STYLE: centralize example dictionaries under etc/ (issue #1074)

- as well as being more convenient to find, this is necessary when the
  OpenFOAM installation is without sources or tutorials
This commit is contained in:
Mark Olesen
2019-01-26 17:46:08 +01:00
parent dd23155d81
commit 3b91160027
49 changed files with 7 additions and 52 deletions

View File

@ -1,129 +0,0 @@
/*--------------------------------*- C++ -*----------------------------------*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: v1812 |
| \\ / A nd | Web: www.OpenFOAM.com |
| \\/ M anipulation | |
\*---------------------------------------------------------------------------*/
FoamFile
{
version 2.0;
format ascii;
class dictionary;
object extrudeMeshDict;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
// What to extrude:
// patch : from patch of another case ('sourceCase')
// mesh : as above but with original case included
// surface : from externally read surface
//constructFrom mesh;
constructFrom patch;
//constructFrom surface;
// If construct from patch/mesh:
sourceCase "../cavity";
sourcePatches (movingWall);
// If construct from patch: patch to use for back (can be same as sourcePatch)
exposedPatchName movingWall;
// If construct from surface:
surface "movingWall.stl";
// Flip surface normals before usage. Valid only for extrude from surface or
// patch.
flipNormals false;
//- Linear extrusion in point-normal direction
//extrudeModel linearNormal;
//- Single layer linear extrusion in point-normal direction
// with empty patches on front and back
//extrudeModel plane;
//- Linear extrusion in specified direction
//extrudeModel linearDirection;
//- Sector extrusion
//extrudeModel sector;
//- Wedge extrusion of a single layer
// with wedge patches on front and back
extrudeModel wedge;
//- Extrudes into sphere around (0 0 0)
//extrudeModel linearRadial;
//- Extrudes into sphere around (0 0 0) with specified radii
//extrudeModel radial;
//- Extrudes into sphere with grading according to pressure (atmospherics)
//extrudeModel sigmaRadial;
//- Extrudes by interpolating along path inbetween two (topologically identical)
// surfaces (e.g. one is an offsetted version of the other)
//extrudeModel offsetSurface;
nLayers 10;
expansionRatio 1.0;
sectorCoeffs //<- Also used for wedge
{
point (0 0.1 -0.05);
axis (-1 0 0);
angle 360; // For nLayers=1 assume symmetry so angle/2 on each side
}
linearNormalCoeffs
{
thickness 0.05;
}
linearDirectionCoeffs
{
direction (0 1 0);
thickness 0.05;
}
linearRadialCoeffs
{
R 0.1;
Rsurface 0.01; // Optional inner radius
}
radialCoeffs
{
// Radii specified through interpolation table
R table ((0 0.01)(3 0.03)(10 0.1));
}
sigmaRadialCoeffs
{
RTbyg 1;
pRef 1;
pStrat 1;
}
offsetSurfaceCoeffs
{
// Surface that mesh has been meshed to
baseSurface "<constant>/triSurface/DTC-scaled-inflated.obj";
// Surface to fill in to
offsetSurface "<constant>/triSurface/DTC-scaled.obj";
}
// Do front and back need to be merged? Usually only makes sense for 360
// degree wedges.
mergeFaces false;
// Merge small edges. Fraction of bounding box.
mergeTol 0;
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

View File

@ -1,121 +0,0 @@
/*--------------------------------*- C++ -*----------------------------------*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: v1812 |
| \\ / A nd | Web: www.OpenFOAM.com |
| \\/ M anipulation | |
\*---------------------------------------------------------------------------*/
FoamFile
{
version 2.0;
format ascii;
class dictionary;
object extrudeToRegionMeshDict;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
// Name of region to create
region liquidFilm;
// Specification of faces to extrude. Either faceZones (either exclusively
// internal faces or boundary faces) or faceSets (boundary faces only).
// FaceZones to extrude
faceZones (f0 f1);
//faceZonesShadow (f0Shadow f1Shadow);
// faceSets to extrude
//faceSets (f0 f1);
//faceSetsShadow (f0Shadow f1Shadow);
// Adapt the original mesh to have mapped patches at where the
// faceZones are?
// If true:
// - extruding internal faces: become baffles on mapped patches
// - extruding boundary faces: repatched to be on mapped patches
// If false: leave original mesh intact. Extruded mesh will still have
// mapped patch which might need to be adapted.
adaptMesh true;
// Sample mode for inter-region communication
sampleMode nearestPatchFace;
// 1 D extrusion
// ~~~~~~~~~~~~~
// Extrude 1D-columns of cells? This by default duplicates points so can
// have overlapping columns (i.e. non space filling)
oneD false;
//- If oneD: specify which boundary is wanted between the layers
//oneDPolyPatchType empty; //wedge
//- If oneD: specify whether to duplicate points (i.e. disconnect 1D
// columns) or only on non-manifold extrusion areas. Default is false.
// nonManifold true;
//- Extrusion model to use. The only logical choice is linearNormal?
//- Linear extrusion in normal direction
extrudeModel linearNormal;
//- Linear extrusion in specified direction
// extrudeModel linearDirection;
//- Wedge extrusion. If nLayers is 1 assumes symmetry around plane.
// extrudeModel wedge;
//- Extrudes into sphere around (0 0 0)
// extrudeModel linearRadial;
//- Extrudes into sphere around (0 0 0) with specified radii
//extrudeModel radial;
//- Extrudes into sphere with grading according to pressure (atmospherics)
// extrudeModel sigmaRadial;
nLayers 10;
expansionRatio 0.9;
linearNormalCoeffs
{
thickness 0.05;
}
sectorCoeffs //<- Also used for wedge
{
point (0 0.1 -0.05);
axis (-1 0 0);
angle 360; // For nLayers=1 assume symmetry so angle/2 on each side
}
linearDirectionCoeffs
{
direction (0 1 0);
thickness 0.05;
}
linearRadialCoeffs
{
R 0.1;
Rsurface 0.01; // Optional inner radius
}
radialCoeffs
{
// Radii specified through interpolation table
R table ((0 0.01)(3 0.03)(10 0.1));
}
sigmaRadialCoeffs
{
RTbyg 1;
pRef 1;
pStrat 1;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

View File

@ -1,42 +0,0 @@
/*--------------------------------*- C++ -*----------------------------------*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: v1812 |
| \\ / A nd | Web: www.OpenFOAM.com |
| \\/ M anipulation | |
\*---------------------------------------------------------------------------*/
FoamFile
{
version 2.0;
format ascii;
class dictionary;
object extrude2DMeshDict;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
extrudeModel linearDirection;
//extrudeModel wedge;
patchType empty;
//patchType wedge;
nLayers 1;
expansionRatio 1.0;
linearDirectionCoeffs
{
direction (0 0 1);
thickness 0.1;
}
sectorCoeffs //<- Also used for wedge
{
point (0 0 0);
axis (1 0 0);
angle 10;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

View File

@ -1,490 +0,0 @@
/*--------------------------------*- C++ -*----------------------------------*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: v1812 |
| \\ / A nd | Web: www.OpenFOAM.com |
| \\/ M anipulation | |
\*---------------------------------------------------------------------------*/
FoamFile
{
version 2.0;
format ascii;
class dictionary;
location "system";
object foamyHexMeshDict;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
/*
Control dictionary for foamyHexMesh - automatic mesh generator.
foamyHexMesh phases:
1. fill volume with initial points (initialPoints subdictionary). An option
is to reread from previous set of points.
2. internal point motion (motionControl subdictionary)
3. every once in a while add point duplets/triplets to conform to
surfaces and features (surfaceConformation subdictionary)
4. back to 2
5. construct polyMesh.
- filter (polyMeshFiltering subdictionary)
- check (meshQualityControls subdictionary) and undo filtering
See also cvControls.H in the conformalVoronoiMesh library
*/
// Important:
// ----------
// Any scalar with a name <name>Coeff specifies a value that will be implemented
// as a faction of the local target cell size
// Any scalar with a name <name>Size specifies an absolute size.
// Geometry. Definition of all surfaces. All surfaces are of class
// searchableSurface.
// Surfaces need to be (almost) closed - use closedTriSurfaceMesh
// if they are not topologically closed. Surfaces need to be oriented so
// the space to be meshed is always on the inside of all surfaces. Use e.g.
// surfaceOrient.
geometry
{
// Surface to conform to
flange.obj
{
type triSurfaceMesh;
}
// Surface used for cell size control
ref7.stl
{
name ref7;
type triSurfaceMesh;
}
refinementBox
{
type searchableBox;
}
}
//Optional: single region surfaces get patch names according to
// surface only. Multi-region surfaces get patch name
// surface "_ "region. Default is true
//singleRegionName false;
// Controls for conforming to the surfaces.
surfaceConformation
{
// A point inside surfaces that is inside mesh.
locationInMesh (0 0 0);
// How far apart are point-duplets generated. Balance this between
// - very low distance: little chance of interference from other
// surfaces
// - largish distance: less non-orthogonality in final cell
// (circumcentre far away from centroid)
pointPairDistanceCoeff 0.1;
// Mixed feature points - connected to both inside and outside edges.
// Recreated by inserting triplets of points to recreate a single edge.
// Done for all edges emanating from point. triplets of points get inserted
// mixedFeaturePointPPDistanceCoeff distance away from feature point.
// Set to a negative number to disable.
mixedFeaturePointPPDistanceCoeff 5.0; //-1;
// Distance to a feature point within which surface and edge
// conformation points are excluded - fraction of the local target
// cell size
featurePointExclusionDistanceCoeff 0.65;
// Distance to an existing feature edge conformation location
// within which other edge conformation location are excluded -
// fraction of the local target cell size
featureEdgeExclusionDistanceCoeff 0.65;
// Optimisation: do not check for surface intersection (of dual edges)
// for points near to surface.
surfaceSearchDistanceCoeff 5;
// Maximum allowable protrusion through the surface before
// conformation points are added - fraction of the local target
// cell size. These small protusions are (hopefully) done by mesh filtering
// instead.
maxSurfaceProtrusionCoeff 0.1;
// If feature edge with large angle (so more than 125 degrees) introduce
// additional points to create two half angled cells (= mitering).
maxQuadAngle 125;
// Frequency to redo surface conformation (expensive).
surfaceConformationRebuildFrequency 10;
featurePointControls
{
specialiseFeaturePoints on;
guardFeaturePoints on;
snapFeaturePoints on;
circulateEdges on;
}
// Initial and intermediate controls
conformationControls
{
// We've got a point poking through the surface. Don't do any
// surface conformation if near feature edge (since feature edge
// conformation should have priority)
// distance to search for near feature edges
edgeSearchDistCoeff 1.1;
// Proximity to a feature edge where a surface hit is
// not created, only the edge conformation is created
// - fraction of the local target cell size. Coarse
// conformation, initial protrusion tests.
surfacePtReplaceDistCoeff 0.5; // instead of surface point insert
// edge-conformation point
surfacePtExclusionDistanceCoeff 0.5; // do not place surface point
// altogether
// Stop either at maxIterations or if the number of surface pokes
// is very small (iterationToInitialHitRatioLimit * initial number)
// Note: perhaps iterationToInitialHitRatioLimit should be absolute
// count?
maxIterations 15;
iterationToInitialHitRatioLimit 0.001;
}
// Geometry to mesh to
geometryToConformTo
{
flange.obj
{
featureMethod extendedFeatureEdgeMesh; // or none;
extendedFeatureEdgeMesh "flange.extendedFeatureEdgeMesh";
}
}
// Additional features.
additionalFeatures
{
//line
//{
// featureMethod extendedFeatureEdgeMesh; // or none;
// extendedFeatureEdgeMesh "line.extendedFeatureEdgeMesh";
//}
}
}
// Controls for seeding initial points and general control of the target
// cell size (used everywhere)
initialPoints
{
// Do not place point closer than minimumSurfaceDistanceCoeff
// to the surface. Is fraction of local target cell size (see below)
minimumSurfaceDistanceCoeff 0.55;
initialPointsMethod autoDensity;
// initialPointsMethod uniformGrid;
// initialPointsMethod bodyCentredCubic;
// initialPointsMethod pointFile;
// Take boundbox of all geometry. Sample with this box. If too much
// samples in box (due to target cell size) split box.
autoDensityCoeffs
{
// Initial number of refinement levels. Needs to be enough to pick
// up features due to size ratio. If not enough it will take longer
// to determine point seeding.
minLevels 4;
// Split box if ratio of min to max cell size larger than maxSizeRatio
maxSizeRatio 5.0;
// Per box sample 5x5x5 internally
sampleResolution 5;
// Additionally per face of the box sample 5x5
surfaceSampleResolution 5;
}
uniformGridCoeffs
{
// Absolute cell size.
initialCellSize 0.0015;
randomiseInitialGrid yes;
randomPerturbationCoeff 0.02;
}
bodyCentredCubicCoeffs
{
initialCellSize 0.0015;
randomiseInitialGrid no;
randomPerturbationCoeff 0.1;
}
pointFileCoeffs
{
// Reads points from file. Still rejects points that are too
// close to the surface (minimumSurfaceDistanceCoeff) or on the
// wrong side of the surfaces.
pointFile "constant/internalDelaunayVertices";
}
}
// Control size of voronoi cells i.e. distance between points. This
// determines the target cell size which is used everywhere.
// It determines the cell size given a location. It then uses all
// the rules
// - defaultCellSize
// - cellShapeControl
// to determine target cell size. Rule with highest priority wins. If same
// priority smallest cell size wins.
motionControl
{
// Absolute cell size of back ground mesh. This is the maximum cell size.
defaultCellSize 0.25;
minimumCellSizeCoeff 0;
maxSmoothingIterations 200;
maxRefinementIterations 2;
// Calculate the sizes and alignments from surfaces
shapeControlFunctions
{
flange
{
type searchableSurfaceControl;
forceInitialPointInsertion on;
priority 1;
mode inside;
// Cell size at surface
surfaceCellSizeFunction uniformValue;
uniformValueCoeffs
{
surfaceCellSizeCoeff 0.5;
}
// Cell size inside domain by having a region of thickness
// surfaceOffsetaround the surface with the surface cell size
// (so constant) and then down to distanceCellSize over a distance
// of linearDistance.
cellSizeFunction surfaceOffsetLinearDistance;
surfaceOffsetLinearDistanceCoeffs
{
distanceCellSizeCoeff 1;
surfaceOffsetCoeff 1;
linearDistanceCoeff 1;
}
}
fileControl
{
type fileControl;
priority 1;
pointsFile "points";
sizesFile "sizes";
alignmentsFile "alignments";
}
}
// Provide an aspect ratio and the direction in which it acts on the mesh.
// Default is 1.0 if this section is not present in the dictionary
cellAspectRatioControl
{
// Aspect ratio.
aspectRatio 1.0;
// Direction of action of the aspect ratio
aspectRatioDirection (1 0 0);
}
// Underrelaxation for point motion. Simulated annealing: starts off at 1
// and lowers to 0 (at simulation endTime) to converge points.
// adaptiveLinear is preferred choice.
// Points move by e.g. 10% of tet size.
relaxationModel adaptiveLinear; //rampHoldFall
adaptiveLinearCoeffs
{
relaxationStart 1.0;
relaxationEnd 0.0;
}
// Output lots and lots of .obj files
objOutput no;
// Timing and memory usage.
timeChecks no;
// For each delaunay edge (between two vertices, becomes
// the Voronoi face normal) snap to the alignment direction if within
// alignmentAcceptanceAngle. Slightly > 45 is a good choice - prevents
// flipping.
alignmentAcceptanceAngle 48;
// When to insert points. Not advisable change to
// these settings.
pointInsertionCriteria
{
// If edge larger than 1.75 target cell size
// (so tets too large/stretched) insert point
cellCentreDistCoeff 1.75;
// Do not insert point if voronoi face (on edge) very small.
faceAreaRatioCoeff 0.0025;
// Insert point only if edge closely aligned to local alignment
// direction.
acceptanceAngle 21.5;
}
// Opposite: remove point if mesh too compressed. Do not change these
// settings.
pointRemovalCriteria
{
cellCentreDistCoeff 0.65;
}
// How to determine the point motion. All edges got some direction.
// Sum all edge contributions to determine point motion. Weigh by
// face area so motion is preferentially determined by large faces
// (or more importantly ignore contribution from small faces).
// Do not change these settings.
faceAreaWeightModel piecewiseLinearRamp;
piecewiseLinearRampCoeffs
{
lowerAreaFraction 0.5;
upperAreaFraction 1.0;
}
}
// After simulation, when converting to polyMesh, filter out small faces/edges.
// Do not change. See cvControls.H
polyMeshFiltering
{
// Filter small edges
filterEdges on;
// Filter small and sliver faces
filterFaces off;
// Write the underlying Delaunay tet mesh (at output time)
writeTetDualMesh false;
// Write the Delaunay tet mesh used for interpolating cell size and
// alignment (at output time)
writeCellShapeControlMesh true;
// Write the hex/split-hex mesh used for parallel load balancing
// (at output time)
writeBackgroundMeshDecomposition true;
// Upper limit on the size of faces to be filtered.
// fraction of the local target cell size
filterSizeCoeff 0.2;
// Upper limit on how close two dual vertices can be before
// being merged, fraction of the local target cell size
mergeClosenessCoeff 1e-9;
// To not filter: set maxNonOrtho to 1 (so check fails) and then
// set continueFilteringOnBadInitialPolyMesh to false.
continueFilteringOnBadInitialPolyMesh true;
// When a face is "bad", what fraction should the filterSizeCoeff be
// reduced by. Recursive, so for a filterCount value of fC, the
// filterSizeCoeff is reduced by pow(filterErrorReductionCoeff, fC)
filterErrorReductionCoeff 0.5;
// Maximum number of filterCount applications before a face
// is not attempted to be filtered
filterCountSkipThreshold 4;
// Maximum number of permissible iterations of the face collapse
// algorithm. The value to choose will be related the maximum number
// of points on a face that is to be collapsed and how many faces
// around it need to be collapsed.
maxCollapseIterations 25;
// Maximum number of times an to allow an equal faceSet to be
// returned from the face quality assessment before stopping iterations
// to break an infinite loop.
maxConsecutiveEqualFaceSets 5;
// Remove little steps (almost perp to surface) by collapsing face.
surfaceStepFaceAngle 80;
// Do not collapse face to edge if should become edges
edgeCollapseGuardFraction 0.3;
// Only collapse face to point if high aspect ratio
maxCollapseFaceToPointSideLengthCoeff 0.35;
}
// Generic mesh quality settings. At any undoable phase these determine
// where to undo. Same as in snappyHexMeshDict
meshQualityControls
{
//- Maximum non-orthogonality allowed. Set to 180 to disable.
maxNonOrtho 65;
//- Max skewness allowed. Set to <0 to disable.
maxBoundarySkewness 50;
maxInternalSkewness 10;
//- Max concaveness allowed. Is angle (in degrees) below which concavity
// is allowed. 0 is straight face, <0 would be convex face.
// Set to 180 to disable.
maxConcave 80;
//- Minimum pyramid volume. Is absolute volume of cell pyramid.
// Set to a sensible fraction of the smallest cell volume expected.
// Set to very negative number (e.g. -1E30) to disable.
minVol -1E30;
//- Minimum quality of the tet formed by the
// variable base point minimum decomposition triangles and
// the cell centre (so not face-centre decomposition).
// This has to be a positive number for tracking
// to work. Set to very negative number (e.g. -1E30) to
// disable.
// <0 = inside out tet,
// 0 = flat tet
// 1 = regular tet
minTetQuality 1e-30;
//- Minimum absolute face area. Set to <0 to disable.
minArea -1;
//- Minimum face twist. Set to <-1 to disable. dot product of face normal
// and face centre triangles normal
minTwist 0.02;
//- Minimum normalised cell determinant
//- 1 = hex, <= 0 = folded or flattened illegal cell
minDeterminant 0.001;
//- minFaceWeight (0 -> 0.5)
minFaceWeight 0.02;
//- minVolRatio (0 -> 1)
minVolRatio 0.01;
//must be >0 for Fluent compatibility
minTriangleTwist -1;
}
// ************************************************************************* //

View File

@ -1,187 +0,0 @@
/*--------------------------------*- C++ -*----------------------------------*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: v1812 |
| \\ / A nd | Web: www.OpenFOAM.com |
| \\/ M anipulation | |
\*---------------------------------------------------------------------------*/
FoamFile
{
version 2.0;
format ascii;
class dictionary;
location "system";
object foamyQuadMeshDict;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
geometry
{
surfaceFile.stl
{
name surfaceFile;
type triSurfaceMesh;
}
}
surfaceConformation
{
locationInMesh (-2.8 0.7 0.5);
pointPairDistanceCoeff 0.005;
minEdgeLenCoeff 0.005;
maxNotchLenCoeff 0.003;
minNearPointDistCoeff 0.0025;
maxQuadAngle 125;
// Insert near-boundary point mirror or point-pairs
insertSurfaceNearestPointPairs yes;
// Mirror near-boundary points rather than insert point-pairs
mirrorPoints no;
// Insert point-pairs vor dual-cell vertices very near the surface
insertSurfaceNearPointPairs yes;
// Maximum number of iterations used in boundaryConform.
maxBoundaryConformingIter 5;
geometryToConformTo
{
surfaceFile
{
featureMethod extendedFeatureEdgeMesh;
extendedFeatureEdgeMesh "surfaceFile.extendedFeatureEdgeMesh";
}
}
additionalFeatures
{}
// Choose if to randomise the initial grid created by insertGrid.
randomiseInitialGrid yes;
// Perturbation fraction, 1 = cell-size.
randomPerturbation 0.1;
}
motionControl
{
defaultCellSize 0.05;
// Assign a priority to all requests for cell sizes, the highest overrules.
defaultPriority 0;
cellSizeControlGeometry
{
surfaceFile
{
priority 1;
mode bothSides;
cellSizeFunction linearDistance;
linearDistanceCoeffs
{
distanceCellSize 0.05;
surfaceCellSize 0.01;
distance 0.5;
}
uniformCoeffs
{
cellSize 0.01;
}
}
// refinementBox
// {
// priority 1;
// mode outside;
// cellSizeFunction linearDistance;
// linearDistanceCoeffs
// {
// distanceCellSize 0.04;
// surfaceCellSize 0.005;
// distance 0.2;
// }
// }
// refinementSphere
// {
// priority 1;
// mode outside;
// cellSizeFunction linearDistance;
// linearDistanceCoeffs
// {
// distanceCellSize 0.04;
// surfaceCellSize 0.005;
// distance 0.2;
// }
// }
}
relaxationModel adaptiveLinear;
adaptiveLinearCoeffs
{
relaxationStart 1.0;
relaxationEnd 0.0;
}
objOutput no;
// Near-wall region where cells are aligned with the wall specified as a number
// of cell layers
nearWallAlignedDist 3;
}
shortEdgeFilter
{
// Factor to multiply the average of a face's edge lengths by.
// If an edge of that face is smaller than that value then delete it.
shortEdgeFilterFactor 0.2;
// Weighting for the lengths of edges that are attached to the boundaries.
// Used when calculating the length of an edge. Default 2.0.
edgeAttachedToBoundaryFactor 2.0;
}
extrusion
{
extrude on;
extrudeModel linearDirection;
//extrudeModel wedge;
patchInfo
{
//type empty;
//startFace
}
patchType empty;
//patchType wedge;
nLayers 1;
expansionRatio 1.0; //0.9;
linearDirectionCoeffs
{
direction (0 0 1);
thickness 0.1;
}
sectorCoeffs //<- Also used for wedge
{
point (0 0 0);
axis (1 0 0);
angle 10;
}
}
// ************************************************************************* //

View File

@ -1,21 +0,0 @@
/*--------------------------------*- C++ -*----------------------------------*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: v1812 |
| \\ / A nd | Web: www.OpenFOAM.com |
| \\/ M anipulation | |
\*---------------------------------------------------------------------------*/
FoamFile
{
version 2.0;
format ascii;
class dictionary;
object meshQualityDict;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
// Include defaults parameters from master dictionary
#includeEtc "caseDicts/meshQualityDict"
// ************************************************************************* //

View File

@ -1,796 +0,0 @@
/*--------------------------------*- C++ -*----------------------------------*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: v1812 |
| \\ / A nd | Web: www.OpenFOAM.com |
| \\/ M anipulation | |
\*---------------------------------------------------------------------------*/
FoamFile
{
version 2.0;
format ascii;
class dictionary;
object snappyHexMeshDict;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
// Which of the steps to run
castellatedMesh true;
snap true;
addLayers false;
// Optional: single region surfaces get patch names according to
// surface only. Multi-region surfaces get patch name
// surface "_ "region. Default is true
// singleRegionName false;
// Optional: avoid patch-face merging. Allows mesh to be used for
// refinement/unrefinement
// mergePatchFaces false; // default true
// Optional: preserve all generated patches. Default is to remove
// zero-sized patches.
// keepPatches true;
// Geometry. Definition of all surfaces. All surfaces are of class
// searchableSurface.
// Surfaces are used
// - to specify refinement for any mesh cell intersecting it
// - to specify refinement for any mesh cell inside/outside/near
// - to 'snap' the mesh boundary to the surface
geometry
{
box1x1x1
{
type searchableBox;
min (1.5 1 -0.5);
max (3.5 2 0.5);
}
// Shell for directional refinement
wakeBox
{
type searchableBox;
min (1.5 1 -0.5);
max (3.5 2 0.5);
}
sphere.stl
{
type triSurfaceMesh;
//tolerance 1E-5; // optional:non-default tolerance on intersections
//maxTreeDepth 10; // optional:depth of octree. Decrease only in case
// of memory limitations.
// Per region the patchname. If not provided will be <surface>_<region>.
// Note: this name cannot be used to identity this region in any
// other part of this dictionary; it is only a name
// for the combination of surface+region (which is only used
// when creating patches)
regions
{
secondSolid
{
name mySecondPatch;
}
}
}
sphere2
{
type searchableSphere;
centre (1.5 1.5 1.5);
radius 1.03;
}
};
// Settings for the castellatedMesh generation.
castellatedMeshControls
{
// Refinement parameters
// ~~~~~~~~~~~~~~~~~~~~~
// If local number of cells is >= maxLocalCells on any processor
// switches from from refinement followed by balancing
// (current method) to (weighted) balancing before refinement.
maxLocalCells 100000;
// Overall cell limit (approximately). Refinement will stop immediately
// upon reaching this number so a refinement level might not complete.
// Note that this is the number of cells before removing the part which
// is not 'visible' from the keepPoint. The final number of cells might
// actually be a lot less.
maxGlobalCells 2000000;
// The surface refinement loop might spend lots of iterations refining just
// a few cells. This setting will cause refinement to stop if
// <= minRefinementCells cells are selected for refinement. Note: it will
// at least do one iteration unless
// a: the number of cells to refine is 0
// b: minRefinementCells = -1. This is a special value indicating
// no refinement.
minRefinementCells 0;
// Allow a certain level of imbalance during refining
// (since balancing is quite expensive)
// Expressed as fraction of perfect balance (= overall number of cells /
// nProcs). 0=balance always.
maxLoadUnbalance 0.10;
// Number of buffer layers between different levels.
// 1 means normal 2:1 refinement restriction, larger means slower
// refinement.
nCellsBetweenLevels 1;
// Explicit feature edge refinement
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Specifies a level for any cell intersected by explicitly provided
// edges.
// This is a featureEdgeMesh, read from constant/triSurface for now.
// Specify 'levels' in the same way as the 'distance' mode in the
// refinementRegions (see below). The old specification
// level 2;
// is equivalent to
// levels ((0 2));
features
(
//{
// file "someLine.eMesh";
// //level 2; // Have level 2 for all cells intersected
// // by feature.
// levels ((0.1 2)); // Have level 2 for all cells within
// // 0.1 of feature.
//}
);
// Surface based refinement
// ~~~~~~~~~~~~~~~~~~~~~~~~
// Specifies two levels for every surface. The first is the minimum level,
// every cell intersecting a surface gets refined up to the minimum level.
// The second level is the maximum level. Cells that 'see' multiple
// intersections where the intersections make an
// angle > resolveFeatureAngle get refined up to the maximum level.
refinementSurfaces
{
sphere.stl
{
// Surface-wise min and max refinement level
level (2 2);
// Optional region-wise level specification
regions
{
secondSolid
{
level (3 3);
}
}
// Optional specification of patch type (default is wall). No
// constraint types (cyclic, symmetry) etc. are allowed.
patchInfo
{
type patch;
inGroups (meshedPatches);
}
//- Optional increment (on top of max level) in small gaps
//gapLevelIncrement 2;
//- Optional angle to detect small-large cell situation
// perpendicular to the surface. Is the angle of face w.r.t.
// the local surface normal. Use on flat(ish) surfaces only.
// Otherwise leave out or set to negative number.
//perpendicularAngle 10;
//- Optional faceZone and (for closed surface) cellZone with
// how to select the cells that are in the cellZone
// (inside / outside / specified insidePoint)
// The orientation of the faceZone is
// - if on cellZone(s) : point out of (minimum) cellZone
// - if freestanding : oriented according to surface
//faceZone sphere;
//cellZone sphere;
//cellZoneInside inside; // outside/insidePoint
//insidePoint (1 1 1); // if (cellZoneInside == insidePoint)
//- Optional specification of what to do with faceZone faces:
// internal : keep them as internal faces (default)
// baffle : create baffles from them. This gives more
// freedom in mesh motion
// boundary : create free-standing boundary faces (baffles
// but without the shared points)
//faceType baffle;
}
}
// Feature angle:
// - used if min and max refinement level of a surface differ
// - used if feature snapping (see snapControls below) is used
resolveFeatureAngle 30;
//- Optional increment (on top of max level) in small gaps
//gapLevelIncrement 2;
// Planar angle:
// - used to determine if surface normals
// are roughly the same or opposite. Used
// - in proximity refinement
// - to decide when to merge free-standing baffles
// (if e.g. running in surfaceSimplify mode set this to 180 to
// merge all baffles)
// - in snapping to avoid snapping to nearest on 'wrong' side
// of thin gap
//
// If not specified same as resolveFeatureAngle
planarAngle 30;
// Region-wise refinement
// ~~~~~~~~~~~~~~~~~~~~~~
// Specifies refinement level for cells in relation to a surface. One of
// three modes
// - distance. 'levels' specifies per distance to the surface the
// wanted refinement level. The distances need to be specified in
// increasing order.
// - inside. 'levels' is only one entry and only the level is used. All
// cells inside the surface get refined up to the level. The surface
// needs to be closed for this to be possible.
// - outside. Same but cells outside.
refinementRegions
{
box1x1x1
{
mode inside;
levels ((1.0 4));
}
//sphere.stl
//{
// mode inside;
// levels ((1.0 4));
// // Optional override of uniform refinement level such
// // that in small gaps we're getting more cells.
// // The specification is
// // - numGapCells : minimum number of cells in the gap
// // (usually >3; lower than this might not
// // resolve correctly)
// // - minLevel : min refinement level at which to kick in
// // - maxLevel : upper refinement level (to avoid refinement
// // continuing on a single extraneous feature)
// // All three settings can be overridden on a surface by
// // surface basis in the refinementSurfaces section.
// gapLevel (<numGapCells> <minLevel> <maxlevel>);
// // Optional: when doing the gapLevel refinement directly remove
// // based on orientation w.r.t. gap. This limits the
// // amount of cells before doing the 'locationInMesh'
// // cell selection. Default is 'mixed' i.e. keep cells
// // whilst doing the gap-level refinement.
// //gapMode inside; // inside/outside/mixed
//}
//wakeBox
//{
// mode inside;
// // Dummy base level
// levels ((10000 0));
//
// // Optional directional refinement (after all other refinement)
// // Directional refinement
// // for all cells according to 'mode' ('inside' or 'outside';
// // 'distance' not supported) and within certain range. E.g.
// // - for all cells with level 2-5
// // - do one split in x direction
// levelIncrement (2 5 (1 0 0));
//
// // Note
// // - ignores 'levels' and gap* settings.
// // - the cellLevel/pointLevels files are no longer consistent
// // with the mesh, the resulting mesh is no longer compatible
// // with e.g. dynamic refinement/unrefinement.
// // - cellLevel will include any directional refinement
// // (i.e. it will be the maximum of all three directions)
//}
//wakeBox
//{
// mode inside;
// // Dummy base level
// levels ((10000 0));
//
// // Optional directional refinement (after all other refinement)
// // Directional refinement
// // for all cells according to 'mode' ('inside' or 'outside';
// // 'distance' not supported) and within certain range. E.g.
// // - for all cells with level 2-5
// // - do one split in x direction
// levelIncrement (2 5 (1 0 0));
//
// // Note
// // - ignores 'levels' and gap* settings.
// // - the cellLevel/pointLevels files are no longer consistent
// // with the mesh, the resulting mesh is no longer compatible
// // with e.g. dynamic refinement/unrefinement.
// // - cellLevel will include any directional refinement
// // (i.e. it will be the maximum of all three directions)
//
// // Optional directional expansion-ratio smoothing (after all
// // refinement). This will try to smooth out edge/cell size jumps
// // Specify smoothing direction and number of iterations
// smoothDirection (1 0 0);
// // Smoothing of expansion ratio
// nSmoothExpansion 100;
// // Smoothing of positions
// nSmoothPosition 100;
//}
}
// Optionally limit refinement in geometric region. This limits all
// refinement (from features, refinementSurfaces, refinementRegions)
// in a given geometric region. The syntax is exactly the same as for the
// refinementRegions; the cell level now specifies the upper limit
// for any cell. (a special setting is cell level -1 which will remove
// any cells inside the region). Note that it does not override the
// refinement constraints given by the nCellsBetweenLevels setting.
limitRegions
{
}
// Mesh selection
// ~~~~~~~~~~~~~~
// After refinement patches get added for all refinementSurfaces and
// all cells intersecting the surfaces get put into these patches. The
// section reachable from the location(s)InMesh is kept.
// NOTE: This point should never be on a face, always inside a cell, even
// after refinement.
//
// There are two different ways of specifying the regions to keep:
// 1. a single locationInMesh. This is the unzoned part of the mesh.
// All the 'zoned' surfaces are marked as such
// in the refinementSurfaces with the faceZone and cellZone keywords.
// It is illegal to have the locationInMesh inside a surface for which
// a cellZone is specified.
//
// or
//
// 2. multiple locationsInMesh, with per location the name of the cellZone.
// This uses walking to determine zones and automatically creates
// faceZones on the outside of cellZones. The special name 'none' is
// used to indicate the unzoned/background part of the mesh.
// Ad 1. Specify a single location and how to treat faces inbetween
// cellZones
locationInMesh (5 0.28 0.43);
// Whether any faceZones (as specified in the refinementSurfaces)
// are only on the boundary of corresponding cellZones.
// Not used if there are no faceZones. The behaviour has changed
// with respect to previous versions:
// true : all intersections with surface are put in faceZone
// (same behaviour as before)
// false : depending on the type of surface intersected:
// - if intersecting surface has faceZone only (so no cellZone)
// leave in faceZone (so behave as if set to true) (= changed
// behaviour)
// - if intersecting surface has faceZone and cellZone
// remove if inbetween same cellZone or if on boundary
// (same behaviour as before)
allowFreeStandingZoneFaces true;
// 2. Specify multiple locations with optional cellZones for the
// regions (use cellZone "none" to specify the unzoned cells)
// FaceZones are automatically constructed from the
// names of the cellZones: <cellZoneA> _to_ <cellZoneB>
// where the cellZoneA is the lowest numbered cellZone (non-cellZone
// cells are in a special region called "none" which is always
// last).
locationsInMesh
(
((-0.09 -0.039 -0.049) bottomAir) // cellZone 0
((-0.09 0.009 -0.049) topAir) // cellZone 1
((-0.09 0.001 -0.049) leftSolid) // cellZone 2
((0.02 0.001 -0.049) rightSolid) // cellZone 3
((-0.001 -0.039 0.0015) heater) // cellZone 4
);
// Per synthesised faceZone name the faceType and type of baffles to
// create
faceZoneControls
{
bottomAir_to_heater
{
// Optional specification of patch type (default is wall). No
// constraint types (cyclic, symmetry) etc. are allowed.
patchInfo
{
type patch;
inGroups (patchPatches);
}
faceType baffle;
}
}
// Optional locations that should not be reachable from
// location(s)InMesh
locationsOutsideMesh ((100 100 100));
// Optional: do not remove cells likely to give snapping problems
// handleSnapProblems false;
// Optional: switch off topological test for cells to-be-squashed
// and use geometric test instead
//useTopologicalSnapDetection false;
// Optional: do not refine surface cells with opposite faces of
// differing refinement levels
//interfaceRefine false;
// Optional: use an erosion instead of region assignment to allocate
// left-over cells to the background region (i.e. make cellZones
// consistent with the intersections of the surface).
// Erosion is specified as a number of erosion iterations.
// Erosion has less chance of bleeding and changing the zone
// for a complete region.
//nCellZoneErodeIter 2;
}
// Settings for the snapping.
snapControls
{
// Number of patch smoothing iterations before finding correspondence
// to surface
nSmoothPatch 3;
// Optional: number of smoothing iterations for internal points on
// refinement interfaces. This will reduce non-orthogonality on
// refinement interfaces.
//nSmoothInternal $nSmoothPatch;
// Maximum relative distance for points to be attracted by surface.
// True distance is this factor times local maximum edge length.
tolerance 2.0;
// Number of mesh displacement relaxation iterations.
nSolveIter 30;
// Maximum number of snapping relaxation iterations. Should stop
// before upon reaching a correct mesh.
nRelaxIter 5;
// (wip) disable snapping to opposite near surfaces (revert to 22x
// behaviour)
// detectNearSurfacesSnap false;
// Feature snapping
// Number of feature edge snapping iterations.
// Leave out altogether to disable.
nFeatureSnapIter 10;
// Detect (geometric only) features by sampling the surface
// (default=false).
implicitFeatureSnap false;
// Use castellatedMeshControls::features (default = true)
explicitFeatureSnap true;
// Detect features between multiple surfaces
// (only for explicitFeatureSnap, default = false)
multiRegionFeatureSnap false;
//- When to run face splitting (never at first iteration, always
// at last iteration). Is interval. Default -1 (disabled)
//nFaceSplitInterval 5;
// (wip) Optional for explicit feature snapping:
//- Detect baffle edges. Default is true.
//detectBaffles false;
//- On any faces where points are on multiple regions (see
// multiRegionFeatureSnap) have the other points follow these points
// instead of having their own independent movement, i.e. have snapping
// to multi-region edges/points take priority. This might aid snapping
// to sharp edges that are also region edges. The default is false.
//releasePoints true;
//- Walk along feature edges, adding missing ones. Default is true.
//stringFeatures false;
//- If diagonal attraction also attract other face points. Default is
// false
//avoidDiagonal true;
//- When splitting what concave faces to leave intact. Default is 45
// degrees.
//concaveAngle 30;
//- When splitting the minimum area ratio of faces. If face split
// causes ratio of area less than this do not split. Default is 0.3
//minAreaRatio 0.3;
//- Attract points only to the surface they originate from. Default
// false. This can improve snapping of intersecting surfaces.
// strictRegionSnap true;
}
// Settings for the layer addition.
addLayersControls
{
// Are the thickness parameters below relative to the undistorted
// size of the refined cell outside layer (true) or absolute sizes (false).
relativeSizes true;
// Layer thickness specification. This can be specified in one of following
// ways:
// - expansionRatio and finalLayerThickness (cell nearest internal mesh)
// - expansionRatio and firstLayerThickness (cell on surface)
// - overall thickness and firstLayerThickness
// - overall thickness and finalLayerThickness
// - overall thickness and expansionRatio
//
// Note: the mode thus selected is global, i.e. one cannot override the
// mode on a per-patch basis (only the values can be overridden)
// Expansion factor for layer mesh
expansionRatio 1.0;
// Wanted thickness of the layer furthest away from the wall.
// If relativeSizes this is relative to undistorted size of cell
// outside layer.
finalLayerThickness 0.3;
// Wanted thickness of the layer next to the wall.
// If relativeSizes this is relative to undistorted size of cell
// outside layer.
//firstLayerThickness 0.3;
// Wanted overall thickness of layers.
// If relativeSizes this is relative to undistorted size of cell
// outside layer.
//thickness 0.5
// Minimum overall thickness of total layers. If for any reason layer
// cannot be above minThickness do not add layer.
// If relativeSizes this is relative to undistorted size of cell
// outside layer..
minThickness 0.1;
// Per final patch or faceZone (so not geometry!) the layer information
// Note: This behaviour changed after 21x. Any non-mentioned patches
// now slide unless:
// - nSurfaceLayers is explicitly mentioned to be 0.
// - angle to nearest surface < slipFeatureAngle (see below)
layers
{
sphere.stl_firstSolid
{
nSurfaceLayers 1;
}
maxY
{
nSurfaceLayers 1;
// Per patch layer data
expansionRatio 1.3;
finalLayerThickness 0.3;
minThickness 0.1;
}
// Disable any mesh shrinking and layer addition on any point of
// a patch by setting nSurfaceLayers to 0
frozenPatches
{
nSurfaceLayers 0;
}
}
// If points get not extruded do nGrow layers of connected faces that are
// also not grown. This helps convergence of the layer addition process
// close to features.
// Note: changed(corrected) w.r.t 1.7.x! (didn't do anything in 1.7.x)
nGrow 0;
// Advanced settings
// Static analysis of starting mesh
// When not to extrude surface. 0 is flat surface, 90 is when two faces
// are perpendicular. Note: was not working correctly < 1806
featureAngle 120;
// When to merge patch faces. Default is featureAngle. Useful when
// featureAngle is large.
//mergePatchFacesAngle 45;
// Stop layer growth on highly warped cells
maxFaceThicknessRatio 0.5;
// Patch displacement
// Number of smoothing iterations of surface normals
nSmoothSurfaceNormals 1;
// Smooth layer thickness over surface patches
nSmoothThickness 10;
// Choice of mesh shrinking algorithm
// Optional mesh shrinking algorithm (default is displacementMedialAxis)
// The displacementMotionSolver is a wrapper around the displacement
// motion solvers. It needs specification of the solver to use and
// its control dictionary.
//meshShrinker displacementMotionSolver;
//solver displacementLaplacian;
//displacementLaplacianCoeffs
//{
// diffusivity quadratic inverseDistance
// (
// sphere.stl_firstSolid
// maxY
// );
//}
// Note that e.g. displacementLaplacian needs entries in
// fvSchemes, fvSolution. Also specify a minIter > 1 when solving
// cellDisplacement since otherwise solution might not be sufficiently
// accurate on points.
// Medial axis analysis (for use with default displacementMedialAxis)
// Angle used to pick up medial axis points
// Note: changed(corrected) w.r.t 1.7.x! 90 degrees corresponds to 130
// in 1.7.x.
minMedialAxisAngle 90;
// Reduce layer growth where ratio thickness to medial
// distance is large
maxThicknessToMedialRatio 0.3;
// Number of smoothing iterations of interior mesh movement direction
nSmoothNormals 3;
// Optional: limit the number of steps walking away from the surface.
// Default is unlimited.
//nMedialAxisIter 10;
// Optional: smooth displacement after medial axis determination.
// default is 0.
//nSmoothDisplacement 90;
// (wip)Optional: do not extrude any point where
// (false) : all surrounding faces are not fully extruded
// (true) : all surrounding points are not extruded
// Default is false.
//detectExtrusionIsland true;
// Optional: do not extrude around sharp edges if both faces are not
// fully extruded i.e. if one of the faces on either side would
// become a wedge.
// Default is 0.5*featureAngle. Set to -180 always attempt extrusion
//layerTerminationAngle 25;
// Optional: disable shrinking of edges that have one (or two) points
// on an extruded patch.
// Default is false to enable single/two cell thick channels to still
// have layers. In <=1806 this was true by default. On larger gaps it
// should have no effect.
//disableWallEdges true;
// Optional: at non-patched sides allow mesh to slip if extrusion
// direction makes angle larger than slipFeatureAngle. Default is
// 0.5*featureAngle.
slipFeatureAngle 30;
// Maximum number of snapping relaxation iterations. Should stop
// before upon reaching a correct mesh.
nRelaxIter 5;
// Mesh shrinking
// Create buffer region for new layer terminations, i.e. gradually
// step down number of layers. Set to <0 to terminate layer in one go.
nBufferCellsNoExtrude 0;
// Overall max number of layer addition iterations. The mesher will
// exit if it reaches this number of iterations; possibly with an
// illegal mesh.
nLayerIter 50;
// Max number of iterations after which relaxed meshQuality controls
// get used. Up to nRelaxedIter it uses the settings in
// meshQualityControls,
// after nRelaxedIter it uses the values in
// meshQualityControls::relaxed.
nRelaxedIter 20;
// Additional reporting: if there are just a few faces where there
// are mesh errors (after adding the layers) print their face centres.
// This helps in tracking down problematic mesh areas.
//additionalReporting true;
}
// Generic mesh quality settings. At any undoable phase these determine
// where to undo.
meshQualityControls
{
// Specify mesh quality constraints in separate dictionary so can
// be reused (e.g. checkMesh -meshQuality)
#include "meshQualityDict"
// Optional : some meshing phases allow usage of relaxed rules.
// See e.g. addLayersControls::nRelaxedIter.
relaxed
{
// Maximum non-orthogonality allowed. Set to 180 to disable.
maxNonOrtho 75;
}
// Advanced
// Number of error distribution iterations
nSmoothScale 4;
// amount to scale back displacement at error points
errorReduction 0.75;
}
// Advanced
//// Debug flags
//debugFlags
//(
// mesh // write intermediate meshes
// intersections // write current mesh intersections as .obj files
// featureSeeds // write information about explicit feature edge
// // refinement
// attraction // write attraction as .obj files
// layerInfo // write information about layers
//);
//
//// Write flags
//writeFlags
//(
// scalarLevels // write volScalarField with cellLevel for postprocessing
// layerSets // write cellSets, faceSets of faces in layer
// layerFields // write volScalarField for layer coverage
//);
//// Format for writing lines. E.g. leak path. Default is vtk format.
//setFormat ensight;
// Merge tolerance. Is fraction of overall bounding box of initial mesh.
// Note: the write tolerance needs to be higher than this.
mergeTolerance 1e-6;
// ************************************************************************* //