mirror of
https://develop.openfoam.com/Development/openfoam.git
synced 2025-11-28 03:28:01 +00:00
Completed transformation of post-processing utilities into functionObjects
This commit is contained in:
@ -1,3 +0,0 @@
|
||||
streamFunction.C
|
||||
|
||||
EXE = $(FOAM_APPBIN)/streamFunction
|
||||
@ -1,8 +0,0 @@
|
||||
EXE_INC = \
|
||||
-I$(LIB_SRC)/finiteVolume/lnInclude \
|
||||
-I$(LIB_SRC)/meshTools/lnInclude
|
||||
|
||||
EXE_LIBS = \
|
||||
-lgenericPatchFields \
|
||||
-lfiniteVolume \
|
||||
-lmeshTools
|
||||
@ -1,491 +0,0 @@
|
||||
/*---------------------------------------------------------------------------* \
|
||||
========= |
|
||||
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
||||
\\ / O peration |
|
||||
\\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation
|
||||
\\/ M anipulation |
|
||||
-------------------------------------------------------------------------------
|
||||
License
|
||||
This file is part of OpenFOAM.
|
||||
|
||||
OpenFOAM is free software: you can redistribute it and/or modify it
|
||||
under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
||||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
Application
|
||||
streamFunction
|
||||
|
||||
Description
|
||||
Calculates and writes the stream function of velocity field U at each
|
||||
time.
|
||||
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
#include "fvCFD.H"
|
||||
#include "pointFields.H"
|
||||
#include "emptyPolyPatch.H"
|
||||
#include "symmetryPlanePolyPatch.H"
|
||||
#include "symmetryPolyPatch.H"
|
||||
#include "wedgePolyPatch.H"
|
||||
#include "OSspecific.H"
|
||||
|
||||
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
timeSelector::addOptions();
|
||||
#include "addRegionOption.H"
|
||||
|
||||
#include "setRootCase.H"
|
||||
#include "createTime.H"
|
||||
|
||||
instantList timeDirs = timeSelector::select0(runTime, args);
|
||||
|
||||
#include "createNamedMesh.H"
|
||||
|
||||
label nD = mesh.nGeometricD();
|
||||
|
||||
if (nD != 2)
|
||||
{
|
||||
FatalErrorInFunction
|
||||
<< "Case is not 2D, stream-function cannot be computed"
|
||||
<< exit(FatalError);
|
||||
}
|
||||
|
||||
Vector<label> slabNormal((Vector<label>::one - mesh.geometricD())/2);
|
||||
const direction slabDir
|
||||
(
|
||||
slabNormal
|
||||
& Vector<label>(Vector<label>::X, Vector<label>::Y, Vector<label>::Z)
|
||||
);
|
||||
|
||||
scalar thickness = vector(slabNormal) & mesh.bounds().span();
|
||||
|
||||
const pointMesh& pMesh = pointMesh::New(mesh);
|
||||
|
||||
forAll(timeDirs, timeI)
|
||||
{
|
||||
runTime.setTime(timeDirs[timeI], timeI);
|
||||
|
||||
Info<< nl << "Time: " << runTime.timeName() << endl;
|
||||
|
||||
IOobject phiHeader
|
||||
(
|
||||
"phi",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::NO_READ
|
||||
);
|
||||
|
||||
if (phiHeader.headerOk())
|
||||
{
|
||||
mesh.readUpdate();
|
||||
|
||||
Info<< nl << "Reading field phi" << endl;
|
||||
|
||||
surfaceScalarField phi
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"phi",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::MUST_READ,
|
||||
IOobject::NO_WRITE
|
||||
),
|
||||
mesh
|
||||
);
|
||||
|
||||
pointScalarField streamFunction
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"streamFunction",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::NO_READ,
|
||||
IOobject::NO_WRITE
|
||||
),
|
||||
pMesh,
|
||||
dimensionedScalar("zero", phi.dimensions(), 0.0)
|
||||
);
|
||||
|
||||
labelList visitedPoint(mesh.nPoints());
|
||||
forAll(visitedPoint, pointi)
|
||||
{
|
||||
visitedPoint[pointi] = 0;
|
||||
}
|
||||
label nVisited = 0;
|
||||
label nVisitedOld = 0;
|
||||
|
||||
const faceUList& faces = mesh.faces();
|
||||
const pointField& points = mesh.points();
|
||||
|
||||
label nInternalFaces = mesh.nInternalFaces();
|
||||
|
||||
vectorField unitAreas(mesh.faceAreas());
|
||||
unitAreas /= mag(unitAreas);
|
||||
|
||||
const polyPatchList& patches = mesh.boundaryMesh();
|
||||
|
||||
bool finished = true;
|
||||
|
||||
// Find the boundary face with zero flux. set the stream function
|
||||
// to zero on that face
|
||||
bool found = false;
|
||||
|
||||
do
|
||||
{
|
||||
found = false;
|
||||
|
||||
forAll(patches, patchi)
|
||||
{
|
||||
const primitivePatch& bouFaces = patches[patchi];
|
||||
|
||||
if (!isType<emptyPolyPatch>(patches[patchi]))
|
||||
{
|
||||
forAll(bouFaces, facei)
|
||||
{
|
||||
if
|
||||
(
|
||||
magSqr(phi.boundaryField()[patchi][facei])
|
||||
< SMALL
|
||||
)
|
||||
{
|
||||
const labelList& zeroPoints = bouFaces[facei];
|
||||
|
||||
// Zero flux face found
|
||||
found = true;
|
||||
|
||||
forAll(zeroPoints, pointi)
|
||||
{
|
||||
if (visitedPoint[zeroPoints[pointi]] == 1)
|
||||
{
|
||||
found = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (found)
|
||||
{
|
||||
Info<< "Zero face: patch: " << patchi
|
||||
<< " face: " << facei << endl;
|
||||
|
||||
forAll(zeroPoints, pointi)
|
||||
{
|
||||
streamFunction[zeroPoints[pointi]] = 0;
|
||||
visitedPoint[zeroPoints[pointi]] = 1;
|
||||
nVisited++;
|
||||
}
|
||||
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (found) break;
|
||||
}
|
||||
|
||||
if (!found)
|
||||
{
|
||||
Info<< "zero flux boundary face not found. "
|
||||
<< "Using cell as a reference."
|
||||
<< endl;
|
||||
|
||||
const cellList& c = mesh.cells();
|
||||
|
||||
forAll(c, cI)
|
||||
{
|
||||
labelList zeroPoints = c[cI].labels(mesh.faces());
|
||||
|
||||
bool found = true;
|
||||
|
||||
forAll(zeroPoints, pointi)
|
||||
{
|
||||
if (visitedPoint[zeroPoints[pointi]] == 1)
|
||||
{
|
||||
found = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (found)
|
||||
{
|
||||
forAll(zeroPoints, pointi)
|
||||
{
|
||||
streamFunction[zeroPoints[pointi]] = 0.0;
|
||||
visitedPoint[zeroPoints[pointi]] = 1;
|
||||
nVisited++;
|
||||
}
|
||||
|
||||
break;
|
||||
}
|
||||
else
|
||||
{
|
||||
FatalErrorInFunction
|
||||
<< "Cannot find initialisation face or a cell."
|
||||
<< abort(FatalError);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Loop through all faces. If one of the points on
|
||||
// the face has the streamfunction value different
|
||||
// from -1, all points with -1 ont that face have the
|
||||
// streamfunction value equal to the face flux in
|
||||
// that point plus the value in the visited point
|
||||
do
|
||||
{
|
||||
finished = true;
|
||||
|
||||
for
|
||||
(
|
||||
label facei = nInternalFaces;
|
||||
facei<faces.size();
|
||||
facei++
|
||||
)
|
||||
{
|
||||
const labelList& curBPoints = faces[facei];
|
||||
bool bPointFound = false;
|
||||
|
||||
scalar currentBStream = 0.0;
|
||||
vector currentBStreamPoint(0, 0, 0);
|
||||
|
||||
forAll(curBPoints, pointi)
|
||||
{
|
||||
// Check if the point has been visited
|
||||
if (visitedPoint[curBPoints[pointi]] == 1)
|
||||
{
|
||||
// The point has been visited
|
||||
currentBStream =
|
||||
streamFunction[curBPoints[pointi]];
|
||||
currentBStreamPoint =
|
||||
points[curBPoints[pointi]];
|
||||
|
||||
bPointFound = true;
|
||||
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (bPointFound)
|
||||
{
|
||||
// Sort out other points on the face
|
||||
forAll(curBPoints, pointi)
|
||||
{
|
||||
// Check if the point has been visited
|
||||
if (visitedPoint[curBPoints[pointi]] == 0)
|
||||
{
|
||||
label patchNo =
|
||||
mesh.boundaryMesh().whichPatch(facei);
|
||||
|
||||
if
|
||||
(
|
||||
!isType<emptyPolyPatch>
|
||||
(patches[patchNo])
|
||||
&& !isType<symmetryPlanePolyPatch>
|
||||
(patches[patchNo])
|
||||
&& !isType<symmetryPolyPatch>
|
||||
(patches[patchNo])
|
||||
&& !isType<wedgePolyPatch>
|
||||
(patches[patchNo])
|
||||
)
|
||||
{
|
||||
label faceNo =
|
||||
mesh.boundaryMesh()[patchNo]
|
||||
.whichFace(facei);
|
||||
|
||||
vector edgeHat =
|
||||
points[curBPoints[pointi]]
|
||||
- currentBStreamPoint;
|
||||
edgeHat.replace(slabDir, 0);
|
||||
edgeHat /= mag(edgeHat);
|
||||
|
||||
vector nHat = unitAreas[facei];
|
||||
|
||||
if (edgeHat.y() > VSMALL)
|
||||
{
|
||||
visitedPoint[curBPoints[pointi]] =
|
||||
1;
|
||||
nVisited++;
|
||||
|
||||
streamFunction[curBPoints[pointi]]
|
||||
=
|
||||
currentBStream
|
||||
+ phi.boundaryField()
|
||||
[patchNo][faceNo]
|
||||
*sign(nHat.x());
|
||||
}
|
||||
else if (edgeHat.y() < -VSMALL)
|
||||
{
|
||||
visitedPoint[curBPoints[pointi]] =
|
||||
1;
|
||||
nVisited++;
|
||||
|
||||
streamFunction[curBPoints[pointi]]
|
||||
=
|
||||
currentBStream
|
||||
- phi.boundaryField()
|
||||
[patchNo][faceNo]
|
||||
*sign(nHat.x());
|
||||
}
|
||||
else
|
||||
{
|
||||
if (edgeHat.x() > VSMALL)
|
||||
{
|
||||
visitedPoint
|
||||
[curBPoints[pointi]] = 1;
|
||||
nVisited++;
|
||||
|
||||
streamFunction
|
||||
[curBPoints[pointi]] =
|
||||
currentBStream
|
||||
+ phi.boundaryField()
|
||||
[patchNo][faceNo]
|
||||
*sign(nHat.y());
|
||||
}
|
||||
else if (edgeHat.x() < -VSMALL)
|
||||
{
|
||||
visitedPoint
|
||||
[curBPoints[pointi]] = 1;
|
||||
nVisited++;
|
||||
|
||||
streamFunction
|
||||
[curBPoints[pointi]] =
|
||||
currentBStream
|
||||
- phi.boundaryField()
|
||||
[patchNo][faceNo]
|
||||
*sign(nHat.y());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
finished = false;
|
||||
}
|
||||
}
|
||||
|
||||
for (label facei=0; facei<nInternalFaces; facei++)
|
||||
{
|
||||
// Get the list of point labels for the face
|
||||
const labelList& curPoints = faces[facei];
|
||||
|
||||
bool pointFound = false;
|
||||
|
||||
scalar currentStream = 0.0;
|
||||
point currentStreamPoint(0, 0, 0);
|
||||
|
||||
forAll(curPoints, pointi)
|
||||
{
|
||||
// Check if the point has been visited
|
||||
if (visitedPoint[curPoints[pointi]] == 1)
|
||||
{
|
||||
// The point has been visited
|
||||
currentStream =
|
||||
streamFunction[curPoints[pointi]];
|
||||
currentStreamPoint =
|
||||
points[curPoints[pointi]];
|
||||
pointFound = true;
|
||||
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (pointFound)
|
||||
{
|
||||
// Sort out other points on the face
|
||||
forAll(curPoints, pointi)
|
||||
{
|
||||
// Check if the point has been visited
|
||||
if (visitedPoint[curPoints[pointi]] == 0)
|
||||
{
|
||||
vector edgeHat =
|
||||
points[curPoints[pointi]]
|
||||
- currentStreamPoint;
|
||||
|
||||
edgeHat.replace(slabDir, 0);
|
||||
edgeHat /= mag(edgeHat);
|
||||
|
||||
vector nHat = unitAreas[facei];
|
||||
|
||||
if (edgeHat.y() > VSMALL)
|
||||
{
|
||||
visitedPoint[curPoints[pointi]] = 1;
|
||||
nVisited++;
|
||||
|
||||
streamFunction[curPoints[pointi]] =
|
||||
currentStream
|
||||
+ phi[facei]*sign(nHat.x());
|
||||
}
|
||||
else if (edgeHat.y() < -VSMALL)
|
||||
{
|
||||
visitedPoint[curPoints[pointi]] = 1;
|
||||
nVisited++;
|
||||
|
||||
streamFunction[curPoints[pointi]] =
|
||||
currentStream
|
||||
- phi[facei]*sign(nHat.x());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
finished = false;
|
||||
}
|
||||
}
|
||||
|
||||
Info<< ".";
|
||||
|
||||
if (nVisited == nVisitedOld)
|
||||
{
|
||||
// Find new seed. This must be a
|
||||
// multiply connected domain
|
||||
Info<< nl << "Exhausted a seed. Looking for new seed "
|
||||
<< "(this is correct for multiply connected "
|
||||
<< "domains).";
|
||||
|
||||
break;
|
||||
}
|
||||
else
|
||||
{
|
||||
nVisitedOld = nVisited;
|
||||
}
|
||||
} while (!finished);
|
||||
|
||||
Info<< endl;
|
||||
} while (!finished);
|
||||
|
||||
// Normalise the stream-function by the 2D mesh thickness
|
||||
streamFunction /= thickness;
|
||||
streamFunction.boundaryFieldRef() = 0.0;
|
||||
streamFunction.write();
|
||||
}
|
||||
else
|
||||
{
|
||||
WarningInFunction
|
||||
<< "Flux field does not exist."
|
||||
<< " Stream function not calculated" << endl;
|
||||
}
|
||||
}
|
||||
|
||||
Info<< "\nEnd\n" << endl;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
// ************************************************************************* //
|
||||
@ -1,3 +0,0 @@
|
||||
wallHeatFlux.C
|
||||
|
||||
EXE = $(FOAM_APPBIN)/wallHeatFlux
|
||||
@ -1,23 +0,0 @@
|
||||
EXE_INC = \
|
||||
-I$(LIB_SRC)/TurbulenceModels/turbulenceModels/lnInclude \
|
||||
-I$(LIB_SRC)/TurbulenceModels/compressible/lnInclude \
|
||||
-I$(LIB_SRC)/thermophysicalModels/specie/lnInclude \
|
||||
-I$(LIB_SRC)/thermophysicalModels/reactionThermo/lnInclude \
|
||||
-I$(LIB_SRC)/transportModels/compressible/lnInclude \
|
||||
-I$(LIB_SRC)/thermophysicalModels/basic/lnInclude \
|
||||
-I$(LIB_SRC)/thermophysicalModels/solidThermo/lnInclude \
|
||||
-I$(LIB_SRC)/finiteVolume/lnInclude \
|
||||
-I$(LIB_SRC)/meshTools/lnInclude
|
||||
|
||||
EXE_LIBS = \
|
||||
-lturbulenceModels \
|
||||
-lcompressibleTurbulenceModels \
|
||||
-lreactionThermophysicalModels \
|
||||
-lgenericPatchFields \
|
||||
-lspecie \
|
||||
-lcompressibleTransportModels \
|
||||
-lfluidThermophysicalModels \
|
||||
-lsolidThermo \
|
||||
-lfiniteVolume \
|
||||
-lfvOptions \
|
||||
-lmeshTools
|
||||
@ -1,72 +0,0 @@
|
||||
autoPtr<basicThermo> thermo
|
||||
(
|
||||
basicThermo::New(mesh)
|
||||
);
|
||||
|
||||
const volScalarField& h = thermo->he();
|
||||
|
||||
// Register copy of thermo density
|
||||
volScalarField rho
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"rho",
|
||||
runTime.timeName(),
|
||||
mesh
|
||||
),
|
||||
thermo->rho()
|
||||
);
|
||||
|
||||
// Construct turbulence model (if fluid)
|
||||
autoPtr<volVectorField> UPtr;
|
||||
autoPtr<surfaceScalarField> phiPtr;
|
||||
autoPtr<compressible::turbulenceModel> turbulence;
|
||||
|
||||
if (isA<fluidThermo>(thermo()))
|
||||
{
|
||||
UPtr.reset
|
||||
(
|
||||
new volVectorField
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"U",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::MUST_READ,
|
||||
IOobject::AUTO_WRITE
|
||||
),
|
||||
mesh
|
||||
)
|
||||
);
|
||||
const volVectorField& U = UPtr();
|
||||
|
||||
#include "compressibleCreatePhi.H"
|
||||
|
||||
// Copy phi to autoPtr. Rename to make sure copy is now registered as 'phi'.
|
||||
phi.rename("phiFluid");
|
||||
phiPtr.reset(new surfaceScalarField("phi", phi));
|
||||
|
||||
turbulence = compressible::turbulenceModel::New
|
||||
(
|
||||
rho,
|
||||
U,
|
||||
phiPtr(),
|
||||
refCast<const fluidThermo>(thermo())
|
||||
);
|
||||
}
|
||||
|
||||
// Read radiative heat-flux if available
|
||||
volScalarField Qr
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"Qr",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::READ_IF_PRESENT,
|
||||
IOobject::NO_WRITE
|
||||
),
|
||||
mesh,
|
||||
dimensionedScalar("Qr", dimMass/pow3(dimTime), 0.0)
|
||||
);
|
||||
@ -1,157 +0,0 @@
|
||||
/*---------------------------------------------------------------------------*\
|
||||
========= |
|
||||
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
||||
\\ / O peration |
|
||||
\\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation
|
||||
\\/ M anipulation |
|
||||
-------------------------------------------------------------------------------
|
||||
License
|
||||
This file is part of OpenFOAM.
|
||||
|
||||
OpenFOAM is free software: you can redistribute it and/or modify it
|
||||
under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
||||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
Application
|
||||
wallHeatFlux
|
||||
|
||||
Description
|
||||
Calculates and writes the heat flux for all patches as the boundary field
|
||||
of a volScalarField and also prints the integrated flux for all wall
|
||||
patches.
|
||||
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
#include "fvCFD.H"
|
||||
#include "turbulentFluidThermoModel.H"
|
||||
#include "solidThermo.H"
|
||||
#include "wallFvPatch.H"
|
||||
|
||||
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
timeSelector::addOptions();
|
||||
#include "addRegionOption.H"
|
||||
#include "setRootCase.H"
|
||||
#include "createTime.H"
|
||||
instantList timeDirs = timeSelector::select0(runTime, args);
|
||||
#include "createNamedMesh.H"
|
||||
|
||||
forAll(timeDirs, timeI)
|
||||
{
|
||||
runTime.setTime(timeDirs[timeI], timeI);
|
||||
Info<< "Time = " << runTime.timeName() << endl;
|
||||
mesh.readUpdate();
|
||||
|
||||
#include "createFields.H"
|
||||
|
||||
surfaceScalarField heatFlux
|
||||
(
|
||||
fvc::interpolate
|
||||
(
|
||||
(
|
||||
turbulence.valid()
|
||||
? turbulence->alphaEff()()
|
||||
: thermo->alpha()
|
||||
)
|
||||
)*fvc::snGrad(h)
|
||||
);
|
||||
|
||||
const surfaceScalarField::Boundary& patchHeatFlux =
|
||||
heatFlux.boundaryField();
|
||||
|
||||
const volScalarField::Boundary& patchRadHeatFlux =
|
||||
Qr.boundaryField();
|
||||
|
||||
const surfaceScalarField::Boundary& magSf =
|
||||
mesh.magSf().boundaryField();
|
||||
|
||||
Info<< "\nWall heat fluxes [W]" << endl;
|
||||
forAll(patchHeatFlux, patchi)
|
||||
{
|
||||
if (isA<wallFvPatch>(mesh.boundary()[patchi]))
|
||||
{
|
||||
scalar convFlux = gSum(magSf[patchi]*patchHeatFlux[patchi]);
|
||||
scalar radFlux = -gSum(magSf[patchi]*patchRadHeatFlux[patchi]);
|
||||
|
||||
Info<< mesh.boundary()[patchi].name() << endl
|
||||
<< " convective: " << convFlux << endl
|
||||
<< " radiative: " << radFlux << endl
|
||||
<< " total: " << convFlux + radFlux << endl;
|
||||
}
|
||||
}
|
||||
Info<< endl;
|
||||
|
||||
volScalarField wallHeatFlux
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"wallHeatFlux",
|
||||
runTime.timeName(),
|
||||
mesh
|
||||
),
|
||||
mesh,
|
||||
dimensionedScalar("wallHeatFlux", heatFlux.dimensions(), 0.0)
|
||||
);
|
||||
|
||||
volScalarField::Boundary& wallHeatFluxBf =
|
||||
wallHeatFlux.boundaryFieldRef();
|
||||
|
||||
forAll(wallHeatFluxBf, patchi)
|
||||
{
|
||||
wallHeatFluxBf[patchi] = patchHeatFlux[patchi];
|
||||
}
|
||||
|
||||
wallHeatFlux.write();
|
||||
|
||||
// Write the total heat-flux including the radiative contribution
|
||||
// if available
|
||||
if (Qr.headerOk())
|
||||
{
|
||||
volScalarField totalWallHeatFlux
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"totalWallHeatFlux",
|
||||
runTime.timeName(),
|
||||
mesh
|
||||
),
|
||||
mesh,
|
||||
dimensionedScalar
|
||||
(
|
||||
"totalWallHeatFlux",
|
||||
heatFlux.dimensions(),
|
||||
0.0
|
||||
)
|
||||
);
|
||||
|
||||
volScalarField::Boundary& totalWallHeatFluxBf =
|
||||
totalWallHeatFlux.boundaryFieldRef();
|
||||
|
||||
forAll(totalWallHeatFluxBf, patchi)
|
||||
{
|
||||
totalWallHeatFluxBf[patchi] =
|
||||
patchHeatFlux[patchi] - patchRadHeatFlux[patchi];
|
||||
}
|
||||
|
||||
totalWallHeatFlux.write();
|
||||
}
|
||||
}
|
||||
|
||||
Info<< "End" << endl;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
// ************************************************************************* //
|
||||
Reference in New Issue
Block a user