Merge branch 'master' of /home/noisy3/OpenFOAM/OpenFOAM-dev

This commit is contained in:
mattijs
2009-02-05 09:31:27 +00:00
37 changed files with 370 additions and 655 deletions

View File

@ -2,7 +2,7 @@
volScalarField kappaEff
(
"kappaEff",
turbulence->nu() + turbulence->nut()/Pr
turbulence->nu() + turbulence->nut()/Prt
);
fvScalarMatrix TEqn

View File

@ -1,4 +1,4 @@
// Solve the Momentum equation
// Solve the momentum equation
tmp<fvVectorMatrix> UEqn
(
@ -13,8 +13,13 @@
(
UEqn()
==
-fvc::grad(pd)
+ beta*gh*fvc::grad(T)
-fvc::reconstruct
(
(
fvc::snGrad(pd)
- betaghf*fvc::snGrad(T)
) * mesh.magSf()
)
).initialResidual();
maxResidual = max(eqnResidual, maxResidual);

View File

@ -53,8 +53,8 @@
incompressible::RASModel::New(U, phi, laminarTransport)
);
Info<< "Calculating field g.h\n" << endl;
volScalarField gh("gh", g & mesh.C());
Info<< "Calculating field beta*(g.h)\n" << endl;
surfaceScalarField betaghf("betagh", beta*(g & mesh.Cf()));
label pdRefCell = 0;
scalar pdRefValue = 0.0;

View File

@ -1,41 +1,49 @@
volScalarField rUA = 1.0/UEqn().A();
U = rUA*UEqn().H();
UEqn.clear();
phi = fvc::interpolate(U) & mesh.Sf();
adjustPhi(phi, U, pd);
phi += fvc::interpolate(beta*gh*rUA)*fvc::snGrad(T)*mesh.magSf();
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
{
fvScalarMatrix pdEqn
(
fvm::laplacian(rUA, pd) == fvc::div(phi)
);
volScalarField rUA("rUA", 1.0/UEqn().A());
surfaceScalarField rUAf("(1|A(U))", fvc::interpolate(rUA));
pdEqn.setReference(pdRefCell, pdRefValue);
U = rUA*UEqn().H();
UEqn.clear();
// retain the residual from the first iteration
if (nonOrth == 0)
phi = fvc::interpolate(U) & mesh.Sf();
adjustPhi(phi, U, pd);
surfaceScalarField buoyancyPhi = -betaghf*fvc::snGrad(T)*rUAf*mesh.magSf();
phi -= buoyancyPhi;
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
{
eqnResidual = pdEqn.solve().initialResidual();
maxResidual = max(eqnResidual, maxResidual);
}
else
{
pdEqn.solve();
fvScalarMatrix pdEqn
(
fvm::laplacian(rUAf, pd) == fvc::div(phi)
);
pdEqn.setReference(pdRefCell, pdRefValue);
// retain the residual from the first iteration
if (nonOrth == 0)
{
eqnResidual = pdEqn.solve().initialResidual();
maxResidual = max(eqnResidual, maxResidual);
}
else
{
pdEqn.solve();
}
if (nonOrth == nNonOrthCorr)
{
// Calculate the conservative fluxes
phi -= pdEqn.flux();
// Explicitly relax pressure for momentum corrector
pd.relax();
// Correct the momentum source with the pressure gradient flux
// calculated from the relaxed pressure
U -= rUA*fvc::reconstruct((buoyancyPhi + pdEqn.flux())/rUAf);
U.correctBoundaryConditions();
}
}
if (nonOrth == nNonOrthCorr)
{
phi -= pdEqn.flux();
}
#include "continuityErrs.H"
}
#include "continuityErrs.H"
// Explicitly relax pressure for momentum corrector
pd.relax();
U -= rUA*(fvc::grad(pd) - beta*gh*fvc::grad(T));
U.correctBoundaryConditions();

View File

@ -9,5 +9,5 @@
// reference kinematic pressure [m2/s2]
dimensionedScalar pRef(laminarTransport.lookup("pRef"));
// Prandtl number
dimensionedScalar Pr(laminarTransport.lookup("Pr"));
// turbulent Prandtl number
dimensionedScalar Prt(laminarTransport.lookup("Prt"));

View File

@ -23,7 +23,7 @@
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
pd + rhoEff*gh + pRef
pd + rhoEff*(g & mesh.C()) + pRef
);
p.write();
}

View File

@ -9,4 +9,18 @@
UEqn.relax();
solve(UEqn == -fvc::grad(pd) - fvc::grad(rho)*gh);
if (momentumPredictor)
{
solve
(
UEqn
==
-fvc::reconstruct
(
(
fvc::snGrad(pd)
+ ghf*fvc::snGrad(rho)
) * mesh.magSf()
)
);
}

View File

@ -41,42 +41,41 @@ Description
int main(int argc, char *argv[])
{
#include "setRootCase.H"
#include "createTime.H"
#include "createMesh.H"
#include "readEnvironmentalProperties.H"
#include "createFields.H"
#include "initContinuityErrs.H"
#include "readTimeControls.H"
#include "compressibleCourantNo.H"
#include "setInitialDeltaT.H"
# include "setRootCase.H"
# include "createTime.H"
# include "createMesh.H"
# include "readEnvironmentalProperties.H"
# include "createFields.H"
# include "initContinuityErrs.H"
# include "readTimeControls.H"
# include "compressibleCourantNo.H"
# include "setInitialDeltaT.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
while (runTime.run())
{
# include "readTimeControls.H"
# include "readPISOControls.H"
# include "compressibleCourantNo.H"
# include "setDeltaT.H"
#include "readTimeControls.H"
#include "readPISOControls.H"
#include "compressibleCourantNo.H"
#include "setDeltaT.H"
runTime++;
Info<< "Time = " << runTime.timeName() << nl << endl;
# include "rhoEqn.H"
#include "rhoEqn.H"
# include "UEqn.H"
#include "UEqn.H"
// --- PISO loop
for (int corr=0; corr<nCorr; corr++)
{
# include "hEqn.H"
# include "pEqn.H"
#include "hEqn.H"
#include "pEqn.H"
}
turbulence->correct();

View File

@ -58,6 +58,7 @@
Info<< "Calculating field g.h\n" << endl;
volScalarField gh("gh", g & mesh.C());
surfaceScalarField ghf("gh", g & mesh.Cf());
dimensionedScalar pRef("pRef", p.dimensions(), thermo->lookup("pRef"));

View File

@ -1,60 +1,67 @@
bool closedVolume = pd.needReference();
rho = thermo->rho();
volScalarField rUA = 1.0/UEqn.A();
U = rUA*UEqn.H();
phi =
fvc::interpolate(rho)
*(
(fvc::interpolate(U) & mesh.Sf())
+ fvc::ddtPhiCorr(rUA, rho, U, phi)
)
- fvc::interpolate(rho*rUA*gh)*fvc::snGrad(rho)*mesh.magSf();
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
{
fvScalarMatrix pdEqn
bool closedVolume = pd.needReference();
rho = thermo->rho();
volScalarField rUA = 1.0/UEqn.A();
surfaceScalarField rhorUAf("(rho*(1|A(U)))", fvc::interpolate(rho*rUA));
U = rUA*UEqn.H();
surfaceScalarField phiU
(
fvm::ddt(psi, pd)
+ fvc::ddt(psi)*pRef
+ fvc::ddt(psi, rho)*gh
+ fvc::div(phi)
- fvm::laplacian(rho*rUA, pd)
fvc::interpolate(rho)
*(
(fvc::interpolate(U) & mesh.Sf())
+ fvc::ddtPhiCorr(rUA, rho, U, phi)
)
);
if (corr == nCorr-1 && nonOrth == nNonOrthCorr)
phi = phiU - ghf*fvc::snGrad(rho)*rhorUAf*mesh.magSf();
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
{
pdEqn.solve(mesh.solver(pd.name() + "Final"));
}
else
{
pdEqn.solve(mesh.solver(pd.name()));
fvScalarMatrix pdEqn
(
fvm::ddt(psi, pd)
+ fvc::ddt(psi)*pRef
+ fvc::ddt(psi, rho)*gh
+ fvc::div(phi)
- fvm::laplacian(rhorUAf, pd)
);
if (corr == nCorr-1 && nonOrth == nNonOrthCorr)
{
pdEqn.solve(mesh.solver(pd.name() + "Final"));
}
else
{
pdEqn.solve(mesh.solver(pd.name()));
}
if (nonOrth == nNonOrthCorr)
{
phi += pdEqn.flux();
}
}
if (nonOrth == nNonOrthCorr)
U += rUA*fvc::reconstruct((phi - phiU)/rhorUAf);
U.correctBoundaryConditions();
p == pd + rho*gh + pRef;
DpDt = fvc::DDt(surfaceScalarField("phiU", phi/fvc::interpolate(rho)), p);
#include "rhoEqn.H"
#include "compressibleContinuityErrs.H"
// For closed-volume cases adjust the pressure and density levels
// to obey overall mass continuity
if (closedVolume)
{
phi += pdEqn.flux();
p += (initialMass - fvc::domainIntegrate(thermo->psi()*p))
/fvc::domainIntegrate(thermo->psi());
rho = thermo->rho();
}
}
p == pd + rho*gh + pRef;
DpDt = fvc::DDt(surfaceScalarField("phiU", phi/fvc::interpolate(rho)), p);
#include "rhoEqn.H"
#include "compressibleContinuityErrs.H"
U -= rUA*(fvc::grad(pd) + fvc::grad(rho)*gh);
U.correctBoundaryConditions();
// For closed-volume cases adjust the pressure and density levels
// to obey overall mass continuity
if (closedVolume)
{
p += (initialMass - fvc::domainIntegrate(thermo->psi()*p))
/fvc::domainIntegrate(thermo->psi());
pd == p - (rho*gh + pRef);
rho = thermo->rho();
}

View File

@ -11,7 +11,15 @@
eqnResidual = solve
(
UEqn() == -fvc::grad(pd) - fvc::grad(rho)*gh
UEqn()
==
-fvc::reconstruct
(
(
fvc::snGrad(pd)
+ ghf*fvc::snGrad(rho)
) * mesh.magSf()
)
).initialResidual();
maxResidual = max(eqnResidual, maxResidual);

View File

@ -53,6 +53,7 @@
Info<< "Calculating field g.h\n" << endl;
volScalarField gh("gh", g & mesh.C());
surfaceScalarField ghf("gh", g & mesh.Cf());
dimensionedScalar pRef("pRef", p.dimensions(), thermo->lookup("pRef"));

View File

@ -1,55 +1,65 @@
volScalarField rUA = 1.0/UEqn().A();
U = rUA*UEqn().H();
UEqn.clear();
phi = fvc::interpolate(rho)*(fvc::interpolate(U) & mesh.Sf());
bool closedVolume = adjustPhi(phi, U, p);
phi -= fvc::interpolate(rho*gh*rUA)*fvc::snGrad(rho)*mesh.magSf();
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
{
fvScalarMatrix pdEqn
(
fvm::laplacian(rho*rUA, pd) == fvc::div(phi)
);
volScalarField rUA = 1.0/UEqn().A();
surfaceScalarField rhorUAf("(rho*(1|A(U)))", fvc::interpolate(rho*rUA));
pdEqn.setReference(pdRefCell, pdRefValue);
// retain the residual from the first iteration
if (nonOrth == 0)
U = rUA*UEqn().H();
UEqn.clear();
phi = fvc::interpolate(rho)*(fvc::interpolate(U) & mesh.Sf());
bool closedVolume = adjustPhi(phi, U, p);
surfaceScalarField buoyancyPhi = ghf*fvc::snGrad(rho)*rhorUAf*mesh.magSf();
phi -= buoyancyPhi;
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
{
eqnResidual = pdEqn.solve().initialResidual();
maxResidual = max(eqnResidual, maxResidual);
}
else
{
pdEqn.solve();
fvScalarMatrix pdEqn
(
fvm::laplacian(rhorUAf, pd) == fvc::div(phi)
);
pdEqn.setReference(pdRefCell, pdRefValue);
// retain the residual from the first iteration
if (nonOrth == 0)
{
eqnResidual = pdEqn.solve().initialResidual();
maxResidual = max(eqnResidual, maxResidual);
}
else
{
pdEqn.solve();
}
if (nonOrth == nNonOrthCorr)
{
// Calculate the conservative fluxes
phi -= pdEqn.flux();
// Explicitly relax pressure for momentum corrector
pd.relax();
// Correct the momentum source with the pressure gradient flux
// calculated from the relaxed pressure
U -= rUA*fvc::reconstruct((buoyancyPhi + pdEqn.flux())/rhorUAf);
U.correctBoundaryConditions();
}
}
if (nonOrth == nNonOrthCorr)
#include "continuityErrs.H"
p == pd + rho*gh + pRef;
// For closed-volume cases adjust the pressure and density levels
// to obey overall mass continuity
if (closedVolume)
{
phi -= pdEqn.flux();
p += (initialMass - fvc::domainIntegrate(thermo->psi()*p))
/fvc::domainIntegrate(thermo->psi());
}
}
#include "continuityErrs.H"
rho = thermo->rho();
rho.relax();
Info<< "rho max/min : " << max(rho).value() << " " << min(rho).value() << endl;
// Explicitly relax pressure for momentum corrector
pd.relax();
p = pd + rho*gh + pRef;
U -= rUA*(fvc::grad(pd) + fvc::grad(rho)*gh);
U.correctBoundaryConditions();
// For closed-volume cases adjust the pressure and density levels
// to obey overall mass continuity
if (closedVolume)
{
p += (initialMass - fvc::domainIntegrate(thermo->psi()*p))
/fvc::domainIntegrate(thermo->psi());
pd == p - (rho*gh + pRef);
}
rho = thermo->rho();
rho.relax();
Info<< "rho max/min : " << max(rho).value() << " " << min(rho).value() << endl;

View File

@ -1,4 +1,5 @@
EXE_INC = \
-I../buoyantSimpleFoam \
-I$(LIB_SRC)/thermophysicalModels/basic/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/radiation/lnInclude \
-I$(LIB_SRC)/turbulenceModels \

View File

@ -1,18 +0,0 @@
// Solve the Momentum equation
tmp<fvVectorMatrix> UEqn
(
fvm::div(phi, U)
- fvm::Sp(fvc::div(phi), U)
+ turbulence->divDevRhoReff(U)
);
UEqn().relax();
eqnResidual = solve
(
UEqn() == -fvc::grad(pd) - fvc::grad(rho)*gh
).initialResidual();
maxResidual = max(eqnResidual, maxResidual);

View File

@ -54,6 +54,7 @@
Info<< "Calculating field g.h\n" << endl;
volScalarField gh("gh", g & mesh.C());
surfaceScalarField ghf("gh", g & mesh.Cf());
dimensionedScalar pRef("pRef", p.dimensions(), thermo->lookup("pRef"));

View File

@ -1,54 +0,0 @@
volScalarField rUA = 1.0/UEqn().A();
U = rUA*UEqn().H();
UEqn.clear();
phi = fvc::interpolate(rho)*(fvc::interpolate(U) & mesh.Sf());
bool closedVolume = adjustPhi(phi, U, p);
phi -= fvc::interpolate(rho*gh*rUA)*fvc::snGrad(rho)*mesh.magSf();
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
{
fvScalarMatrix pdEqn
(
fvm::laplacian(rho*rUA, pd) == fvc::div(phi)
);
pdEqn.setReference(pdRefCell, pdRefValue);
// retain the residual from the first iteration
if (nonOrth == 0)
{
eqnResidual = pdEqn.solve().initialResidual();
maxResidual = max(eqnResidual, maxResidual);
}
else
{
pdEqn.solve();
}
if (nonOrth == nNonOrthCorr)
{
phi -= pdEqn.flux();
}
}
#include "continuityErrs.H"
// Explicitly relax pressure for momentum corrector
pd.relax();
p = pd + rho*gh + pRef;
U -= rUA*(fvc::grad(pd) + fvc::grad(rho)*gh);
U.correctBoundaryConditions();
// For closed-volume cases adjust the pressure and density levels
// to obey overall mass continuity
if (closedVolume)
{
p += (initialMass - fvc::domainIntegrate(thermo->psi()*p))
/fvc::domainIntegrate(thermo->psi());
pd == p - (rho*gh + pRef);
}
rho = thermo->rho();
rho.relax();
Info<< "rho max/min : " << max(rho).value() << " " << min(rho).value() << endl;

View File

@ -7,6 +7,8 @@ derivedFvPatchFields/solidWallHeatFluxTemperatureCoupled/solidWallHeatFluxTemper
derivedFvPatchFields/solidWallTemperatureCoupled/solidWallTemperatureCoupledFvPatchScalarField.C
derivedFvPatchFields/solidWallMixedTemperatureCoupled/solidWallMixedTemperatureCoupledFvPatchScalarField.C
fluid/compressibleCourantNo.C
chtMultiRegionFoam.C
EXE = $(FOAM_APPBIN)/chtMultiRegionFoam

View File

@ -36,16 +36,10 @@ Description
#include "turbulenceModel.H"
#include "fixedGradientFvPatchFields.H"
#include "regionProperties.H"
#include "compressibleCourantNo.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#include "solveContinuityEquation.C"
#include "solveMomentumEquation.C"
#include "compressibleContinuityErrors.C"
#include "solvePressureDifferenceEquation.C"
#include "solveEnthalpyEquation.C"
#include "compressibleCourantNo.C"
int main(int argc, char *argv[])
{
@ -58,7 +52,6 @@ int main(int argc, char *argv[])
# include "createSolidMeshes.H"
# include "createFluidFields.H"
# include "createSolidFields.H"
# include "initContinuityErrs.H"
@ -89,6 +82,7 @@ int main(int argc, char *argv[])
{
Info<< "\nSolving for fluid region "
<< fluidRegions[i].name() << endl;
# include "setRegionFluidFields.H"
# include "readFluidMultiRegionPISOControls.H"
# include "solveFluid.H"
}
@ -97,6 +91,7 @@ int main(int argc, char *argv[])
{
Info<< "\nSolving for solid region "
<< solidRegions[i].name() << endl;
# include "setRegionSolidFields.H"
# include "readSolidMultiRegionPISOControls.H"
# include "solveSolid.H"
}

View File

@ -1,10 +1,25 @@
tmp<fvVectorMatrix> UEqn = solveMomentumEquation
// Solve the Momentum equation
tmp<fvVectorMatrix> UEqn
(
momentumPredictor,
Uf[i],
rhof[i],
phif[i],
pdf[i],
ghf[i],
turb[i]
fvm::ddt(rho, U)
+ fvm::div(phi, U)
+ turb.divDevRhoReff(U)
);
UEqn().relax();
if (momentumPredictor)
{
solve
(
UEqn()
==
-fvc::reconstruct
(
(
fvc::snGrad(pd)
+ ghf*fvc::snGrad(rho)
) * mesh.magSf()
)
);
}

View File

@ -1,58 +0,0 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 1991-2009 OpenCFD Ltd.
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Description
Continuity errors for fluid meshes
\*---------------------------------------------------------------------------*/
void compressibleContinuityErrors
(
scalar& cumulativeContErr,
const volScalarField& rho,
const basicThermo& thermo
)
{
dimensionedScalar totalMass = fvc::domainIntegrate(rho);
scalar sumLocalContErr =
(
fvc::domainIntegrate(mag(rho - thermo.rho()))/totalMass
).value();
scalar globalContErr =
(
fvc::domainIntegrate(rho - thermo.rho())/totalMass
).value();
cumulativeContErr += globalContErr;
const word& regionName = rho.mesh().name();
Info<< "time step continuity errors (" << regionName << ")"
<< ": sum local = " << sumLocalContErr
<< ", global = " << globalContErr
<< ", cumulative = " << cumulativeContErr
<< endl;
}

View File

@ -2,7 +2,7 @@
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 1991-2009 OpenCFD Ltd.
\\ / A nd | Copyright (C) 1991-2008 OpenCFD Ltd.
\\/ M anipulation |
-------------------------------------------------------------------------------
License
@ -22,13 +22,12 @@ License
along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Description
Calculates and outputs the mean and maximum Courant Numbers for the fluid
regions
\*---------------------------------------------------------------------------*/
scalar compressibleCourantNo
#include "compressibleCourantNo.H"
#include "fvc.H"
Foam::scalar Foam::compressibleCourantNo
(
const fvMesh& mesh,
const Time& runTime,

View File

@ -7,8 +7,8 @@
(
fluidRegions[regionI],
runTime,
rhof[regionI],
phif[regionI]
rhoFluid[regionI],
phiFluid[regionI]
),
CoNum
);

View File

@ -1,15 +1,16 @@
// Initialise fluid field pointer lists
PtrList<basicThermo> thermof(fluidRegions.size());
PtrList<volScalarField> rhof(fluidRegions.size());
PtrList<volScalarField> Kf(fluidRegions.size());
PtrList<volVectorField> Uf(fluidRegions.size());
PtrList<surfaceScalarField> phif(fluidRegions.size());
PtrList<compressible::turbulenceModel> turb(fluidRegions.size());
PtrList<volScalarField> DpDtf(fluidRegions.size());
PtrList<volScalarField> ghf(fluidRegions.size());
PtrList<volScalarField> pdf(fluidRegions.size());
PtrList<basicThermo> thermoFluid(fluidRegions.size());
PtrList<volScalarField> rhoFluid(fluidRegions.size());
PtrList<volScalarField> KFluid(fluidRegions.size());
PtrList<volVectorField> UFluid(fluidRegions.size());
PtrList<surfaceScalarField> phiFluid(fluidRegions.size());
PtrList<compressible::turbulenceModel> turbulence(fluidRegions.size());
PtrList<volScalarField> DpDtFluid(fluidRegions.size());
PtrList<volScalarField> ghFluid(fluidRegions.size());
PtrList<surfaceScalarField> ghfFluid(fluidRegions.size());
PtrList<volScalarField> pdFluid(fluidRegions.size());
List<scalar> initialMassf(fluidRegions.size());
List<scalar> initialMassFluid(fluidRegions.size());
dimensionedScalar pRef
(
@ -24,8 +25,8 @@
Info<< "*** Reading fluid mesh thermophysical properties for region "
<< fluidRegions[i].name() << nl << endl;
Info<< " Adding to pdf\n" << endl;
pdf.set
Info<< " Adding to pdFluid\n" << endl;
pdFluid.set
(
i,
new volScalarField
@ -42,16 +43,15 @@
)
);
Info<< " Adding to thermof\n" << endl;
thermof.set
Info<< " Adding to thermoFluid\n" << endl;
thermoFluid.set
(
i,
basicThermo::New(fluidRegions[i]).ptr()
);
Info<< " Adding to rhof\n" << endl;
rhof.set
Info<< " Adding to rhoFluid\n" << endl;
rhoFluid.set
(
i,
new volScalarField
@ -64,12 +64,12 @@
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
thermof[i].rho()
thermoFluid[i].rho()
)
);
Info<< " Adding to Kf\n" << endl;
Kf.set
Info<< " Adding to KFluid\n" << endl;
KFluid.set
(
i,
new volScalarField
@ -82,12 +82,12 @@
IOobject::NO_READ,
IOobject::NO_WRITE
),
thermof[i].Cp()*thermof[i].alpha()
thermoFluid[i].Cp()*thermoFluid[i].alpha()
)
);
Info<< " Adding to Uf\n" << endl;
Uf.set
Info<< " Adding to UFluid\n" << endl;
UFluid.set
(
i,
new volVectorField
@ -104,8 +104,8 @@
)
);
Info<< " Adding to phif\n" << endl;
phif.set
Info<< " Adding to phiFluid\n" << endl;
phiFluid.set
(
i,
new surfaceScalarField
@ -118,29 +118,29 @@
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
linearInterpolate(rhof[i]*Uf[i])
linearInterpolate(rhoFluid[i]*UFluid[i])
& fluidRegions[i].Sf()
)
);
Info<< " Adding to turb\n" << endl;
turb.set
Info<< " Adding to turbulence\n" << endl;
turbulence.set
(
i,
autoPtr<compressible::turbulenceModel>
(
compressible::turbulenceModel::New
(
rhof[i],
Uf[i],
phif[i],
thermof[i]
rhoFluid[i],
UFluid[i],
phiFluid[i],
thermoFluid[i]
)
).ptr()
);
Info<< " Adding to DpDtf\n" << endl;
DpDtf.set
Info<< " Adding to DpDtFluid\n" << endl;
DpDtFluid.set
(
i,
new volScalarField
@ -150,9 +150,9 @@
surfaceScalarField
(
"phiU",
phif[i]/fvc::interpolate(rhof[i])
phiFluid[i]/fvc::interpolate(rhoFluid[i])
),
thermof[i].p()
thermoFluid[i].p()
)
)
);
@ -162,8 +162,8 @@
("environmentalProperties");
dimensionedVector g(environmentalProperties.lookup("g"));
Info<< " Adding to ghf\n" << endl;
ghf.set
Info<< " Adding to ghFluid\n" << endl;
ghFluid.set
(
i,
new volScalarField
@ -172,12 +172,21 @@
g & fluidRegions[i].C()
)
);
ghfFluid.set
(
i,
new surfaceScalarField
(
"ghf",
g & fluidRegions[i].Cf()
)
);
Info<< " Updating p from pd\n" << endl;
thermof[i].p() == pdf[i] + rhof[i]*ghf[i] + pRef;
thermof[i].correct();
thermoFluid[i].p() == pdFluid[i] + rhoFluid[i]*ghFluid[i] + pRef;
thermoFluid[i].correct();
initialMassf[i] = fvc::domainIntegrate(rhof[i]).value();
initialMassFluid[i] = fvc::domainIntegrate(rhoFluid[i]).value();
}

View File

@ -1,9 +1,17 @@
solveEnthalpyEquation
{
tmp<fvScalarMatrix> hEqn
(
rhof[i],
DpDtf[i],
phif[i],
turb[i],
thermof[i]
fvm::ddt(rho, h)
+ fvm::div(phi, h)
- fvm::laplacian(turb.alphaEff(), h)
==
DpDt
);
hEqn().relax();
hEqn().solve();
thermo.correct();
Info<< "Min/max T:" << min(thermo.T()) << ' ' << max(thermo.T())
<< endl;
}

View File

@ -1,60 +1,75 @@
{
bool closedVolume = false;
bool closedVolume = pd.needReference();
rhof[i] = thermof[i].rho();
rho = thermo.rho();
volScalarField rUA = 1.0/UEqn().A();
Uf[i] = rUA*UEqn().H();
surfaceScalarField rhorUAf("(rho*(1|A(U)))", fvc::interpolate(rho*rUA));
phif[i] =
fvc::interpolate(rhof[i])
U = rUA*UEqn().H();
surfaceScalarField phiU
(
fvc::interpolate(rho)
*(
(fvc::interpolate(Uf[i]) & fluidRegions[i].Sf())
+ fvc::ddtPhiCorr(rUA, rhof[i], Uf[i], phif[i])
(fvc::interpolate(U) & mesh.Sf())
+ fvc::ddtPhiCorr(rUA, rho, U, phi)
)
- fvc::interpolate(rhof[i]*rUA*ghf[i])
*fvc::snGrad(rhof[i])
*fluidRegions[i].magSf();
);
// Solve pressure difference
# include "pdEqn.H"
phi = phiU - ghf*fvc::snGrad(rho)*rhorUAf*mesh.magSf();
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
{
fvScalarMatrix pdEqn
(
fvm::ddt(psi, pd)
+ fvc::ddt(psi)*pRef
+ fvc::ddt(psi, rho)*gh
+ fvc::div(phi)
- fvm::laplacian(rho*rUA, pd)
);
if (corr == nCorr-1 && nonOrth == nNonOrthCorr)
{
pdEqn.solve(mesh.solver(pd.name() + "Final"));
}
else
{
pdEqn.solve(mesh.solver(pd.name()));
}
if (nonOrth == nNonOrthCorr)
{
phi += pdEqn.flux();
}
}
// Correct velocity field
U += rUA*fvc::reconstruct((phi - phiU)/rhorUAf);
U.correctBoundaryConditions();
// Update pressure field (including bc)
p == pd + rho*gh + pRef;
DpDt = fvc::DDt(surfaceScalarField("phiU", phi/fvc::interpolate(rho)), p);
// Solve continuity
# include "rhoEqn.H"
// Update pressure field (including bc)
thermof[i].p() == pdf[i] + rhof[i]*ghf[i] + pRef;
DpDtf[i] = fvc::DDt
(
surfaceScalarField("phiU", phif[i]/fvc::interpolate(rhof[i])),
thermof[i].p()
);
// Update continuity errors
compressibleContinuityErrors(cumulativeContErr, rhof[i], thermof[i]);
// Correct velocity field
Uf[i] -= rUA*(fvc::grad(pdf[i]) + fvc::grad(rhof[i])*ghf[i]);
Uf[i].correctBoundaryConditions();
# include "compressibleContinuityErrors.H"
// For closed-volume cases adjust the pressure and density levels
// to obey overall mass continuity
if (closedVolume)
{
thermof[i].p() +=
(
dimensionedScalar
(
"massIni",
dimMass,
initialMassf[i]
)
- fvc::domainIntegrate(thermof[i].psi()*thermof[i].p())
)/fvc::domainIntegrate(thermof[i].psi());
pdf[i] == thermof[i].p() - (rhof[i]*ghf[i] + pRef);
rhof[i] = thermof[i].rho();
p += (massIni - fvc::domainIntegrate(psi*p))/fvc::domainIntegrate(psi);
rho = thermo.rho();
}
// Update thermal conductivity
Kf[i] = thermof[i].Cp()*turb[i].alphaEff();
K = thermoFluid[i].Cp()*turb.alphaEff();
// Update pd (including bc)
pd == p - (rho*gh + pRef);
}

View File

@ -1,14 +0,0 @@
solvePressureDifferenceEquation
(
corr,
nCorr,
nNonOrthCorr,
closedVolume,
pdf[i],
pRef,
rhof[i],
thermof[i].psi(),
rUA,
ghf[i],
phif[i]
);

View File

@ -1 +1 @@
solveContinuityEquation(rhof[i], phif[i]);
solve(fvm::ddt(rho) + fvc::div(phi));

View File

@ -1,15 +0,0 @@
if (adjustTimeStep)
{
if (CoNum > SMALL)
{
runTime.setDeltaT
(
min
(
maxCo*runTime.deltaT().value()/CoNum,
maxDeltaT
)
);
}
}

View File

@ -1,37 +0,0 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 1991-2009 OpenCFD Ltd.
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Description
Solve continuity equation
\*---------------------------------------------------------------------------*/
void solveContinuityEquation
(
volScalarField& rho,
const surfaceScalarField& phi
)
{
solve(fvm::ddt(rho) + fvc::div(phi));
}

View File

@ -1,56 +0,0 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 1991-2009 OpenCFD Ltd.
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Description
Solve enthalpy equation
\*---------------------------------------------------------------------------*/
void solveEnthalpyEquation
(
const volScalarField& rho,
const volScalarField& DpDt,
const surfaceScalarField& phi,
const compressible::turbulenceModel& turb,
basicThermo& thermo
)
{
volScalarField& h = thermo.h();
tmp<fvScalarMatrix> hEqn
(
fvm::ddt(rho, h)
+ fvm::div(phi, h)
- fvm::laplacian(turb.alphaEff(), h)
==
DpDt
);
hEqn().relax();
hEqn().solve();
thermo.correct();
Info<< "Min/max T:" << min(thermo.T()) << ' ' << max(thermo.T())
<< endl;
}

View File

@ -12,4 +12,4 @@
# include "pEqn.H"
}
}
turb[i].correct();
turb.correct();

View File

@ -1,57 +0,0 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 1991-2009 OpenCFD Ltd.
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Description
Solve momentum equation and return matrix for use in pressure equation
\*---------------------------------------------------------------------------*/
tmp<fvVectorMatrix> solveMomentumEquation
(
const bool momentumPredictor,
volVectorField& U,
const volScalarField& rho,
const surfaceScalarField& phi,
const volScalarField& pd,
const volScalarField& gh,
const compressible::turbulenceModel& turb
)
{
// Solve the Momentum equation
tmp<fvVectorMatrix> UEqn
(
fvm::ddt(rho, U)
+ fvm::div(phi, U)
+ turb.divDevRhoReff(U)
);
UEqn().relax();
if (momentumPredictor)
{
solve(UEqn() == -fvc::grad(pd) - fvc::grad(rho)*gh);
}
return UEqn;
}

View File

@ -1,73 +0,0 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 1991-2009 OpenCFD Ltd.
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Description
Solve pressure difference equation
\*---------------------------------------------------------------------------*/
void solvePressureDifferenceEquation
(
const label corr,
const label nCorr,
const label nNonOrthCorr,
bool& closedVolume,
volScalarField& pd,
const dimensionedScalar& pRef,
const volScalarField& rho,
const volScalarField& psi,
const volScalarField& rUA,
const volScalarField& gh,
surfaceScalarField& phi
)
{
closedVolume = pd.needReference();
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
{
fvScalarMatrix pdEqn
(
fvm::ddt(psi, pd)
+ fvc::ddt(psi)*pRef
+ fvc::ddt(psi, rho)*gh
+ fvc::div(phi)
- fvm::laplacian(rho*rUA, pd)
);
//pdEqn.solve();
if (corr == nCorr-1 && nonOrth == nNonOrthCorr)
{
pdEqn.solve(pd.mesh().solver(pd.name() + "Final"));
}
else
{
pdEqn.solve(pd.mesh().solver(pd.name()));
}
if (nonOrth == nNonOrthCorr)
{
phi += pdEqn.flux();
}
}
}

View File

@ -3,10 +3,9 @@
{
solve
(
fvm::ddt(rhosCps[i], Ts[i]) - fvm::laplacian(Ks[i], Ts[i])
fvm::ddt(rho*cp, T) - fvm::laplacian(K, T)
);
}
Info<< "Min/max T:" << min(Ts[i]) << ' ' << max(Ts[i])
<< endl;
Info<< "Min/max T:" << min(T) << ' ' << max(T) << endl;
}

View File

@ -6,7 +6,7 @@
phic = min(interface.cAlpha()*phic, max(phic));
surfaceScalarField phir = phic*interface.nHatf();
for (int gCorr=0; gCorr<nAlphaCorr; gCorr++)
for (int aCorr=0; aCorr<nAlphaCorr; aCorr++)
{
surfaceScalarField phiAlpha =
fvc::flux

View File

@ -88,7 +88,7 @@ RASModel::RASModel
dimensioned<scalar>::lookupOrAddToDict
(
"kappa",
subDict("wallFunctionCoeffs"),
wallFunctionDict_,
0.4187
)
),
@ -97,7 +97,7 @@ RASModel::RASModel
dimensioned<scalar>::lookupOrAddToDict
(
"E",
subDict("wallFunctionCoeffs"),
wallFunctionDict_
9.0
)
),