diff --git a/applications/solvers/compressible/rhoCentralDyMFoam/Make/files b/applications/solvers/compressible/rhoCentralDyMFoam/Make/files new file mode 100644 index 0000000000..f78400aa8d --- /dev/null +++ b/applications/solvers/compressible/rhoCentralDyMFoam/Make/files @@ -0,0 +1,3 @@ +rhoCentralDyMFoam.C + +EXE = $(FOAM_APPBIN)/rhoCentralDyMFoam diff --git a/applications/solvers/compressible/rhoCentralDyMFoam/Make/options b/applications/solvers/compressible/rhoCentralDyMFoam/Make/options new file mode 100644 index 0000000000..edc7214f0e --- /dev/null +++ b/applications/solvers/compressible/rhoCentralDyMFoam/Make/options @@ -0,0 +1,17 @@ +EXE_INC = \ + -I../rhoCentralFoam \ + -I$(LIB_SRC)/finiteVolume/lnInclude \ + -I$(LIB_SRC)/thermophysicalModels/basic/lnInclude \ + -I$(LIB_SRC)/thermophysicalModels/specie/lnInclude \ + -I../rhoCentralFoam/BCs/lnInclude \ + -I$(LIB_SRC)/sampling/lnInclude \ + -I$(LIB_SRC)/dynamicMesh/lnInclude \ + -I$(LIB_SRC)/meshTools/lnInclude + +EXE_LIBS = \ + -lfiniteVolume \ + -lbasicThermophysicalModels \ + -lspecie \ + -lrhoCentralFoam \ + -ldynamicMesh \ + -lmeshTools diff --git a/applications/solvers/compressible/rhoCentralDyMFoam/rhoCentralDyMFoam.C b/applications/solvers/compressible/rhoCentralDyMFoam/rhoCentralDyMFoam.C new file mode 100644 index 0000000000..274a8e80be --- /dev/null +++ b/applications/solvers/compressible/rhoCentralDyMFoam/rhoCentralDyMFoam.C @@ -0,0 +1,245 @@ +/*---------------------------------------------------------------------------*\ + ========= | + \\ / F ield | OpenFOAM: The Open Source CFD Toolbox + \\ / O peration | + \\ / A nd | Copyright (C) 1991-2009 OpenCFD Ltd. + \\/ M anipulation | +------------------------------------------------------------------------------- +License + This file is part of OpenFOAM. + + OpenFOAM is free software: you can redistribute it and/or modify it + under the terms of the GNU General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + OpenFOAM is distributed in the hope that it will be useful, but WITHOUT + ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + for more details. + + You should have received a copy of the GNU General Public License + along with OpenFOAM. If not, see . + +Application + rhoCentralFoam + +Description + Density-based compressible flow solver based on central-upwind schemes of + Kurganov and Tadmor + +\*---------------------------------------------------------------------------*/ + +#include "fvCFD.H" +#include "basicPsiThermo.H" +#include "zeroGradientFvPatchFields.H" +#include "fixedRhoFvPatchScalarField.H" +#include "motionSolver.H" + +// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // + +int main(int argc, char *argv[]) +{ + #include "setRootCase.H" + + #include "createTime.H" + #include "createMesh.H" + #include "createFields.H" + #include "readThermophysicalProperties.H" + #include "readTimeControls.H" + + // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // + + #include "readFluxScheme.H" + + dimensionedScalar v_zero("v_zero", dimVolume/dimTime, 0.0); + + Info<< "\nStarting time loop\n" << endl; + + autoPtr motionPtr = motionSolver::New(mesh); + + while (runTime.run()) + { + // --- upwind interpolation of primitive fields on faces + + surfaceScalarField rho_pos = + fvc::interpolate(rho, pos, "reconstruct(rho)"); + surfaceScalarField rho_neg = + fvc::interpolate(rho, neg, "reconstruct(rho)"); + + surfaceVectorField rhoU_pos = + fvc::interpolate(rhoU, pos, "reconstruct(U)"); + surfaceVectorField rhoU_neg = + fvc::interpolate(rhoU, neg, "reconstruct(U)"); + + volScalarField rPsi = 1.0/psi; + surfaceScalarField rPsi_pos = + fvc::interpolate(rPsi, pos, "reconstruct(T)"); + surfaceScalarField rPsi_neg = + fvc::interpolate(rPsi, neg, "reconstruct(T)"); + + surfaceScalarField e_pos = + fvc::interpolate(e, pos, "reconstruct(T)"); + surfaceScalarField e_neg = + fvc::interpolate(e, neg, "reconstruct(T)"); + + surfaceVectorField U_pos = rhoU_pos/rho_pos; + surfaceVectorField U_neg = rhoU_neg/rho_neg; + + surfaceScalarField p_pos = rho_pos*rPsi_pos; + surfaceScalarField p_neg = rho_neg*rPsi_neg; + + surfaceScalarField phiv_pos = U_pos & mesh.Sf(); + surfaceScalarField phiv_neg = U_neg & mesh.Sf(); + + volScalarField c = sqrt(thermo.Cp()/thermo.Cv()*rPsi); + surfaceScalarField cSf_pos = + fvc::interpolate(c, pos, "reconstruct(T)")*mesh.magSf(); + surfaceScalarField cSf_neg = + fvc::interpolate(c, neg, "reconstruct(T)")*mesh.magSf(); + + surfaceScalarField ap = + max(max(phiv_pos + cSf_pos, phiv_neg + cSf_neg), v_zero); + surfaceScalarField am = + min(min(phiv_pos - cSf_pos, phiv_neg - cSf_neg), v_zero); + + surfaceScalarField a_pos = ap/(ap - am); + + surfaceScalarField amaxSf("amaxSf", max(mag(am), mag(ap))); + + surfaceScalarField aSf = am*a_pos; + + if (fluxScheme == "Tadmor") + { + aSf = -0.5*amaxSf; + a_pos = 0.5; + } + + surfaceScalarField a_neg = (1.0 - a_pos); + + phiv_pos *= a_pos; + phiv_neg *= a_neg; + + surfaceScalarField aphiv_pos = phiv_pos - aSf; + surfaceScalarField aphiv_neg = phiv_neg + aSf; + + // Reuse amaxSf for the maximum positive and negative fluxes + // estimated by the central scheme + amaxSf = max(mag(aphiv_pos), mag(aphiv_neg)); + + #include "compressibleCourantNo.H" + #include "readTimeControls.H" + #include "setDeltaT.H" + + runTime++; + + Info<< "Time = " << runTime.timeName() << nl << endl; + + mesh.movePoints(motionPtr->newPoints()); + phiv_pos = U_pos & mesh.Sf(); + phiv_neg = U_neg & mesh.Sf(); + fvc::makeRelative(phiv_pos, U); + fvc::makeRelative(phiv_neg, U); + phiv_neg -= mesh.phi(); + phiv_pos *= a_pos; + phiv_neg *= a_neg; + aphiv_pos = phiv_pos - aSf; + aphiv_neg = phiv_neg + aSf; + + surfaceScalarField phi("phi", aphiv_pos*rho_pos + aphiv_neg*rho_neg); + + surfaceVectorField phiUp = + (aphiv_pos*rhoU_pos + aphiv_neg*rhoU_neg) + + (a_pos*p_pos + a_neg*p_neg)*mesh.Sf(); + + surfaceScalarField phiEp = + aphiv_pos*(rho_pos*(e_pos + 0.5*magSqr(U_pos)) + p_pos) + + aphiv_neg*(rho_neg*(e_neg + 0.5*magSqr(U_neg)) + p_neg) + + aSf*p_pos - aSf*p_neg; + + volTensorField tauMC("tauMC", mu*dev2(fvc::grad(U)().T())); + + // --- Solve density + Info<< max(rho) << " " << min(rho) << endl; + solve(fvm::ddt(rho) + fvc::div(phi)); + Info<< max(rho) << " " << min(rho) << endl; + + // --- Solve momentum + solve(fvm::ddt(rhoU) + fvc::div(phiUp)); + + U.dimensionedInternalField() = + rhoU.dimensionedInternalField() + /rho.dimensionedInternalField(); + U.correctBoundaryConditions(); + rhoU.boundaryField() = rho.boundaryField()*U.boundaryField(); + + if (!inviscid) + { + solve + ( + fvm::ddt(rho, U) - fvc::ddt(rho, U) + - fvm::laplacian(mu, U) + - fvc::div(tauMC) + ); + rhoU = rho*U; + } + + // --- Solve energy + surfaceScalarField sigmaDotU = + ( + ( + fvc::interpolate(mu)*mesh.magSf()*fvc::snGrad(U) + + (mesh.Sf() & fvc::interpolate(tauMC)) + ) + & (a_pos*U_pos + a_neg*U_neg) + ); + + solve + ( + fvm::ddt(rhoE) + + fvc::div(phiEp) + - fvc::div(sigmaDotU) + ); + + e = rhoE/rho - 0.5*magSqr(U); + e.correctBoundaryConditions(); + thermo.correct(); + rhoE.boundaryField() = + rho.boundaryField()* + ( + e.boundaryField() + 0.5*magSqr(U.boundaryField()) + ); + + if (!inviscid) + { + volScalarField k("k", thermo.Cp()*mu/Pr); + solve + ( + fvm::ddt(rho, e) - fvc::ddt(rho, e) + - fvm::laplacian(thermo.alpha(), e) + + fvc::laplacian(thermo.alpha(), e) + - fvc::laplacian(k, T) + ); + thermo.correct(); + rhoE = rho*(e + 0.5*magSqr(U)); + } + + p.dimensionedInternalField() = + rho.dimensionedInternalField() + /psi.dimensionedInternalField(); + p.correctBoundaryConditions(); + rho.boundaryField() = psi.boundaryField()*p.boundaryField(); + + runTime.write(); + + Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s" + << " ClockTime = " << runTime.elapsedClockTime() << " s" + << nl << endl; + } + + Info<< "End\n" << endl; + + return 0; +} + +// ************************************************************************* //