// Momentum source time scale
|
||||
// ~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
{
|
||||
/*
|
||||
// Method 1 - mag(U) limit using 'small' nominal velocity
|
||||
scalarField tau =
|
||||
runTime.deltaTValue()
|
||||
*mag
|
||||
(
|
||||
rho.dimensionedInternalField()*g
|
||||
+ parcels.UTrans()/(mesh.V()*runTime.deltaT())
|
||||
+ momentumSource.Su()
|
||||
)
|
||||
/rho;
|
||||
|
||||
const scalar nomMagU(dimensionedScalar("1", dimVelocity, 1));
|
||||
tau = alphaTauU*(nomMagU + mag(U))/(tau + ROOTVSMALL);
|
||||
*/
|
||||
/*
|
||||
// Method 2 - based on fluxes and Co-like limit
|
||||
volVectorField UEqnRhs
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"UEqnRhs",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::NO_READ,
|
||||
IOobject::NO_WRITE,
|
||||
false
|
||||
),
|
||||
mesh,
|
||||
dimensionedVector("zero", dimDensity*dimAcceleration, vector::zero),
|
||||
zeroGradientFvPatchVectorField::typeName
|
||||
);
|
||||
|
||||
UEqnRhs.internalField() =
|
||||
rho.dimensionedInternalField()*g
|
||||
+ parcels.UTrans()/(mesh.V()*runTime.deltaT())
|
||||
+ momentumSource.Su();
|
||||
|
||||
surfaceScalarField phiSU
|
||||
(
|
||||
"phiSU",
|
||||
fvc::interpolate(runTime.deltaT()*UEqnRhs) & mesh.Sf()
|
||||
);
|
||||
|
||||
scalarField tau =
|
||||
alphaTauU*rho
|
||||
/fvc::surfaceSum
|
||||
(
|
||||
mag(phi + phiSU)*mesh.deltaCoeffs()/mesh.magSf()
|
||||
+ dimensionedScalar("SMALL", dimDensity/dimTime, ROOTVSMALL)
|
||||
);
|
||||
|
||||
*/
|
||||
/*
|
||||
Info<< " Momentum = " << min(maxDeltaT, gMin(tau)) << ", "
|
||||
<< min(maxDeltaT, gMax(tau)) << endl;
|
||||
|
||||
invTauFlow.internalField() = max(invTauFlow.internalField(), 1/tau);
|
||||
*/
|
||||
}
|
||||
|
||||
|
||||
// Temperature source time scale
|
||||
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
{
|
||||
scalarField tau =
|
||||
runTime.deltaTValue()
|
||||
*mag
|
||||
(
|
||||
DpDt
|
||||
+ parcels.hsTrans()/(mesh.V()*runTime.deltaT())
|
||||
+ energySource.Su()
|
||||
+ chemistrySh
|
||||
)
|
||||
/rho;
|
||||
|
||||
tau = alphaTauTemp*thermo.Cp()*T/(tau + ROOTVSMALL);
|
||||
|
||||
Info<< " Temperature = " << min(maxDeltaT, gMin(tau)) << ", "
|
||||
<< min(maxDeltaT, gMax(tau)) << endl;
|
||||
|
||||
invTauFlow.internalField() = max(invTauFlow.internalField(), 1/tau);
|
||||
}
|
||||
|
||||
|
||||
// Specie source time scale
|
||||
// ~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
{
|
||||
scalarField tau(mesh.nCells(), ROOTVGREAT);
|
||||
forAll(Y, fieldI)
|
||||
{
|
||||
const volScalarField& Yi = Y[fieldI];
|
||||
const scalarField deltaYi =
|
||||
runTime.deltaTValue()
|
||||
*mag
|
||||
(
|
||||
kappa*chemistry.RR(fieldI)()
|
||||
+ massSource.Su(fieldI)
|
||||
+ parcels.Srho(fieldI)
|
||||
)
|
||||
/rho;
|
||||
tau =
|
||||
min
|
||||
(
|
||||
tau,
|
||||
alphaTauSpecie
|
||||
/(deltaYi/(Yi + specieMaxUnbound) + ROOTVSMALL)
|
||||
);
|
||||
}
|
||||
|
||||
Info<< " Specie = " << min(maxDeltaT, gMin(tau)) << ", "
|
||||
<< min(maxDeltaT, gMax(tau)) << endl;
|
||||
|
||||
invTauFlow.internalField() = max(invTauFlow.internalField(), 1/tau);
|
||||
}
|
||||
|
||||
|
||||
// Limit rate of change of time scale
|
||||
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
// - reduce as much as required for flow, but limit source contributions
|
||||
const dimensionedScalar deltaTRamp("deltaTRamp", dimless, 1/(1 + 0.2));
|
||||
invTauFlow = max(invTauFlow, invTauFlow0*deltaTRamp);
|
||||
tinvTauFlow0.clear();
|
||||
|
||||
|
||||
// Limit the largest time scale
|
||||
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
invTauFlow.max(1/maxDeltaT);
|
||||
|
||||
|
||||
// Spatially smooth the time scale field
|
||||
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
fvc::smooth(invTauFlow, alphaTauSmooth);
|
||||
|
||||
Info<< " Overall = " << min(1/invTauFlow).value()
|
||||
<< ", " << max(1/invTauFlow).value() << nl << endl;
|
||||
}
|
||||
|
||||
|
||||
// ************************************************************************* //
|
||||
Reference in New Issue
Block a user