mirror of
https://develop.openfoam.com/Development/openfoam.git
synced 2025-11-28 03:28:01 +00:00
1)Adding alphaEqn.H and alphaEqnSubCycle.H specialized version for MPPICInterFoam
2)Adapting divU in TEqn.H for compressibleInterDyMFoam and compressibleInterFoam 3)Re-instated sixDoFRigidBodyDisplacement as patch for pointFields. It allows to use a different fvDynamincMesh type independently of the BC's
This commit is contained in:
@ -2,9 +2,9 @@ interFoamPath = $(FOAM_SOLVERS)/multiphase/interFoam
|
||||
|
||||
EXE_INC = \
|
||||
-I. \
|
||||
-I../VoF \
|
||||
-I./IncompressibleTwoPhaseMixtureTurbulenceModels/lnInclude \
|
||||
-I$(interFoamPath) \
|
||||
-I../VoF \
|
||||
-I$(LIB_SRC)/finiteVolume/lnInclude \
|
||||
-I$(LIB_SRC)/fvOptions/lnInclude \
|
||||
-I$(LIB_SRC)/meshTools/lnInclude \
|
||||
|
||||
258
applications/solvers/multiphase/MPPICInterFoam/alphaEqn.H
Normal file
258
applications/solvers/multiphase/MPPICInterFoam/alphaEqn.H
Normal file
@ -0,0 +1,258 @@
|
||||
{
|
||||
word alphaScheme("div(phi,alpha)");
|
||||
word alpharScheme("div(phirb,alpha)");
|
||||
|
||||
// Set the off-centering coefficient according to ddt scheme
|
||||
scalar ocCoeff = 0;
|
||||
{
|
||||
tmp<fv::ddtScheme<scalar>> tddtAlpha
|
||||
(
|
||||
fv::ddtScheme<scalar>::New
|
||||
(
|
||||
mesh,
|
||||
mesh.ddtScheme("ddt(alpha)")
|
||||
)
|
||||
);
|
||||
const fv::ddtScheme<scalar>& ddtAlpha = tddtAlpha();
|
||||
|
||||
if
|
||||
(
|
||||
isType<fv::EulerDdtScheme<scalar>>(ddtAlpha)
|
||||
|| isType<fv::localEulerDdtScheme<scalar>>(ddtAlpha)
|
||||
)
|
||||
{
|
||||
ocCoeff = 0;
|
||||
}
|
||||
else if (isType<fv::CrankNicolsonDdtScheme<scalar>>(ddtAlpha))
|
||||
{
|
||||
if (nAlphaSubCycles > 1)
|
||||
{
|
||||
FatalErrorInFunction
|
||||
<< "Sub-cycling is not supported "
|
||||
"with the CrankNicolson ddt scheme"
|
||||
<< exit(FatalError);
|
||||
}
|
||||
|
||||
if
|
||||
(
|
||||
alphaRestart
|
||||
|| mesh.time().timeIndex() > mesh.time().startTimeIndex() + 1
|
||||
)
|
||||
{
|
||||
ocCoeff =
|
||||
refCast<const fv::CrankNicolsonDdtScheme<scalar>>(ddtAlpha)
|
||||
.ocCoeff();
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
FatalErrorInFunction
|
||||
<< "Only Euler and CrankNicolson ddt schemes are supported"
|
||||
<< exit(FatalError);
|
||||
}
|
||||
}
|
||||
|
||||
// Set the time blending factor, 1 for Euler
|
||||
scalar cnCoeff = 1.0/(1.0 + ocCoeff);
|
||||
|
||||
// Standard face-flux compression coefficient
|
||||
surfaceScalarField phic(mixture.cAlpha()*mag(alphaPhic/mesh.magSf()));
|
||||
|
||||
// Add the optional isotropic compression contribution
|
||||
if (icAlpha > 0)
|
||||
{
|
||||
phic *= (1.0 - icAlpha);
|
||||
phic += (mixture.cAlpha()*icAlpha)*fvc::interpolate(mag(U));
|
||||
}
|
||||
|
||||
surfaceScalarField::Boundary& phicBf =
|
||||
phic.boundaryFieldRef();
|
||||
|
||||
// Do not compress interface at non-coupled boundary faces
|
||||
// (inlets, outlets etc.)
|
||||
forAll(phic.boundaryField(), patchi)
|
||||
{
|
||||
fvsPatchScalarField& phicp = phicBf[patchi];
|
||||
|
||||
if (!phicp.coupled())
|
||||
{
|
||||
phicp == 0;
|
||||
}
|
||||
}
|
||||
|
||||
tmp<surfaceScalarField> phiCN(alphaPhic);
|
||||
|
||||
// Calculate the Crank-Nicolson off-centred volumetric flux
|
||||
if (ocCoeff > 0)
|
||||
{
|
||||
phiCN = cnCoeff*alphaPhic + (1.0 - cnCoeff)*alphaPhic.oldTime();
|
||||
}
|
||||
|
||||
if (MULESCorr)
|
||||
{
|
||||
#include "alphaSuSp.H"
|
||||
|
||||
fvScalarMatrix alpha1Eqn
|
||||
(
|
||||
(
|
||||
LTS
|
||||
? fv::localEulerDdtScheme<scalar>(mesh).fvmDdt(alphac, alpha1)
|
||||
: fv::EulerDdtScheme<scalar>(mesh).fvmDdt(alpha1)
|
||||
)
|
||||
+ fv::gaussConvectionScheme<scalar>
|
||||
(
|
||||
mesh,
|
||||
phiCN,
|
||||
upwind<scalar>(mesh, phiCN)
|
||||
).fvmDiv(phiCN, alpha1)
|
||||
- fvm::Sp(fvc::ddt(alphac) + fvc::div(phiCN), alpha1)
|
||||
==
|
||||
Su + fvm::Sp(Sp + divU, alpha1)
|
||||
);
|
||||
|
||||
alpha1Eqn.solve();
|
||||
|
||||
Info<< "Phase-1 volume fraction = "
|
||||
<< alpha1.weightedAverage(mesh.Vsc()).value()
|
||||
<< " Min(" << alpha1.name() << ") = " << min(alpha1).value()
|
||||
<< " Max(" << alpha1.name() << ") = " << max(alpha1).value()
|
||||
<< endl;
|
||||
|
||||
tmp<surfaceScalarField> talphaPhiUD(alpha1Eqn.flux());
|
||||
alphaPhi = talphaPhiUD();
|
||||
|
||||
if (alphaApplyPrevCorr && talphaPhiCorr0.valid())
|
||||
{
|
||||
Info<< "Applying the previous iteration compression flux" << endl;
|
||||
MULES::correct
|
||||
(
|
||||
alphac,
|
||||
alpha1,
|
||||
alphaPhi,
|
||||
talphaPhiCorr0.ref(),
|
||||
zeroField(), zeroField(),
|
||||
1, 0
|
||||
);
|
||||
|
||||
alphaPhi += talphaPhiCorr0();
|
||||
}
|
||||
|
||||
// Cache the upwind-flux
|
||||
talphaPhiCorr0 = talphaPhiUD;
|
||||
|
||||
alpha2 = 1.0 - alpha1;
|
||||
|
||||
mixture.correct();
|
||||
}
|
||||
|
||||
|
||||
for (int aCorr=0; aCorr<nAlphaCorr; aCorr++)
|
||||
{
|
||||
#include "alphaSuSp.H"
|
||||
|
||||
surfaceScalarField phir(phic*mixture.nHatf());
|
||||
|
||||
tmp<surfaceScalarField> talphaPhiUn
|
||||
(
|
||||
fvc::flux
|
||||
(
|
||||
phiCN(),
|
||||
cnCoeff*alpha1 + (1.0 - cnCoeff)*alpha1.oldTime(),
|
||||
alphaScheme
|
||||
)
|
||||
+ fvc::flux
|
||||
(
|
||||
-fvc::flux(-phir, alpha2, alpharScheme),
|
||||
alpha1,
|
||||
alpharScheme
|
||||
)
|
||||
);
|
||||
|
||||
if (MULESCorr)
|
||||
{
|
||||
tmp<surfaceScalarField> talphaPhiCorr(talphaPhiUn() - alphaPhi);
|
||||
volScalarField alpha10("alpha10", alpha1);
|
||||
|
||||
MULES::correct
|
||||
(
|
||||
alphac,
|
||||
alpha1,
|
||||
talphaPhiUn(),
|
||||
talphaPhiCorr.ref(),
|
||||
Sp,
|
||||
(-Sp*alpha1)(),
|
||||
1,
|
||||
0
|
||||
);
|
||||
|
||||
// Under-relax the correction for all but the 1st corrector
|
||||
if (aCorr == 0)
|
||||
{
|
||||
alphaPhi += talphaPhiCorr();
|
||||
}
|
||||
else
|
||||
{
|
||||
alpha1 = 0.5*alpha1 + 0.5*alpha10;
|
||||
alphaPhi += 0.5*talphaPhiCorr();
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
alphaPhi = talphaPhiUn;
|
||||
|
||||
MULES::explicitSolve
|
||||
(
|
||||
alphac,
|
||||
alpha1,
|
||||
phiCN,
|
||||
alphaPhi,
|
||||
Sp,
|
||||
(Su + divU*min(alpha1(), scalar(1)))(),
|
||||
1,
|
||||
0
|
||||
);
|
||||
}
|
||||
|
||||
alpha2 = 1.0 - alpha1;
|
||||
|
||||
mixture.correct();
|
||||
}
|
||||
|
||||
if (alphaApplyPrevCorr && MULESCorr)
|
||||
{
|
||||
talphaPhiCorr0 = alphaPhi - talphaPhiCorr0;
|
||||
talphaPhiCorr0.ref().rename("alphaPhiCorr0");
|
||||
}
|
||||
else
|
||||
{
|
||||
talphaPhiCorr0.clear();
|
||||
}
|
||||
|
||||
if
|
||||
(
|
||||
word(mesh.ddtScheme("ddt(rho,U)"))
|
||||
== fv::EulerDdtScheme<vector>::typeName
|
||||
)
|
||||
{
|
||||
#include "rhofs.H"
|
||||
rhoPhi = alphaPhi*(rho1f - rho2f) + phiCN*rho2f;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (ocCoeff > 0)
|
||||
{
|
||||
// Calculate the end-of-time-step alpha flux
|
||||
alphaPhi = (alphaPhi - (1.0 - cnCoeff)*alphaPhi.oldTime())/cnCoeff;
|
||||
}
|
||||
|
||||
// Calculate the end-of-time-step mass flux
|
||||
#include "rhofs.H"
|
||||
rhoPhi = alphaPhi*(rho1f - rho2f) + alphaPhic*rho2f;
|
||||
}
|
||||
|
||||
Info<< "Phase-1 volume fraction = "
|
||||
<< alpha1.weightedAverage(mesh.Vsc()).value()
|
||||
<< " Min(" << alpha1.name() << ") = " << min(alpha1).value()
|
||||
<< " Max(" << alpha1.name() << ") = " << max(alpha1).value()
|
||||
<< endl;
|
||||
}
|
||||
@ -0,0 +1,43 @@
|
||||
if (nAlphaSubCycles > 1)
|
||||
{
|
||||
dimensionedScalar totalDeltaT = runTime.deltaT();
|
||||
surfaceScalarField rhoPhiSum
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"rhoPhiSum",
|
||||
runTime.timeName(),
|
||||
mesh
|
||||
),
|
||||
mesh,
|
||||
dimensionedScalar("0", rhoPhi.dimensions(), 0)
|
||||
);
|
||||
|
||||
tmp<volScalarField> trSubDeltaT;
|
||||
|
||||
if (LTS)
|
||||
{
|
||||
trSubDeltaT =
|
||||
fv::localEulerDdt::localRSubDeltaT(mesh, nAlphaSubCycles);
|
||||
}
|
||||
|
||||
for
|
||||
(
|
||||
subCycle<volScalarField> alphaSubCycle(alpha1, nAlphaSubCycles);
|
||||
!(++alphaSubCycle).end();
|
||||
)
|
||||
{
|
||||
#include "alphaEqn.H"
|
||||
rhoPhiSum += (runTime.deltaT()/totalDeltaT)*rhoPhi;
|
||||
}
|
||||
|
||||
rhoPhi = rhoPhiSum;
|
||||
}
|
||||
else
|
||||
{
|
||||
#include "alphaEqn.H"
|
||||
}
|
||||
|
||||
rho == alpha1*rho1 + alpha2*rho2;
|
||||
mu = mixture.mu();
|
||||
|
||||
@ -5,7 +5,7 @@
|
||||
+ fvm::div(rhoPhi, T)
|
||||
- fvm::laplacian(mixture.alphaEff(turbulence->mut()), T)
|
||||
+ (
|
||||
fvc::div(fvc::absolute(phi, U), p)
|
||||
divU*p
|
||||
+ fvc::ddt(rho, K) + fvc::div(rhoPhi, K)
|
||||
)
|
||||
*(
|
||||
|
||||
@ -3,7 +3,7 @@
|
||||
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
||||
\\ / O peration |
|
||||
\\ / A nd | Copyright (C) 2011-2017 OpenFOAM Foundation
|
||||
\\/ M anipulation |
|
||||
\\/ M anipulation | Copyright (C) 2017 OpenCFD Ltd
|
||||
-------------------------------------------------------------------------------
|
||||
License
|
||||
This file is part of OpenFOAM.
|
||||
@ -167,6 +167,12 @@ int main(int argc, char *argv[])
|
||||
}
|
||||
}
|
||||
|
||||
rho = alpha1*rho1 + alpha2*rho2;
|
||||
|
||||
// Correct p_rgh for consistency with p and the updated densities
|
||||
p_rgh = p - rho*gh;
|
||||
p_rgh.correctBoundaryConditions();
|
||||
|
||||
runTime.write();
|
||||
|
||||
Info<< "ExecutionTime = "
|
||||
|
||||
@ -3,7 +3,7 @@
|
||||
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
||||
\\ / O peration |
|
||||
\\ / A nd | Copyright (C) 2011-2017 OpenFOAM Foundation
|
||||
\\/ M anipulation |
|
||||
\\/ M anipulation | Copyright (C) OpenCFD Ltd. 2017
|
||||
-------------------------------------------------------------------------------
|
||||
License
|
||||
This file is part of OpenFOAM.
|
||||
@ -113,6 +113,7 @@ int main(int argc, char *argv[])
|
||||
solve(fvm::ddt(rho) + fvc::div(rhoPhi));
|
||||
|
||||
#include "UEqn.H"
|
||||
volScalarField divU(fvc::div(fvc::absolute(phi, U)));
|
||||
#include "TEqn.H"
|
||||
|
||||
// --- Pressure corrector loop
|
||||
|
||||
Reference in New Issue
Block a user