ENH: wallBoundedParticle: generic particle class for tracking along boundary

This commit is contained in:
mattijs
2012-02-14 12:21:47 +00:00
parent d8c15b7176
commit 46edbe2bb2
3 changed files with 1547 additions and 0 deletions

View File

@ -0,0 +1,659 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2012 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*----------------------------------------------------------------------------*/
#include "wallBoundedParticle.H"
#include "vectorFieldIOField.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
// defineParticleTypeNameAndDebug(wallBoundedParticle, 0);
}
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
//// Check position is inside tet
//void Foam::wallBoundedParticle::checkInside() const
//{
// const tetIndices ti(currentTetIndices());
// const tetPointRef tpr(ti.tet(mesh_));
// if (!tpr.inside(position()))
// {
// FatalErrorIn("wallBoundedParticle::checkInside(..)")
// << "Particle:" //<< static_cast<const particle&>(*this)
// << info()
// << "is not inside " << tpr
// << abort(FatalError);
// }
//}
//
//
//void Foam::wallBoundedParticle::checkOnEdge() const
//{
// // Check that edge (as indicated by meshEdgeStart_, diagEdge_) is
// // indeed one that contains the position.
// const edge e = currentEdge();
//
// linePointRef ln(e.line(mesh_.points()));
//
// pointHit ph(ln.nearestDist(position()));
//
// if (ph.distance() > 1E-6)
// {
// FatalErrorIn
// (
// "wallBoundedParticle::checkOnEdge()"
// ) << "Problem :"
// << " particle:" //<< static_cast<const particle&>(*this)
// << info()
// << "edge:" << e
// << " at:" << ln
// << " distance:" << ph.distance()
// << abort(FatalError);
// }
//}
//
//
//void Foam::wallBoundedParticle::checkOnTriangle(const point& p)
//const
//{
// const triFace tri(currentTetIndices().faceTriIs(mesh_));
// pointHit ph = tri.nearestPoint(p, mesh_.points());
// if (ph.distance() > 1e-9)
// {
// FatalErrorIn
// (
// "wallBoundedParticle::checkOnTriangle(const point&)"
// ) << "Problem :"
// << " particle:" //<< static_cast<const particle&>(*this)
// << info()
// << "point:" << p
// << " distance:" << ph.distance()
// << abort(FatalError);
// }
//}
// Construct the edge the particle is on (according to meshEdgeStart_,
// diagEdge_)
Foam::edge Foam::wallBoundedParticle::currentEdge() const
{
if ((meshEdgeStart_ != -1) == (diagEdge_ != -1))
{
FatalErrorIn("wallBoundedParticle::currentEdge() const")
<< "Particle:" //<< static_cast<const particle&>(*this)
<< info()
<< "cannot both be on a mesh edge and a face-diagonal edge."
<< " meshEdgeStart_:" << meshEdgeStart_
<< " diagEdge_:" << diagEdge_
<< abort(FatalError);
}
const Foam::face& f = mesh_.faces()[tetFace()];
if (meshEdgeStart_ != -1)
{
return edge(f[meshEdgeStart_], f.nextLabel(meshEdgeStart_));
}
else
{
label faceBasePtI = mesh_.tetBasePtIs()[tetFace()];
label diagPtI = (faceBasePtI+diagEdge_)%f.size();
return edge(f[faceBasePtI], f[diagPtI]);
}
}
void Foam::wallBoundedParticle::crossEdgeConnectedFace
(
const edge& meshEdge
)
{
//label oldFaceI = tetFace();
// Update tetFace, tetPt
particle::crossEdgeConnectedFace(cell(), tetFace(), tetPt(), meshEdge);
// Update face to be same as tracking one
face() = tetFace();
// And adapt meshEdgeStart_.
const Foam::face& f = mesh_.faces()[tetFace()];
label fp = findIndex(f, meshEdge[0]);
if (f.nextLabel(fp) == meshEdge[1])
{
meshEdgeStart_ = fp;
}
else
{
label fpMin1 = f.rcIndex(fp);
if (f[fpMin1] == meshEdge[1])
{
meshEdgeStart_ = fpMin1;
}
else
{
FatalErrorIn
(
"wallBoundedParticle::crossEdgeConnectedFace"
"(const edge&)"
) << "Problem :"
<< " particle:" //<< static_cast<const particle&>(*this)
<< info()
<< "face:" << tetFace()
<< " verts:" << f
<< " meshEdge:" << meshEdge
<< abort(FatalError);
}
}
diagEdge_ = -1;
//Pout<< " crossed meshEdge "
// << meshEdge.line(mesh().points())
// << " from face:" << oldFaceI
// << " to face:" << tetFace() << endl;
// Check that still on same mesh edge
const edge eNew(f[meshEdgeStart_], f.nextLabel(meshEdgeStart_));
if (eNew != meshEdge)
{
FatalErrorIn
(
"wallBoundedParticle::crossEdgeConnectedFace"
"(const edge&)"
) << "Problem" << abort(FatalError);
}
// Check that edge (as indicated by meshEdgeStart_) is indeed one that
// contains the position.
//checkOnEdge();
}
void Foam::wallBoundedParticle::crossDiagonalEdge()
{
if (diagEdge_ == -1)
{
FatalErrorIn("wallBoundedParticle::crossDiagonalEdge()")
<< "Particle:" //<< static_cast<const particle&>(*this)
<< info()
<< "not on a diagonal edge" << abort(FatalError);
}
if (meshEdgeStart_ != -1)
{
FatalErrorIn("wallBoundedParticle::crossDiagonalEdge()")
<< "Particle:" //<< static_cast<const particle&>(*this)
<< info()
<< "meshEdgeStart_:" << meshEdgeStart_ << abort(FatalError);
}
//label oldTetPt = tetPt();
const Foam::face& f = mesh_.faces()[tetFace()];
// tetPtI starts from 1, goes up to f.size()-2
if (tetPt() == diagEdge_)
{
tetPt() = f.rcIndex(tetPt());
}
else
{
label nextTetPt = f.fcIndex(tetPt());
if (diagEdge_ == nextTetPt)
{
tetPt() = nextTetPt;
}
else
{
FatalErrorIn("wallBoundedParticle::crossDiagonalEdge()")
<< "Particle:" //<< static_cast<const particle&>(*this)
<< info()
<< "tetPt:" << tetPt()
<< " diagEdge:" << diagEdge_ << abort(FatalError);
}
}
meshEdgeStart_ = -1;
//Pout<< " crossed diagonalEdge "
// << currentEdge().line(mesh().points())
// << " from tetPt:" << oldTetPt
// << " to tetPt:" << tetPt() << endl;
}
//- Track through a single triangle.
// Gets passed tet+triangle the particle is in. Updates position() but nothing
// else. Returns the triangle edge the particle is now on.
Foam::scalar Foam::wallBoundedParticle::trackFaceTri
(
const vector& endPosition,
label& minEdgeI
)
{
// Track p from position to endPosition
const triFace tri(currentTetIndices().faceTriIs(mesh_));
vector n = tri.normal(mesh_.points());
//if (mag(n) < sqr(SMALL))
//{
// FatalErrorIn("wallBoundedParticle::trackFaceTri(..)")
// << "Small triangle." //<< static_cast<const particle&>(*this)
// << info()
// << "n:" << n
// << abort(FatalError);
//}
n /= mag(n)+VSMALL;
// Check which edge intersects the trajectory.
// Project trajectory onto triangle
minEdgeI = -1;
scalar minS = 1; // end position
//const point oldPosition(position());
edge currentE(-1, -1);
if (meshEdgeStart_ != -1 || diagEdge_ != -1)
{
currentE = currentEdge();
}
// Determine path along line position+s*d to see where intersections
// are.
forAll(tri, i)
{
label j = tri.fcIndex(i);
const point& pt0 = mesh_.points()[tri[i]];
const point& pt1 = mesh_.points()[tri[j]];
if (edge(tri[i], tri[j]) == currentE)
{
// Do not check particle is on
continue;
}
// Outwards pointing normal
vector edgeNormal = (pt1-pt0)^n;
//if (mag(edgeNormal) < SMALL)
//{
// FatalErrorIn("wallBoundedParticle::trackFaceTri(..)")
// << "Edge not perpendicular to triangle."
// //<< static_cast<const particle&>(*this)
// << info()
// << "triangle n:" << n
// << " edgeNormal:" << edgeNormal
// << " on tri:" << tri
// << " at:" << pt0
// << " at:" << pt1
// << abort(FatalError);
//}
edgeNormal /= mag(edgeNormal)+VSMALL;
// Determine whether position and end point on either side of edge.
scalar sEnd = (endPosition-pt0)&edgeNormal;
if (sEnd >= 0)
{
// endPos is outside triangle. position() should always be
// inside.
scalar sStart = (position()-pt0)&edgeNormal;
if (mag(sEnd-sStart) > VSMALL)
{
scalar s = sStart/(sStart-sEnd);
if (s >= 0 && s < minS)
{
minS = s;
minEdgeI = i;
}
}
}
}
if (minEdgeI != -1)
{
position() += minS*(endPosition-position());
}
else
{
// Did not hit any edge so tracked to the end position. Set position
// without any calculation to avoid truncation errors.
position() = endPosition;
minS = 1.0;
}
// Project position() back onto plane of triangle
const point& triPt = mesh_.points()[tri[0]];
position() -= ((position()-triPt)&n)*n;
//Pout<< " tracked from:" << oldPosition << " to:" << position()
// << " projectedEnd:" << endPosition
// << " at s:" << minS << endl;
//if (minEdgeI != -1)
//{
// Pout<< " on edge:" << minEdgeI
// << " on edge:"
// << mesh_.points()[tri[minEdgeI]]
// << mesh_.points()[tri[tri.fcIndex(minEdgeI)]]
// << endl;
//}
return minS;
}
// See if the current triangle has got a point on the
// correct side of the edge.
bool Foam::wallBoundedParticle::isTriAlongTrack
(
const point& endPosition
) const
{
const triFace triVerts(currentTetIndices().faceTriIs(mesh_));
const edge currentE = currentEdge();
//if (debug)
{
if
(
currentE[0] == currentE[1]
|| findIndex(triVerts, currentE[0]) == -1
|| findIndex(triVerts, currentE[1]) == -1
)
{
FatalErrorIn
(
"wallBoundedParticle::isTriAlongTrack"
"(const point&)"
) << "Edge " << currentE << " not on triangle " << triVerts
<< info()
<< abort(FatalError);
}
}
const vector dir = endPosition-position();
// Get normal of currentE
vector n = triVerts.normal(mesh_.points());
n /= mag(n);
forAll(triVerts, i)
{
label j = triVerts.fcIndex(i);
const point& pt0 = mesh_.points()[triVerts[i]];
const point& pt1 = mesh_.points()[triVerts[j]];
if (edge(triVerts[i], triVerts[j]) == currentE)
{
vector edgeNormal = (pt1-pt0)^n;
return (dir&edgeNormal) < 0;
}
}
FatalErrorIn
(
"wallBoundedParticle::isTriAlongTrack"
"(const point&)"
) << "Problem" << abort(FatalError);
return false;
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::wallBoundedParticle::wallBoundedParticle
(
const polyMesh& mesh,
const vector& position,
const label cellI,
const label tetFaceI,
const label tetPtI,
const label meshEdgeStart,
const label diagEdge
)
:
particle(mesh, position, cellI, tetFaceI, tetPtI),
meshEdgeStart_(meshEdgeStart),
diagEdge_(diagEdge)
{
//checkInside();
//if (meshEdgeStart_ != -1 || diagEdge_ != -1)
//{
// checkOnEdge();
//}
// Unfortunately have no access to trackdata so cannot check if particle
// is on a wallPatch or has an mesh edge set (either of which is
// a requirement).
}
Foam::wallBoundedParticle::wallBoundedParticle
(
const polyMesh& mesh,
Istream& is,
bool readFields
)
:
particle(mesh, is, readFields)
{
if (readFields)
{
is >> meshEdgeStart_ >> diagEdge_;
}
// Check state of Istream
is.check
(
"wallBoundedParticle::wallBoundedParticle"
"(const Cloud<wallBoundedParticle>&, Istream&, bool)"
);
}
Foam::wallBoundedParticle::wallBoundedParticle
(
const wallBoundedParticle& p
)
:
particle(p),
meshEdgeStart_(p.meshEdgeStart_),
diagEdge_(p.diagEdge_)
{}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
//void Foam::wallBoundedParticle::readFields
//(
// Cloud<wallBoundedParticle>& c
//)
//{
// if (!c.size())
// {
// return;
// }
//
// particle::readFields(c);
//
// IOField<label> meshEdgeStart
// (
// c.fieldIOobject("meshEdgeStart", IOobject::MUST_READ)
// );
//
// IOField<label> diagEdge
// (
// c.fieldIOobject("diagEdge_", IOobject::MUST_READ)
// );
// c.checkFieldIOobject(c, diagEdge);
//
// label i = 0;
// forAllIter(Cloud<wallBoundedParticle>, c, iter)
// {
// iter().meshEdgeStart_ = meshEdgeStart[i];
// iter().diagEdge_ = diagEdge[i];
// i++;
// }
//}
//
//
//void Foam::wallBoundedParticle::writeFields
//(
// const Cloud<wallBoundedParticle>& c
//)
//{
// particle::writeFields(c);
//
// label np = c.size();
//
// IOField<label> meshEdgeStart
// (
// c.fieldIOobject("meshEdgeStart", IOobject::NO_READ),
// np
// );
// IOField<label> diagEdge
// (
// c.fieldIOobject("diagEdge", IOobject::NO_READ),
// np
// );
//
// label i = 0;
// forAllConstIter(Cloud<wallBoundedParticle>, c, iter)
// {
// meshEdgeStart[i] = iter().meshEdgeStart_;
// diagEdge[i] = iter().diagEdge_;
// i++;
// }
//
// meshEdgeStart.write();
// diagEdge.write();
//}
void Foam::wallBoundedParticle::write(Ostream& os, bool writeFields) const
{
const particle& p = static_cast<const particle&>(*this);
if (os.format() == IOstream::ASCII)
{
// Write base particle
p.write(os, writeFields);
if (writeFields)
{
// Write the additional entries
os << token::SPACE << meshEdgeStart_
<< token::SPACE << diagEdge_;
}
}
else
{
// Write base particle
p.write(os, writeFields);
// Write additional entries
if (writeFields)
{
os.write
(
reinterpret_cast<const char*>(&meshEdgeStart_),
sizeof(meshEdgeStart_)
+ sizeof(diagEdge_)
);
}
}
// Check state of Ostream
os.check("wallBoundedParticle::write(Ostream& os, bool) const");
}
// * * * * * * * * * * * * * * * IOstream Operators * * * * * * * * * * * * //
Foam::Ostream& Foam::operator<<
(
Ostream& os,
const wallBoundedParticle& p
)
{
// Write all data
p.write(os, true);
return os;
}
Foam::Ostream& Foam::operator<<
(
Ostream& os,
const InfoProxy<wallBoundedParticle>& ip
)
{
const wallBoundedParticle& p = ip.t_;
tetPointRef tpr(p.currentTet());
os << " " << static_cast<const particle&>(p) << nl
<< " tet:" << nl;
os << " ";
meshTools::writeOBJ(os, tpr.a());
os << " ";
meshTools::writeOBJ(os, tpr.b());
os << " ";
meshTools::writeOBJ(os, tpr.c());
os << " ";
meshTools::writeOBJ(os, tpr.d());
os << " l 1 2" << nl
<< " l 1 3" << nl
<< " l 1 4" << nl
<< " l 2 3" << nl
<< " l 2 4" << nl
<< " l 3 4" << nl;
os << " ";
meshTools::writeOBJ(os, p.position());
return os;
}
// ************************************************************************* //

View File

@ -0,0 +1,345 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2012 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Class
Foam::wallBoundedParticle
Description
Particle class that tracks on triangles of boundary faces. Use
trackToEdge similar to trackToFace on particle.
SourceFiles
wallBoundedParticle.C
wallBoundedParticleTemplates.C
\*---------------------------------------------------------------------------*/
#ifndef wallBoundedParticle_H
#define wallBoundedParticle_H
#include "particle.H"
#include "autoPtr.H"
#include "InfoProxy.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
/*---------------------------------------------------------------------------*\
Class wallBoundedParticle Declaration
\*---------------------------------------------------------------------------*/
class wallBoundedParticle
:
public particle
{
public:
//- Class used to pass tracking data to the trackToFace function
template<class CloudType>
class TrackingData
:
public particle::TrackingData<CloudType>
{
public:
const PackedBoolList& isWallPatch_;
// Constructors
inline TrackingData
(
CloudType& cloud,
const PackedBoolList& isWallPatch
)
:
particle::TrackingData<CloudType>
(
cloud
),
isWallPatch_(isWallPatch)
{}
};
protected:
// Protected data
//- Particle is on mesh edge:
// const face& f = mesh.faces()[tetFace()]
// const edge e(f[meshEdgeStart_], f.nextLabel(meshEdgeStart_));
// Note that this real edge
// is also one of the edges of the face-triangle (from
// tetFace()+tetPt()).
label meshEdgeStart_;
//- Particle is on diagonal edge:
// const face& f = mesh.faces()[tetFace()]
// label faceBasePtI = mesh.tetBasePtIs()[faceI];
// label diagPtI = (faceBasePtI+diagEdge_)%f.size();
// const edge e(f[faceBasePtI], f[diagPtI]);
label diagEdge_;
// Protected Member Functions
//- Construct current edge
edge currentEdge() const;
//- Check if inside current tet
//void checkInside() const;
//- Check if on current edge
//void checkOnEdge() const;
//- Check if point on triangle
//void checkOnTriangle(const point&) const;
//- Cross mesh edge into different face on same cell
void crossEdgeConnectedFace(const edge& meshEdge);
//- Cross diagonal edge into different triangle on same face,cell
void crossDiagonalEdge();
//- Track through single triangle
scalar trackFaceTri(const vector& endPosition, label& minEdgeI);
//- Is current triangle in the track direction
bool isTriAlongTrack(const point& endPosition) const;
// Patch interactions
//- Do all patch interaction
template<class TrackData>
void patchInteraction(TrackData& td, const scalar trackFraction);
//- Overridable function to handle the particle hitting a patch
// Executed before other patch-hitting functions
template<class TrackData>
bool hitPatch
(
const polyPatch&,
TrackData& td,
const label patchI,
const scalar trackFraction,
const tetIndices& tetIs
);
//- Overridable function to handle the particle hitting a wedge
template<class TrackData>
void hitWedgePatch
(
const wedgePolyPatch&,
TrackData& td
);
//- Overridable function to handle the particle hitting a
// symmetryPlane
template<class TrackData>
void hitSymmetryPatch
(
const symmetryPolyPatch&,
TrackData& td
);
//- Overridable function to handle the particle hitting a cyclic
template<class TrackData>
void hitCyclicPatch
(
const cyclicPolyPatch&,
TrackData& td
);
//- Overridable function to handle the particle hitting a
//- processorPatch
template<class TrackData>
void hitProcessorPatch
(
const processorPolyPatch&,
TrackData& td
);
//- Overridable function to handle the particle hitting a wallPatch
template<class TrackData>
void hitWallPatch
(
const wallPolyPatch&,
TrackData& td,
const tetIndices&
);
//- Overridable function to handle the particle hitting a polyPatch
template<class TrackData>
void hitPatch
(
const polyPatch&,
TrackData& td
);
public:
// Constructors
//- Construct from components
wallBoundedParticle
(
const polyMesh& c,
const vector& position,
const label cellI,
const label tetFaceI,
const label tetPtI,
const label meshEdgeStart,
const label diagEdge
);
//- Construct from Istream
wallBoundedParticle
(
const polyMesh& c,
Istream& is,
bool readFields = true
);
//- Construct copy
wallBoundedParticle(const wallBoundedParticle& p);
//- Construct and return a clone
autoPtr<particle> clone() const
{
return autoPtr<particle>(new wallBoundedParticle(*this));
}
//- Factory class to read-construct particles used for
// parallel transfer
class iNew
{
const polyMesh& mesh_;
public:
iNew(const polyMesh& mesh)
:
mesh_(mesh)
{}
autoPtr<wallBoundedParticle> operator()
(
Istream& is
) const
{
return autoPtr<wallBoundedParticle>
(
new wallBoundedParticle(mesh_, is, true)
);
}
};
// Member Functions
// Access
//- -1 or label of mesh edge
inline label meshEdgeStart() const
{
return meshEdgeStart_;
}
//- -1 or diagonal edge
inline label diagEdge() const
{
return diagEdge_;
}
// Track
//- Equivalent of trackToFace
template<class TrackData>
scalar trackToEdge
(
TrackData& td,
const vector& endPosition
);
// Info
//- Return info proxy.
// Used to print particle information to a stream
inline InfoProxy<wallBoundedParticle> info() const
{
return *this;
}
// I-O
//- Read
template<class CloudType>
static void readFields(CloudType&);
//- Write
template<class CloudType>
static void writeFields(const CloudType&);
//- Write the particle data
void write(Ostream& os, bool writeFields) const;
// Ostream Operator
friend Ostream& operator<<
(
Ostream&,
const wallBoundedParticle&
);
friend Ostream& operator<<
(
Ostream&,
const InfoProxy<wallBoundedParticle>&
);
};
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#ifdef NoRepository
# include "wallBoundedParticleTemplates.C"
#endif
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#endif
// ************************************************************************* //

View File

@ -0,0 +1,543 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2012 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*----------------------------------------------------------------------------*/
#include "wallBoundedParticle.H"
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
template<class TrackData>
void Foam::wallBoundedParticle::patchInteraction
(
TrackData& td,
const scalar trackFraction
)
{
// typedef TrackData::CloudType cloudType;
typedef typename TrackData::cloudType::particleType particleType;
particleType& p = static_cast<particleType&>(*this);
p.hitFace(td);
if (!internalFace(faceI_))
{
label origFaceI = faceI_;
label patchI = patch(faceI_);
// No action taken for tetPtI_ for tetFaceI_ here, handled by
// patch interaction call or later during processor transfer.
// Dummy tet indices. What to do here?
tetIndices faceHitTetIs;
if
(
!p.hitPatch
(
mesh_.boundaryMesh()[patchI],
td,
patchI,
trackFraction,
faceHitTetIs
)
)
{
// Did patch interaction model switch patches?
// Note: recalculate meshEdgeStart_, diagEdge_!
if (faceI_ != origFaceI)
{
patchI = patch(faceI_);
}
const polyPatch& patch = mesh_.boundaryMesh()[patchI];
if (isA<wedgePolyPatch>(patch))
{
p.hitWedgePatch
(
static_cast<const wedgePolyPatch&>(patch), td
);
}
else if (isA<symmetryPolyPatch>(patch))
{
p.hitSymmetryPatch
(
static_cast<const symmetryPolyPatch&>(patch), td
);
}
else if (isA<cyclicPolyPatch>(patch))
{
p.hitCyclicPatch
(
static_cast<const cyclicPolyPatch&>(patch), td
);
}
else if (isA<processorPolyPatch>(patch))
{
p.hitProcessorPatch
(
static_cast<const processorPolyPatch&>(patch), td
);
}
else if (isA<wallPolyPatch>(patch))
{
p.hitWallPatch
(
static_cast<const wallPolyPatch&>(patch), td, faceHitTetIs
);
}
else
{
p.hitPatch(patch, td);
}
}
}
}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
//- Track particle to a given position and returns 1.0 if the
// trajectory is completed without hitting a face otherwise
// stops at the face and returns the fraction of the trajectory
// completed.
// on entry 'stepFraction()' should be set to the fraction of the
// time-step at which the tracking starts.
template<class TrackData>
Foam::scalar Foam::wallBoundedParticle::trackToEdge
(
TrackData& td,
const vector& endPosition
)
{
// Are we on a track face? If not we do a topological walk.
// Particle:
// - cell_ always set
// - tetFace_, tetPt_ always set (these identify tet particle is in)
// - optionally meshEdgeStart_ or diagEdge_ set (edge particle is on)
//checkInside();
//checkOnTriangle(position());
//if (meshEdgeStart_ != -1 || diagEdge_ != -1)
//{
// checkOnEdge();
//}
scalar trackFraction = 0.0;
if (!td.isWallPatch_[tetFace()])
{
// Don't track across face. Just walk in cell. Particle is on
// mesh edge (as indicated by meshEdgeStart_).
const edge meshEdge(currentEdge());
// If internal face check whether to go to neighbour cell or just
// check to the other internal tet on the edge.
if (mesh_.isInternalFace(tetFace()))
{
label nbrCellI =
(
cellI_ == mesh_.faceOwner()[faceI_]
? mesh_.faceNeighbour()[faceI_]
: mesh_.faceOwner()[faceI_]
);
// Check angle to nbrCell tet. Is it in the direction of the
// endposition? I.e. since volume of nbr tet is positive the
// tracking direction should be into the tet.
tetIndices nbrTi(nbrCellI, tetFaceI_, tetPtI_, mesh_);
if ((nbrTi.faceTri(mesh_).normal() & (endPosition-position())) < 0)
{
// Change into nbrCell. No need to change tetFace, tetPt.
//Pout<< " crossed from cell:" << cellI_
// << " into " << nbrCellI << endl;
cellI_ = nbrCellI;
patchInteraction(td, trackFraction);
}
else
{
// Walk to other face on edge. Changes tetFace, tetPt but not
// cell.
crossEdgeConnectedFace(meshEdge);
patchInteraction(td, trackFraction);
}
}
else
{
// Walk to other face on edge. This might give loop since
// particle should have been removed?
crossEdgeConnectedFace(meshEdge);
patchInteraction(td, trackFraction);
}
}
else
{
// We're inside a tet on the wall. Check if the current tet is
// the one to cross. If not we cross into the neighbouring triangle.
if (mesh_.isInternalFace(tetFace()))
{
FatalErrorIn
(
"wallBoundedParticle::trackToEdge"
"(TrackData&, const vector&)"
) << "Can only track on boundary faces."
<< " Face:" << tetFace()
<< " at:" << mesh_.faceCentres()[tetFace()]
<< abort(FatalError);
}
point projectedEndPosition = endPosition;
// Remove normal component
{
const triFace tri(currentTetIndices().faceTriIs(mesh_));
vector n = tri.normal(mesh_.points());
n /= mag(n);
const point& basePt = mesh_.points()[tri[0]];
projectedEndPosition -= ((projectedEndPosition-basePt)&n)*n;
}
bool doTrack = false;
if (meshEdgeStart_ == -1 && diagEdge_ == -1)
{
// We're starting and not yet on an edge.
doTrack = true;
}
else
{
// See if the current triangle has got a point on the
// correct side of the edge.
doTrack = isTriAlongTrack(projectedEndPosition);
}
if (doTrack)
{
// Track across triangle. Return triangle edge crossed.
label triEdgeI = -1;
trackFraction = trackFaceTri(projectedEndPosition, triEdgeI);
if (triEdgeI == -1)
{
// Reached endpoint
//checkInside();
diagEdge_ = -1;
meshEdgeStart_ = -1;
return trackFraction;
}
const tetIndices ti(currentTetIndices());
// Triangle (faceTriIs) gets constructed from
// f[faceBasePtI_],
// f[facePtAI_],
// f[facePtBI_]
//
// So edge indices are:
// 0 : edge between faceBasePtI_ and facePtAI_
// 1 : edge between facePtAI_ and facePtBI_ (is always a real edge)
// 2 : edge between facePtBI_ and faceBasePtI_
const Foam::face& f = mesh_.faces()[ti.face()];
const label fp0 = ti.faceBasePt();
if (triEdgeI == 0)
{
if (ti.facePtA() == f.fcIndex(fp0))
{
//Pout<< "Real edge." << endl;
diagEdge_ = -1;
meshEdgeStart_ = fp0;
//checkOnEdge();
crossEdgeConnectedFace(currentEdge());
patchInteraction(td, trackFraction);
}
else if (ti.facePtA() == f.rcIndex(fp0))
{
//Note: should not happen since boundary face so owner
//Pout<< "Real edge." << endl;
FatalErrorIn("shold not happend") << info()
<< abort(FatalError);
diagEdge_ = -1;
meshEdgeStart_ = f.rcIndex(fp0);
//checkOnEdge();
crossEdgeConnectedFace(currentEdge());
patchInteraction(td, trackFraction);
}
else
{
// Get index of triangle on other side of edge.
diagEdge_ = ti.facePtA()-fp0;
if (diagEdge_ < 0)
{
diagEdge_ += f.size();
}
meshEdgeStart_ = -1;
//checkOnEdge();
crossDiagonalEdge();
}
}
else if (triEdgeI == 1)
{
//Pout<< "Real edge." << endl;
diagEdge_ = -1;
meshEdgeStart_ = ti.facePtA();
//checkOnEdge();
crossEdgeConnectedFace(currentEdge());
patchInteraction(td, trackFraction);
}
else // if (triEdgeI == 2)
{
if (ti.facePtB() == f.rcIndex(fp0))
{
//Pout<< "Real edge." << endl;
diagEdge_ = -1;
meshEdgeStart_ = ti.facePtB();
//checkOnEdge();
crossEdgeConnectedFace(currentEdge());
patchInteraction(td, trackFraction);
}
else if (ti.facePtB() == f.fcIndex(fp0))
{
//Note: should not happen since boundary face so owner
//Pout<< "Real edge." << endl;
FatalErrorIn("shold not happend") << info()
<< abort(FatalError);
diagEdge_ = -1;
meshEdgeStart_ = fp0;
//checkOnEdge();
crossEdgeConnectedFace(currentEdge());
patchInteraction(td, trackFraction);
}
else
{
//Pout<< "Triangle edge." << endl;
// Get index of triangle on other side of edge.
diagEdge_ = ti.facePtB()-fp0;
if (diagEdge_ < 0)
{
diagEdge_ += f.size();
}
meshEdgeStart_ = -1;
//checkOnEdge();
crossDiagonalEdge();
}
}
}
else
{
// Current tet is not the right one. Check the neighbour tet.
if (meshEdgeStart_ != -1)
{
// Particle is on mesh edge so change into other face on cell
crossEdgeConnectedFace(currentEdge());
//checkOnEdge();
patchInteraction(td, trackFraction);
}
else
{
// Particle is on diagonal edge so change into the other
// triangle.
crossDiagonalEdge();
//checkOnEdge();
}
}
}
//checkInside();
return trackFraction;
}
template<class TrackData>
bool Foam::wallBoundedParticle::hitPatch
(
const polyPatch&,
TrackData& td,
const label patchI,
const scalar trackFraction,
const tetIndices& tetIs
)
{
// Disable generic patch interaction
return false;
}
template<class TrackData>
void Foam::wallBoundedParticle::hitWedgePatch
(
const wedgePolyPatch& pp,
TrackData& td
)
{
// Remove particle
td.keepParticle = false;
}
template<class TrackData>
void Foam::wallBoundedParticle::hitSymmetryPatch
(
const symmetryPolyPatch& pp,
TrackData& td
)
{
// Remove particle
td.keepParticle = false;
}
template<class TrackData>
void Foam::wallBoundedParticle::hitCyclicPatch
(
const cyclicPolyPatch& pp,
TrackData& td
)
{
// Remove particle
td.keepParticle = false;
}
template<class TrackData>
void Foam::wallBoundedParticle::hitProcessorPatch
(
const processorPolyPatch& pp,
TrackData& td
)
{
// Switch particle
td.switchProcessor = true;
// Adapt edgeStart_ for other side.
// E.g. if edgeStart_ is 1 then the edge is between vertex 1 and 2 so
// on the other side between 2 and 3 so edgeStart_ should be
// f.size()-edgeStart_-1.
const Foam::face& f = mesh_.faces()[face()];
if (meshEdgeStart_ != -1)
{
meshEdgeStart_ = f.size()-meshEdgeStart_-1;
}
else
{
// diagEdge_ is relative to faceBasePt
diagEdge_ = f.size()-diagEdge_;
}
}
template<class TrackData>
void Foam::wallBoundedParticle::hitWallPatch
(
const wallPolyPatch& wpp,
TrackData& td,
const tetIndices&
)
{}
template<class TrackData>
void Foam::wallBoundedParticle::hitPatch
(
const polyPatch& wpp,
TrackData& td
)
{
// Remove particle
td.keepParticle = false;
}
template<class CloudType>
void Foam::wallBoundedParticle::readFields(CloudType& c)
{
if (!c.size())
{
return;
}
particle::readFields(c);
IOField<label> meshEdgeStart
(
c.fieldIOobject("meshEdgeStart", IOobject::MUST_READ)
);
IOField<label> diagEdge
(
c.fieldIOobject("diagEdge_", IOobject::MUST_READ)
);
c.checkFieldIOobject(c, diagEdge);
label i = 0;
forAllIter(typename CloudType, c, iter)
{
iter().meshEdgeStart_ = meshEdgeStart[i];
iter().diagEdge_ = diagEdge[i];
i++;
}
}
template<class CloudType>
void Foam::wallBoundedParticle::writeFields(const CloudType& c)
{
particle::writeFields(c);
label np = c.size();
IOField<label> meshEdgeStart
(
c.fieldIOobject("meshEdgeStart", IOobject::NO_READ),
np
);
IOField<label> diagEdge
(
c.fieldIOobject("diagEdge", IOobject::NO_READ),
np
);
label i = 0;
forAllConstIter(typename CloudType, c, iter)
{
meshEdgeStart[i] = iter().meshEdgeStart_;
diagEdge[i] = iter().diagEdge_;
i++;
}
meshEdgeStart.write();
diagEdge.write();
}
// ************************************************************************* //