mirror of
https://develop.openfoam.com/Development/openfoam.git
synced 2025-11-28 03:28:01 +00:00
CONT: Addition of compressibleIsoInterFOam and PLIC
1) Implementation of the compressibleIsoInterFOam solver 2) Implementation of a new PLIC interpolation scheme. 3) New tutorials associated with the solvers This implementation was carried out by Henning Scheufler (DLR) and Johan Roenby (DHI), following : \verbatim Henning Scheufler, Johan Roenby, Accurate and efficient surface reconstruction from volume fraction data on general meshes, Journal of Computational Physics, 2019, doi 10.1016/j.jcp.2019.01.009 \endverbatim The integration of the code was carried out by Andy Heather and Sergio Ferraris from OpenCFD Ltd.
This commit is contained in:
committed by
Andrew Heather
parent
237f2e1076
commit
44a84d4778
@ -0,0 +1,3 @@
|
||||
compressibleInterIsoFoam.C
|
||||
|
||||
EXE = $(FOAM_APPBIN)/compressibleInterIsoFoam
|
||||
@ -0,0 +1,39 @@
|
||||
EXE_INC = \
|
||||
-I. \
|
||||
-I../VoF \
|
||||
-I../compressibleInterFoam \
|
||||
-I$(FOAM_SOLVERS)/multiphase/compressibleInterFoam/twoPhaseMixtureThermo \
|
||||
-I$(FOAM_SOLVERS)/multiphase/compressibleInterFoam/VoFphaseCompressibleTurbulenceModels \
|
||||
-I$(LIB_SRC)/finiteVolume/lnInclude \
|
||||
-I$(LIB_SRC)/surfMesh/lnInclude \
|
||||
-I$(LIB_SRC)/meshTools/lnInclude \
|
||||
-I$(LIB_SRC)/dynamicMesh/lnInclude \
|
||||
-I$(LIB_SRC)/dynamicFvMesh/lnInclude \
|
||||
-I$(LIB_SRC)/transportModels/compressible/lnInclude \
|
||||
-I$(LIB_SRC)/thermophysicalModels/basic/lnInclude \
|
||||
-I$(LIB_SRC)/transportModels/twoPhaseMixture/lnInclude \
|
||||
-I$(LIB_SRC)/transportModels/interfaceProperties/lnInclude \
|
||||
-I$(LIB_SRC)/TurbulenceModels/turbulenceModels/lnInclude \
|
||||
-I$(LIB_SRC)/TurbulenceModels/compressible/lnInclude \
|
||||
-I$(LIB_SRC)/TurbulenceModels/phaseCompressible/lnInclude \
|
||||
-I$(LIB_SRC)/transportModels/geometricVoF/lnInclude
|
||||
|
||||
EXE_LIBS = \
|
||||
-lfiniteVolume \
|
||||
-lfvOptions \
|
||||
-lsurfMesh \
|
||||
-lmeshTools \
|
||||
-ldynamicMesh \
|
||||
-ldynamicFvMesh \
|
||||
-ltwoPhaseMixtureThermo \
|
||||
-ltwoPhaseSurfaceTension \
|
||||
-lcompressibleTransportModels \
|
||||
-lfluidThermophysicalModels \
|
||||
-lspecie \
|
||||
-ltwoPhaseMixture \
|
||||
-ltwoPhaseProperties \
|
||||
-linterfaceProperties \
|
||||
-lturbulenceModels \
|
||||
-lcompressibleTurbulenceModels \
|
||||
-lVoFphaseCompressibleTurbulenceModels \
|
||||
-lgeometricVoF
|
||||
@ -0,0 +1,3 @@
|
||||
const dictionary& alphaControls = mesh.solverDict(alpha1.name());
|
||||
|
||||
label nAlphaSubCycles(alphaControls.get<label>("nAlphaSubCycles"));
|
||||
@ -0,0 +1,15 @@
|
||||
// Update alpha1
|
||||
#include "alphaSuSp.H"
|
||||
advector.advect(Sp,(Su + divU*min(alpha1(), scalar(1)))());
|
||||
|
||||
// Update rhoPhi
|
||||
rhoPhi = advector.getRhoPhi(rho1, rho2);
|
||||
alphaPhi10 = advector.alphaPhi();
|
||||
|
||||
alpha2 = 1.0 - alpha1;
|
||||
|
||||
Info<< "Phase-1 volume fraction = "
|
||||
<< alpha1.weightedAverage(mesh.Vsc()).value()
|
||||
<< " Min(" << alpha1.name() << ") = " << min(alpha1).value()
|
||||
<< " Max(" << alpha1.name() << ") - 1 = " << max(alpha1).value() - 1
|
||||
<< endl;
|
||||
@ -0,0 +1,43 @@
|
||||
volScalarField::Internal Sp
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"Sp",
|
||||
runTime.timeName(),
|
||||
mesh
|
||||
),
|
||||
mesh,
|
||||
dimensionedScalar(dgdt.dimensions(), Zero)
|
||||
);
|
||||
|
||||
volScalarField::Internal Su
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"Su",
|
||||
runTime.timeName(),
|
||||
mesh
|
||||
),
|
||||
mesh,
|
||||
dimensionedScalar(dgdt.dimensions(), Zero)
|
||||
);
|
||||
|
||||
forAll(dgdt, celli)
|
||||
{
|
||||
if (dgdt[celli] > 0.0)
|
||||
{
|
||||
Sp[celli] -= dgdt[celli]/max(1.0 - alpha1[celli], 1e-4);
|
||||
Su[celli] += dgdt[celli]/max(1.0 - alpha1[celli], 1e-4);
|
||||
}
|
||||
else if (dgdt[celli] < 0.0)
|
||||
{
|
||||
Sp[celli] += dgdt[celli]/max(alpha1[celli], 1e-4);
|
||||
}
|
||||
}
|
||||
|
||||
volScalarField::Internal divU
|
||||
(
|
||||
mesh.moving()
|
||||
? fvc::div(phi + mesh.phi())
|
||||
: fvc::div(phi)
|
||||
);
|
||||
@ -0,0 +1,70 @@
|
||||
if (pimple.nCorrPIMPLE() > 1)
|
||||
{
|
||||
if (!pimple.firstIter())
|
||||
{
|
||||
// Resetting alpha1 to value before advection in first PIMPLE
|
||||
// iteration.
|
||||
alpha1 = alpha1.oldTime();
|
||||
}
|
||||
}
|
||||
tmp<surfaceScalarField> talphaPhi1(alphaPhi10);
|
||||
|
||||
if (nAlphaSubCycles > 1)
|
||||
{
|
||||
dimensionedScalar totalDeltaT = runTime.deltaT();
|
||||
|
||||
talphaPhi1 = new surfaceScalarField
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"alphaPhi1",
|
||||
runTime.timeName(),
|
||||
mesh
|
||||
),
|
||||
mesh,
|
||||
dimensionedScalar(alphaPhi10.dimensions(), Zero)
|
||||
);
|
||||
|
||||
surfaceScalarField rhoPhiSum
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"rhoPhiSum",
|
||||
runTime.timeName(),
|
||||
mesh
|
||||
),
|
||||
mesh,
|
||||
dimensionedScalar(rhoPhi.dimensions(), Zero)
|
||||
);
|
||||
|
||||
for
|
||||
(
|
||||
subCycle<volScalarField> alphaSubCycle(alpha1, nAlphaSubCycles);
|
||||
!(++alphaSubCycle).end();
|
||||
)
|
||||
{
|
||||
#include "alphaEqn.H"
|
||||
talphaPhi1.ref() += (runTime.deltaT()/totalDeltaT)*alphaPhi10;
|
||||
rhoPhiSum += (runTime.deltaT()/totalDeltaT)*rhoPhi;
|
||||
}
|
||||
|
||||
rhoPhi = rhoPhiSum;
|
||||
}
|
||||
else
|
||||
{
|
||||
#include "alphaEqn.H"
|
||||
}
|
||||
|
||||
rho == alpha1*rho1 + alpha2*rho2;
|
||||
|
||||
const surfaceScalarField& alphaPhi1 = talphaPhi1();
|
||||
surfaceScalarField alphaPhi2("alphaPhi2", phi - alphaPhi1);
|
||||
|
||||
volScalarField::Internal contErr
|
||||
(
|
||||
(
|
||||
fvc::ddt(rho) + fvc::div(rhoPhi)
|
||||
- (fvOptions(alpha1, mixture.thermo1().rho())&rho1)
|
||||
- (fvOptions(alpha2, mixture.thermo2().rho())&rho2)
|
||||
)()
|
||||
);
|
||||
@ -0,0 +1,203 @@
|
||||
/*---------------------------------------------------------------------------*\
|
||||
========= |
|
||||
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
||||
\\ / O peration |
|
||||
\\ / A nd | www.openfoam.com
|
||||
\\/ M anipulation |
|
||||
-------------------------------------------------------------------------------
|
||||
Copyright (C) 2020 OpenCFD Ltd.
|
||||
Copyright (C) 2020 Johan Roenby
|
||||
Copyright (C) 2020 DLR
|
||||
-------------------------------------------------------------------------------
|
||||
License
|
||||
This file is part of OpenFOAM.
|
||||
|
||||
OpenFOAM is free software: you can redistribute it and/or modify it
|
||||
under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
||||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
Application
|
||||
compressibleInterFlow
|
||||
|
||||
Description
|
||||
Solver derived from interFoam for two compressible, immiscible
|
||||
fluids using the isoAdvector phase-fraction based interface capturing
|
||||
approach, with optional mesh motion and mesh topology changes including
|
||||
adaptive re-meshing.
|
||||
|
||||
Reference:
|
||||
\verbatim
|
||||
Roenby, J., Bredmose, H. and Jasak, H. (2016).
|
||||
A computational method for sharp interface advection
|
||||
Royal Society Open Science, 3
|
||||
doi 10.1098/rsos.160405
|
||||
\endverbatim
|
||||
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
#include "fvCFD.H"
|
||||
#include "dynamicFvMesh.H"
|
||||
#include "CMULES.H"
|
||||
#include "EulerDdtScheme.H"
|
||||
#include "localEulerDdtScheme.H"
|
||||
#include "CrankNicolsonDdtScheme.H"
|
||||
#include "subCycle.H"
|
||||
#include "compressibleInterPhaseTransportModel.H"
|
||||
#include "pimpleControl.H"
|
||||
#include "fvOptions.H"
|
||||
#include "CorrectPhi.H"
|
||||
#include "fvcSmooth.H"
|
||||
#include "dynamicRefineFvMesh.H"
|
||||
#include "isoAdvection.H"
|
||||
#include "twoPhaseMixtureThermo.H"
|
||||
|
||||
|
||||
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
argList::addNote
|
||||
(
|
||||
"Solver for two compressible, non-isothermal immiscible fluids"
|
||||
" using VOF phase-fraction based interface capturing.\n"
|
||||
"With optional mesh motion and mesh topology changes including"
|
||||
" adaptive re-meshing."
|
||||
);
|
||||
|
||||
#include "postProcess.H"
|
||||
|
||||
#include "setRootCaseLists.H"
|
||||
#include "createTime.H"
|
||||
#include "createDynamicFvMesh.H"
|
||||
#include "initContinuityErrs.H"
|
||||
#include "createDyMControls.H"
|
||||
#include "createFields.H"
|
||||
#include "createUf.H"
|
||||
#include "CourantNo.H"
|
||||
#include "setInitialDeltaT.H"
|
||||
|
||||
volScalarField& p = mixture.p();
|
||||
volScalarField& T = mixture.T();
|
||||
const volScalarField& psi1 = mixture.thermo1().psi();
|
||||
const volScalarField& psi2 = mixture.thermo2().psi();
|
||||
|
||||
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
||||
Info<< "\nStarting time loop\n" << endl;
|
||||
|
||||
while (runTime.run())
|
||||
{
|
||||
#include "readDyMControls.H"
|
||||
|
||||
// Store divU and divUp from the previous mesh so that it can be mapped
|
||||
// and used in correctPhi to ensure the corrected phi has the
|
||||
// same divergence
|
||||
volScalarField divU("divU0", fvc::div(fvc::absolute(phi, U)));
|
||||
|
||||
#include "CourantNo.H"
|
||||
#include "alphaCourantNo.H"
|
||||
#include "setDeltaT.H"
|
||||
|
||||
|
||||
++runTime;
|
||||
|
||||
Info<< "Time = " << runTime.timeName() << nl << endl;
|
||||
|
||||
// --- Pressure-velocity PIMPLE corrector loop
|
||||
while (pimple.loop())
|
||||
{
|
||||
if (pimple.firstIter() || moveMeshOuterCorrectors)
|
||||
{
|
||||
scalar timeBeforeMeshUpdate = runTime.elapsedCpuTime();
|
||||
|
||||
if (isA<dynamicRefineFvMesh>(mesh))
|
||||
{
|
||||
advector.surf().reconstruct();
|
||||
}
|
||||
|
||||
mesh.update();
|
||||
|
||||
if (mesh.changing())
|
||||
{
|
||||
gh = (g & mesh.C()) - ghRef;
|
||||
ghf = (g & mesh.Cf()) - ghRef;
|
||||
|
||||
if (isA<dynamicRefineFvMesh>(mesh))
|
||||
{
|
||||
advector.surf().mapAlphaField();
|
||||
alpha2 = 1.0 - alpha1;
|
||||
alpha2.correctBoundaryConditions();
|
||||
rho == alpha1*rho1 + alpha2*rho2;
|
||||
rho.correctBoundaryConditions();
|
||||
rho.oldTime() = rho;
|
||||
alpha2.oldTime() = alpha2;
|
||||
}
|
||||
|
||||
MRF.update();
|
||||
|
||||
Info<< "Execution time for mesh.update() = "
|
||||
<< runTime.elapsedCpuTime() - timeBeforeMeshUpdate
|
||||
<< " s" << endl;
|
||||
|
||||
}
|
||||
|
||||
if ((mesh.changing() && correctPhi))
|
||||
{
|
||||
// Calculate absolute flux from the mapped surface velocity
|
||||
phi = mesh.Sf() & Uf;
|
||||
|
||||
#include "correctPhi.H"
|
||||
|
||||
// Make the fluxes relative to the mesh motion
|
||||
fvc::makeRelative(phi, U);
|
||||
|
||||
mixture.correct();
|
||||
}
|
||||
|
||||
if (mesh.changing() && checkMeshCourantNo)
|
||||
{
|
||||
#include "meshCourantNo.H"
|
||||
}
|
||||
}
|
||||
|
||||
#include "alphaControls.H"
|
||||
#include "compressibleAlphaEqnSubCycle.H"
|
||||
|
||||
turbulence.correctPhasePhi();
|
||||
|
||||
#include "UEqn.H"
|
||||
volScalarField divUp("divUp", fvc::div(fvc::absolute(phi, U), p));
|
||||
#include "TEqn.H"
|
||||
|
||||
// --- Pressure corrector loop
|
||||
while (pimple.correct())
|
||||
{
|
||||
#include "pEqn.H"
|
||||
}
|
||||
|
||||
if (pimple.turbCorr())
|
||||
{
|
||||
turbulence.correct();
|
||||
}
|
||||
}
|
||||
|
||||
runTime.write();
|
||||
|
||||
runTime.printExecutionTime(Info);
|
||||
}
|
||||
|
||||
Info<< "End\n" << endl;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
// ************************************************************************* //
|
||||
@ -0,0 +1,13 @@
|
||||
CorrectPhi
|
||||
(
|
||||
U,
|
||||
phi,
|
||||
p,
|
||||
dimensionedScalar("rAUf", dimTime/rho.dimensions(), 1),
|
||||
divU,
|
||||
pimple
|
||||
);
|
||||
|
||||
//***HGW phi.oldTime() = phi;
|
||||
|
||||
#include "continuityErrs.H"
|
||||
@ -0,0 +1,110 @@
|
||||
#include "createRDeltaT.H"
|
||||
|
||||
Info<< "Reading field p_rgh\n" << endl;
|
||||
volScalarField p_rgh
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"p_rgh",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::MUST_READ,
|
||||
IOobject::AUTO_WRITE
|
||||
),
|
||||
mesh
|
||||
);
|
||||
|
||||
Info<< "Reading field U\n" << endl;
|
||||
volVectorField U
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"U",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::MUST_READ,
|
||||
IOobject::AUTO_WRITE
|
||||
),
|
||||
mesh
|
||||
);
|
||||
|
||||
#include "createPhi.H"
|
||||
|
||||
Info<< "Constructing twoPhaseMixtureThermo\n" << endl;
|
||||
twoPhaseMixtureThermo mixture(U, phi);
|
||||
|
||||
|
||||
volScalarField& alpha1(mixture.alpha1());
|
||||
volScalarField& alpha2(mixture.alpha2());
|
||||
|
||||
Info<< "Reading thermophysical properties\n" << endl;
|
||||
|
||||
const volScalarField& rho1 = mixture.thermo1().rho();
|
||||
const volScalarField& rho2 = mixture.thermo2().rho();
|
||||
|
||||
volScalarField rho
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"rho",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::READ_IF_PRESENT,
|
||||
IOobject::AUTO_WRITE
|
||||
),
|
||||
alpha1*rho1 + alpha2*rho2
|
||||
);
|
||||
|
||||
|
||||
dimensionedScalar pMin
|
||||
(
|
||||
"pMin",
|
||||
dimPressure,
|
||||
mixture
|
||||
);
|
||||
|
||||
mesh.setFluxRequired(p_rgh.name());
|
||||
mesh.setFluxRequired(alpha1.name());
|
||||
|
||||
|
||||
#include "readGravitationalAcceleration.H"
|
||||
#include "readhRef.H"
|
||||
#include "gh.H"
|
||||
|
||||
|
||||
// Mass flux
|
||||
// Initialisation does not matter because rhoPhi is reset after the
|
||||
// alpha1 solution before it is used in the U equation.
|
||||
surfaceScalarField rhoPhi
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"rhoPhi",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::NO_READ,
|
||||
IOobject::NO_WRITE
|
||||
),
|
||||
fvc::interpolate(rho)*phi
|
||||
);
|
||||
|
||||
volScalarField dgdt(alpha1*fvc::div(phi));
|
||||
|
||||
#include "createAlphaFluxes.H"
|
||||
|
||||
Foam::isoAdvection advector(alpha1,phi,U);
|
||||
// Construct compressible turbulence model
|
||||
compressibleInterPhaseTransportModel turbulence
|
||||
(
|
||||
rho,
|
||||
U,
|
||||
phi,
|
||||
rhoPhi,
|
||||
alphaPhi10,
|
||||
mixture
|
||||
);
|
||||
|
||||
#include "createK.H"
|
||||
|
||||
#include "createMRF.H"
|
||||
#include "createFvOptions.H"
|
||||
169
applications/solvers/multiphase/compressibleInterIsoFoam/pEqn.H
Normal file
169
applications/solvers/multiphase/compressibleInterIsoFoam/pEqn.H
Normal file
@ -0,0 +1,169 @@
|
||||
{
|
||||
volScalarField rAU("rAU", 1.0/UEqn.A());
|
||||
surfaceScalarField rAUf("rAUf", fvc::interpolate(rAU));
|
||||
volVectorField HbyA(constrainHbyA(rAU*UEqn.H(), U, p_rgh));
|
||||
surfaceScalarField phiHbyA
|
||||
(
|
||||
"phiHbyA",
|
||||
fvc::flux(HbyA)
|
||||
+ MRF.zeroFilter(fvc::interpolate(rho*rAU)*fvc::ddtCorr(U, Uf))
|
||||
);
|
||||
MRF.makeRelative(phiHbyA);
|
||||
|
||||
surfaceScalarField phig
|
||||
(
|
||||
(
|
||||
mixture.surfaceTensionForce()
|
||||
- ghf*fvc::snGrad(rho)
|
||||
)*rAUf*mesh.magSf()
|
||||
);
|
||||
|
||||
phiHbyA += phig;
|
||||
|
||||
// Update the pressure BCs to ensure flux consistency
|
||||
constrainPressure(p_rgh, U, phiHbyA, rAUf, MRF);
|
||||
|
||||
// Make the fluxes relative to the mesh motion
|
||||
fvc::makeRelative(phiHbyA, U);
|
||||
|
||||
tmp<fvScalarMatrix> p_rghEqnComp1;
|
||||
tmp<fvScalarMatrix> p_rghEqnComp2;
|
||||
|
||||
if (pimple.transonic())
|
||||
{
|
||||
#include "rhofs.H"
|
||||
|
||||
surfaceScalarField phid1("phid1", fvc::interpolate(psi1)*phi);
|
||||
surfaceScalarField phid2("phid2", fvc::interpolate(psi2)*phi);
|
||||
|
||||
p_rghEqnComp1 =
|
||||
(
|
||||
(
|
||||
fvc::ddt(alpha1, rho1) + fvc::div(alphaPhi1*rho1f)
|
||||
- (fvOptions(alpha1, mixture.thermo1().rho())&rho1)
|
||||
)/rho1
|
||||
- fvc::ddt(alpha1) - fvc::div(alphaPhi1)
|
||||
+ (alpha1/rho1)
|
||||
*correction
|
||||
(
|
||||
psi1*fvm::ddt(p_rgh)
|
||||
+ fvm::div(phid1, p_rgh) - fvm::Sp(fvc::div(phid1), p_rgh)
|
||||
)
|
||||
);
|
||||
p_rghEqnComp1.ref().relax();
|
||||
|
||||
p_rghEqnComp2 =
|
||||
(
|
||||
(
|
||||
fvc::ddt(alpha2, rho2) + fvc::div(alphaPhi2*rho2f)
|
||||
- (fvOptions(alpha2, mixture.thermo2().rho())&rho2)
|
||||
)/rho2
|
||||
- fvc::ddt(alpha2) - fvc::div(alphaPhi2)
|
||||
+ (alpha2/rho2)
|
||||
*correction
|
||||
(
|
||||
psi2*fvm::ddt(p_rgh)
|
||||
+ fvm::div(phid2, p_rgh) - fvm::Sp(fvc::div(phid2), p_rgh)
|
||||
)
|
||||
);
|
||||
p_rghEqnComp2.ref().relax();
|
||||
}
|
||||
else
|
||||
{
|
||||
#include "rhofs.H"
|
||||
|
||||
p_rghEqnComp1 =
|
||||
pos(alpha1)
|
||||
*(
|
||||
(
|
||||
fvc::ddt(alpha1, rho1) + fvc::div(alphaPhi1*rho1f)
|
||||
- (fvOptions(alpha1, mixture.thermo1().rho())&rho1)
|
||||
)/rho1
|
||||
- fvc::ddt(alpha1) - fvc::div(alphaPhi1)
|
||||
+ (alpha1*psi1/rho1)*correction(fvm::ddt(p_rgh))
|
||||
);
|
||||
|
||||
p_rghEqnComp2 =
|
||||
pos(alpha2)
|
||||
*(
|
||||
(
|
||||
fvc::ddt(alpha2, rho2) + fvc::div(alphaPhi2*rho2f)
|
||||
- (fvOptions(alpha2, mixture.thermo2().rho())&rho2)
|
||||
)/rho2
|
||||
- fvc::ddt(alpha2) - fvc::div(alphaPhi2)
|
||||
+ (alpha2*psi2/rho2)*correction(fvm::ddt(p_rgh))
|
||||
);
|
||||
}
|
||||
|
||||
if (mesh.moving())
|
||||
{
|
||||
p_rghEqnComp1.ref() += fvc::div(mesh.phi())*alpha1;
|
||||
p_rghEqnComp2.ref() += fvc::div(mesh.phi())*alpha2;
|
||||
}
|
||||
|
||||
p_rghEqnComp1.ref() *= pos(alpha1);
|
||||
p_rghEqnComp2.ref() *= pos(alpha2);
|
||||
|
||||
if (pimple.transonic())
|
||||
{
|
||||
p_rghEqnComp1.ref().relax();
|
||||
p_rghEqnComp2.ref().relax();
|
||||
}
|
||||
|
||||
// Cache p_rgh prior to solve for density update
|
||||
volScalarField p_rgh_0(p_rgh);
|
||||
|
||||
while (pimple.correctNonOrthogonal())
|
||||
{
|
||||
fvScalarMatrix p_rghEqnIncomp
|
||||
(
|
||||
fvc::div(phiHbyA)
|
||||
- fvm::laplacian(rAUf, p_rgh)
|
||||
);
|
||||
|
||||
solve
|
||||
(
|
||||
p_rghEqnComp1() + p_rghEqnComp2() + p_rghEqnIncomp,
|
||||
mesh.solver(p_rgh.select(pimple.finalInnerIter()))
|
||||
);
|
||||
|
||||
if (pimple.finalNonOrthogonalIter())
|
||||
{
|
||||
p = max(p_rgh + (alpha1*rho1 + alpha2*rho2)*gh, pMin);
|
||||
p_rgh = p - (alpha1*rho1 + alpha2*rho2)*gh;
|
||||
|
||||
dgdt =
|
||||
(
|
||||
alpha1*(p_rghEqnComp2 & p_rgh)
|
||||
- alpha2*(p_rghEqnComp1 & p_rgh)
|
||||
);
|
||||
|
||||
phi = phiHbyA + p_rghEqnIncomp.flux();
|
||||
|
||||
U = HbyA
|
||||
+ rAU*fvc::reconstruct((phig + p_rghEqnIncomp.flux())/rAUf);
|
||||
U.correctBoundaryConditions();
|
||||
fvOptions.correct(U);
|
||||
}
|
||||
}
|
||||
|
||||
// Correct Uf if the mesh is moving
|
||||
{
|
||||
Uf = fvc::interpolate(U);
|
||||
surfaceVectorField n(mesh.Sf()/mesh.magSf());
|
||||
Uf += n*(fvc::absolute(phi, U)/mesh.magSf() - (n & Uf));
|
||||
}
|
||||
|
||||
|
||||
// Update densities from change in p_rgh
|
||||
mixture.thermo1().correctRho(psi1*(p_rgh - p_rgh_0));
|
||||
mixture.thermo2().correctRho(psi2*(p_rgh - p_rgh_0));
|
||||
|
||||
rho = alpha1*rho1 + alpha2*rho2;
|
||||
|
||||
// Correct p_rgh for consistency with p and the updated densities
|
||||
p_rgh = p - rho*gh;
|
||||
p_rgh.correctBoundaryConditions();
|
||||
|
||||
K = 0.5*magSqr(U);
|
||||
}
|
||||
@ -7,7 +7,8 @@ EXE_INC = \
|
||||
-I$(LIB_SRC)/thermophysicalModels/reactionThermo/lnInclude \
|
||||
-I$(LIB_SRC)/thermophysicalModels/solidThermo/lnInclude \
|
||||
-I$(LIB_SRC)/thermophysicalModels/solidSpecie/lnInclude \
|
||||
-I$(LIB_SRC)/transportModels/compressible/lnInclude
|
||||
-I$(LIB_SRC)/transportModels/compressible/lnInclude \
|
||||
-I$(LIB_SRC)/transportModels/geometricVoF/lnInclude
|
||||
|
||||
LIB_LIBS = \
|
||||
-lfiniteVolume \
|
||||
@ -15,4 +16,5 @@ LIB_LIBS = \
|
||||
-lfluidThermophysicalModels \
|
||||
-lreactionThermophysicalModels \
|
||||
-lsolidThermo \
|
||||
-lsolidSpecie
|
||||
-lsolidSpecie \
|
||||
-lgeometricVoF
|
||||
|
||||
@ -28,7 +28,7 @@ License
|
||||
|
||||
#include "interfaceHeatResistance.H"
|
||||
#include "constants.H"
|
||||
#include "isoCutCell.H"
|
||||
#include "cutCellIso.H"
|
||||
#include "volPointInterpolation.H"
|
||||
#include "wallPolyPatch.H"
|
||||
#include "fvcSmooth.H"
|
||||
@ -52,7 +52,7 @@ interfaceHeatResistance<Thermo, OtherThermo>
|
||||
volPointInterpolation::New(mesh).interpolate(alpha)
|
||||
);
|
||||
|
||||
isoCutCell cutCell(mesh, ap);
|
||||
cutCellIso cutCell(mesh, ap);
|
||||
|
||||
forAll(interfaceArea_, celli)
|
||||
{
|
||||
@ -61,7 +61,7 @@ interfaceHeatResistance<Thermo, OtherThermo>
|
||||
if (status == 0) // cell is cut
|
||||
{
|
||||
interfaceArea_[celli] =
|
||||
mag(cutCell.isoFaceArea())/mesh.V()[celli];
|
||||
mag(cutCell.faceArea())/mesh.V()[celli];
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -27,7 +27,7 @@ License
|
||||
|
||||
#include "kineticGasEvaporation.H"
|
||||
#include "constants.H"
|
||||
#include "isoCutCell.H"
|
||||
#include "cutCellIso.H"
|
||||
#include "volPointInterpolation.H"
|
||||
#include "wallPolyPatch.H"
|
||||
#include "fvcSmooth.H"
|
||||
@ -50,7 +50,7 @@ void Foam::meltingEvaporationModels::kineticGasEvaporation<Thermo, OtherThermo>
|
||||
volPointInterpolation::New(mesh).interpolate(alpha)
|
||||
);
|
||||
|
||||
isoCutCell cutCell(mesh, ap);
|
||||
cutCellIso cutCell(mesh, ap);
|
||||
|
||||
forAll(interfaceArea_, celli)
|
||||
{
|
||||
@ -59,7 +59,7 @@ void Foam::meltingEvaporationModels::kineticGasEvaporation<Thermo, OtherThermo>
|
||||
if (status == 0) // cell is cut
|
||||
{
|
||||
interfaceArea_[celli] =
|
||||
mag(cutCell.isoFaceArea())/mesh.V()[celli];
|
||||
mag(cutCell.faceArea())/mesh.V()[celli];
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -1,16 +1,17 @@
|
||||
|
||||
EXE_INC = \
|
||||
-I$(LIB_SRC)/finiteVolume/lnInclude \
|
||||
-I$(LIB_SRC)/thermophysicalModels/basic/lnInclude \
|
||||
-I$(LIB_SRC)/transportModels/twoPhaseMixture/lnInclude \
|
||||
-I$(LIB_SRC)/transportModels \
|
||||
-I$(LIB_SRC)/transportModels/twoPhaseMixture/lnInclude \
|
||||
-I$(LIB_SRC)/transportModels/geometricVoF/lnInclude \
|
||||
-I$(LIB_SRC)/transportModels/interfaceProperties/lnInclude \
|
||||
-I$(LIB_SRC)/transportModels/incompressible/lnInclude \
|
||||
-I$(LIB_SRC)/finiteVolume/lnInclude
|
||||
-I$(LIB_SRC)/transportModels/incompressible/lnInclude
|
||||
|
||||
LIB_LIBS = \
|
||||
-lfiniteVolume \
|
||||
-lgeometricVoF \
|
||||
-ltwoPhaseMixture \
|
||||
-linterfaceProperties \
|
||||
-ltwoPhaseProperties \
|
||||
-lincompressibleTransportModels \
|
||||
-lfiniteVolume \
|
||||
-lfluidThermophysicalModels
|
||||
|
||||
@ -29,7 +29,7 @@ License
|
||||
#include "interfaceHeatResistance.H"
|
||||
#include "addToRunTimeSelectionTable.H"
|
||||
#include "twoPhaseMixtureEThermo.H"
|
||||
#include "isoCutCell.H"
|
||||
#include "cutCellIso.H"
|
||||
#include "volPointInterpolation.H"
|
||||
#include "calculatedFvPatchFields.H"
|
||||
#include "wallPolyPatch.H"
|
||||
@ -342,7 +342,7 @@ updateInterface()
|
||||
volPointInterpolation::New(mesh_).interpolate(mixture_.alpha1())
|
||||
);
|
||||
|
||||
isoCutCell cutCell(mesh_, ap);
|
||||
cutCellIso cutCell(mesh_, ap);
|
||||
|
||||
forAll(interfaceArea_, celli)
|
||||
{
|
||||
@ -351,7 +351,7 @@ updateInterface()
|
||||
if (status == 0) // cell is cut
|
||||
{
|
||||
interfaceArea_[celli] =
|
||||
mag(cutCell.isoFaceArea())/mesh_.V()[celli];
|
||||
mag(cutCell.faceArea())/mesh_.V()[celli];
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -1,19 +1,26 @@
|
||||
EXE_INC = \
|
||||
-I../VoF \
|
||||
-I../interFoam \
|
||||
-I$(LIB_SRC)/finiteVolume/lnInclude \
|
||||
-I$(LIB_SRC)/surfMesh/lnInclude \
|
||||
-I$(LIB_SRC)/meshTools/lnInclude \
|
||||
-I$(LIB_SRC)/sampling/lnInclude \
|
||||
-I$(LIB_SRC)/dynamicFvMesh/lnInclude \
|
||||
-I$(LIB_SRC)/dynamicMesh/lnInclude \
|
||||
-I$(LIB_SRC)/transportModels \
|
||||
-I$(LIB_SRC)/transportModels/geometricVoF/lnInclude \
|
||||
-I$(LIB_SRC)/transportModels/twoPhaseMixture/lnInclude \
|
||||
-I$(LIB_SRC)/transportModels/incompressible/lnInclude \
|
||||
-I$(LIB_SRC)/transportModels/interfaceProperties/lnInclude \
|
||||
-I$(LIB_SRC)/TurbulenceModels/turbulenceModels/lnInclude \
|
||||
-I$(LIB_SRC)/TurbulenceModels/incompressible/lnInclude \
|
||||
-I$(LIB_SRC)/transportModels/immiscibleIncompressibleTwoPhaseMixture/lnInclude
|
||||
-I$(LIB_SRC)/transportModels/immiscibleIncompressibleTwoPhaseMixture/lnInclude \
|
||||
-I$(LIB_SRC)/transportModels/geometricVoF/lnInclude
|
||||
|
||||
EXE_LIBS = \
|
||||
-lfiniteVolume \
|
||||
-lfvOptions \
|
||||
-lsurfMesh \
|
||||
-lmeshTools \
|
||||
-lsampling \
|
||||
-ldynamicFvMesh \
|
||||
@ -22,4 +29,5 @@ EXE_LIBS = \
|
||||
-limmiscibleIncompressibleTwoPhaseMixture \
|
||||
-lturbulenceModels \
|
||||
-lincompressibleTurbulenceModels \
|
||||
-lwaveModels
|
||||
-lwaveModels \
|
||||
-lgeometricVoF
|
||||
|
||||
@ -1,33 +0,0 @@
|
||||
MRF.correctBoundaryVelocity(U);
|
||||
|
||||
fvVectorMatrix UEqn
|
||||
(
|
||||
fvm::ddt(rho, U) + fvm::div(rhoPhi, U)
|
||||
+ MRF.DDt(rho, U)
|
||||
+ turbulence->divDevRhoReff(rho, U)
|
||||
==
|
||||
fvOptions(rho, U)
|
||||
);
|
||||
|
||||
UEqn.relax();
|
||||
|
||||
fvOptions.constrain(UEqn);
|
||||
|
||||
if (pimple.momentumPredictor())
|
||||
{
|
||||
solve
|
||||
(
|
||||
UEqn
|
||||
==
|
||||
fvc::reconstruct
|
||||
(
|
||||
(
|
||||
mixture.surfaceTensionForce()
|
||||
- ghf*fvc::snGrad(rho)
|
||||
- fvc::snGrad(p_rgh)
|
||||
) * mesh.magSf()
|
||||
)
|
||||
);
|
||||
|
||||
fvOptions.correct(U);
|
||||
}
|
||||
@ -1,59 +0,0 @@
|
||||
/*---------------------------------------------------------------------------*\
|
||||
========= |
|
||||
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
||||
\\ / O peration |
|
||||
\\ / A nd | www.openfoam.com
|
||||
\\/ M anipulation |
|
||||
-------------------------------------------------------------------------------
|
||||
Copyright (C) 2011-2017 OpenFOAM Foundation
|
||||
-------------------------------------------------------------------------------
|
||||
License
|
||||
This file is part of OpenFOAM.
|
||||
|
||||
OpenFOAM is free software: you can redistribute it and/or modify it
|
||||
under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
||||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
Global
|
||||
alphaCourantNo
|
||||
|
||||
Description
|
||||
Calculates and outputs the mean and maximum Courant Numbers.
|
||||
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
scalar maxAlphaCo
|
||||
(
|
||||
runTime.controlDict().get<scalar>("maxAlphaCo")
|
||||
);
|
||||
|
||||
scalar alphaCoNum = 0.0;
|
||||
scalar meanAlphaCoNum = 0.0;
|
||||
|
||||
if (mesh.nInternalFaces())
|
||||
{
|
||||
scalarField sumPhi
|
||||
(
|
||||
mixture.nearInterface()().primitiveField()
|
||||
*fvc::surfaceSum(mag(phi))().primitiveField()
|
||||
);
|
||||
|
||||
alphaCoNum = 0.5*gMax(sumPhi/mesh.V().field())*runTime.deltaTValue();
|
||||
|
||||
meanAlphaCoNum =
|
||||
0.5*(gSum(sumPhi)/gSum(mesh.V().field()))*runTime.deltaTValue();
|
||||
}
|
||||
|
||||
Info<< "Interface Courant Number mean: " << meanAlphaCoNum
|
||||
<< " max: " << alphaCoNum << endl;
|
||||
|
||||
// ************************************************************************* //
|
||||
@ -6,7 +6,8 @@
|
||||
}
|
||||
|
||||
// Updating alpha1
|
||||
advector.advect();
|
||||
#include "alphaSuSp.H"
|
||||
advector.advect(Sp, Su);
|
||||
|
||||
// Making U absolute again after advection step
|
||||
if (mesh.moving())
|
||||
|
||||
@ -1,11 +0,0 @@
|
||||
CorrectPhi
|
||||
(
|
||||
U,
|
||||
phi,
|
||||
p_rgh,
|
||||
surfaceScalarField("rAUf", fvc::interpolate(rAU())),
|
||||
geometricZeroField(),
|
||||
pimple
|
||||
);
|
||||
|
||||
#include "continuityErrs.H"
|
||||
@ -1,34 +0,0 @@
|
||||
tmp<volScalarField> rAU;
|
||||
|
||||
if (correctPhi)
|
||||
{
|
||||
rAU = new volScalarField
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"rAU",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::READ_IF_PRESENT,
|
||||
IOobject::AUTO_WRITE
|
||||
),
|
||||
mesh,
|
||||
dimensionedScalar("rAU", dimTime/dimDensity, 1)
|
||||
);
|
||||
|
||||
#include "correctPhi.H"
|
||||
}
|
||||
else
|
||||
{
|
||||
CorrectPhi
|
||||
(
|
||||
U,
|
||||
phi,
|
||||
p_rgh,
|
||||
dimensionedScalar("rAUf", dimTime/rho.dimensions(), 1),
|
||||
geometricZeroField(),
|
||||
pimple
|
||||
);
|
||||
|
||||
#include "continuityErrs.H"
|
||||
}
|
||||
@ -9,6 +9,7 @@
|
||||
Copyright (C) 2016 DHI
|
||||
Copyright (C) 2017 OpenCFD Ltd.
|
||||
Copyright (C) 2018 Johan Roenby
|
||||
Copyright (C) 2019-2020 DLR
|
||||
-------------------------------------------------------------------------------
|
||||
License
|
||||
This file is part of OpenFOAM.
|
||||
@ -63,6 +64,7 @@ Description
|
||||
#include "fvOptions.H"
|
||||
#include "CorrectPhi.H"
|
||||
#include "fvcSmooth.H"
|
||||
#include "dynamicRefineFvMesh.H"
|
||||
|
||||
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
||||
|
||||
@ -113,14 +115,29 @@ int main(int argc, char *argv[])
|
||||
{
|
||||
if (pimple.firstIter() || moveMeshOuterCorrectors)
|
||||
{
|
||||
if (isA<dynamicRefineFvMesh>(mesh))
|
||||
{
|
||||
advector.surf().reconstruct();
|
||||
}
|
||||
|
||||
mesh.update();
|
||||
|
||||
if (mesh.changing())
|
||||
{
|
||||
|
||||
gh = (g & mesh.C()) - ghRef;
|
||||
ghf = (g & mesh.Cf()) - ghRef;
|
||||
|
||||
if (isA<dynamicRefineFvMesh>(mesh))
|
||||
{
|
||||
advector.surf().mapAlphaField();
|
||||
alpha2 = 1.0 - alpha1;
|
||||
alpha2.correctBoundaryConditions();
|
||||
rho == alpha1*rho1 + alpha2*rho2;
|
||||
rho.correctBoundaryConditions();
|
||||
rho.oldTime() = rho;
|
||||
alpha2.oldTime() = alpha2;
|
||||
}
|
||||
|
||||
MRF.update();
|
||||
|
||||
if (correctPhi)
|
||||
|
||||
@ -1,89 +0,0 @@
|
||||
{
|
||||
if (correctPhi)
|
||||
{
|
||||
rAU.ref() = 1.0/UEqn.A();
|
||||
}
|
||||
else
|
||||
{
|
||||
rAU = 1.0/UEqn.A();
|
||||
}
|
||||
|
||||
surfaceScalarField rAUf("rAUf", fvc::interpolate(rAU()));
|
||||
volVectorField HbyA(constrainHbyA(rAU()*UEqn.H(), U, p_rgh));
|
||||
surfaceScalarField phiHbyA
|
||||
(
|
||||
"phiHbyA",
|
||||
fvc::flux(HbyA)
|
||||
+ MRF.zeroFilter(fvc::interpolate(rho*rAU())*fvc::ddtCorr(U, phi, Uf))
|
||||
);
|
||||
MRF.makeRelative(phiHbyA);
|
||||
|
||||
if (p_rgh.needReference())
|
||||
{
|
||||
fvc::makeRelative(phiHbyA, U);
|
||||
adjustPhi(phiHbyA, U, p_rgh);
|
||||
fvc::makeAbsolute(phiHbyA, U);
|
||||
}
|
||||
|
||||
surfaceScalarField phig
|
||||
(
|
||||
(
|
||||
mixture.surfaceTensionForce()
|
||||
- ghf*fvc::snGrad(rho)
|
||||
)*rAUf*mesh.magSf()
|
||||
);
|
||||
|
||||
phiHbyA += phig;
|
||||
|
||||
// Update the pressure BCs to ensure flux consistency
|
||||
constrainPressure(p_rgh, U, phiHbyA, rAUf, MRF);
|
||||
|
||||
while (pimple.correctNonOrthogonal())
|
||||
{
|
||||
fvScalarMatrix p_rghEqn
|
||||
(
|
||||
fvm::laplacian(rAUf, p_rgh) == fvc::div(phiHbyA)
|
||||
);
|
||||
|
||||
p_rghEqn.setReference(pRefCell, getRefCellValue(p_rgh, pRefCell));
|
||||
|
||||
p_rghEqn.solve(mesh.solver(p_rgh.select(pimple.finalInnerIter())));
|
||||
|
||||
if (pimple.finalNonOrthogonalIter())
|
||||
{
|
||||
phi = phiHbyA - p_rghEqn.flux();
|
||||
|
||||
p_rgh.relax();
|
||||
|
||||
U = HbyA + rAU()*fvc::reconstruct((phig - p_rghEqn.flux())/rAUf);
|
||||
U.correctBoundaryConditions();
|
||||
fvOptions.correct(U);
|
||||
}
|
||||
}
|
||||
|
||||
#include "continuityErrs.H"
|
||||
|
||||
// Correct Uf if the mesh is moving
|
||||
fvc::correctUf(Uf, U, phi);
|
||||
|
||||
// Make the fluxes relative to the mesh motion
|
||||
fvc::makeRelative(phi, U);
|
||||
|
||||
p == p_rgh + rho*gh;
|
||||
|
||||
if (p_rgh.needReference())
|
||||
{
|
||||
p += dimensionedScalar
|
||||
(
|
||||
"p",
|
||||
p.dimensions(),
|
||||
pRefValue - getRefCellValue(p, pRefCell)
|
||||
);
|
||||
p_rgh = p - rho*gh;
|
||||
}
|
||||
|
||||
if (!correctPhi)
|
||||
{
|
||||
rAU.clear();
|
||||
}
|
||||
}
|
||||
@ -1,2 +0,0 @@
|
||||
const dimensionedScalar& rho1f(rho1);
|
||||
const dimensionedScalar& rho2f(rho2);
|
||||
@ -1,55 +0,0 @@
|
||||
/*---------------------------------------------------------------------------*\
|
||||
========= |
|
||||
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
||||
\\ / O peration |
|
||||
\\ / A nd | www.openfoam.com
|
||||
\\/ M anipulation |
|
||||
-------------------------------------------------------------------------------
|
||||
Copyright (C) 2011-2017 OpenFOAM Foundation
|
||||
-------------------------------------------------------------------------------
|
||||
License
|
||||
This file is part of OpenFOAM.
|
||||
|
||||
OpenFOAM is free software: you can redistribute it and/or modify it
|
||||
under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
||||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
Global
|
||||
setDeltaT
|
||||
|
||||
Description
|
||||
Reset the timestep to maintain a constant maximum courant Number.
|
||||
Reduction of time-step is immediate, but increase is damped to avoid
|
||||
unstable oscillations.
|
||||
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
if (adjustTimeStep)
|
||||
{
|
||||
scalar maxDeltaTFact =
|
||||
min(maxCo/(CoNum + SMALL), maxAlphaCo/(alphaCoNum + SMALL));
|
||||
|
||||
scalar deltaTFact = min(min(maxDeltaTFact, 1.0 + 0.1*maxDeltaTFact), 1.2);
|
||||
|
||||
runTime.setDeltaT
|
||||
(
|
||||
min
|
||||
(
|
||||
deltaTFact*runTime.deltaTValue(),
|
||||
maxDeltaT
|
||||
)
|
||||
);
|
||||
|
||||
Info<< "deltaT = " << runTime.deltaTValue() << endl;
|
||||
}
|
||||
|
||||
// ************************************************************************* //
|
||||
Reference in New Issue
Block a user