diff --git a/applications/solvers/compressible/rhoCentralDyMFoam/Make/files b/applications/solvers/compressible/rhoCentralDyMFoam/Make/files
new file mode 100644
index 0000000000..f78400aa8d
--- /dev/null
+++ b/applications/solvers/compressible/rhoCentralDyMFoam/Make/files
@@ -0,0 +1,3 @@
+rhoCentralDyMFoam.C
+
+EXE = $(FOAM_APPBIN)/rhoCentralDyMFoam
diff --git a/applications/solvers/compressible/rhoCentralDyMFoam/Make/options b/applications/solvers/compressible/rhoCentralDyMFoam/Make/options
new file mode 100644
index 0000000000..edc7214f0e
--- /dev/null
+++ b/applications/solvers/compressible/rhoCentralDyMFoam/Make/options
@@ -0,0 +1,17 @@
+EXE_INC = \
+ -I../rhoCentralFoam \
+ -I$(LIB_SRC)/finiteVolume/lnInclude \
+ -I$(LIB_SRC)/thermophysicalModels/basic/lnInclude \
+ -I$(LIB_SRC)/thermophysicalModels/specie/lnInclude \
+ -I../rhoCentralFoam/BCs/lnInclude \
+ -I$(LIB_SRC)/sampling/lnInclude \
+ -I$(LIB_SRC)/dynamicMesh/lnInclude \
+ -I$(LIB_SRC)/meshTools/lnInclude
+
+EXE_LIBS = \
+ -lfiniteVolume \
+ -lbasicThermophysicalModels \
+ -lspecie \
+ -lrhoCentralFoam \
+ -ldynamicMesh \
+ -lmeshTools
diff --git a/applications/solvers/compressible/rhoCentralDyMFoam/rhoCentralDyMFoam.C b/applications/solvers/compressible/rhoCentralDyMFoam/rhoCentralDyMFoam.C
new file mode 100644
index 0000000000..274a8e80be
--- /dev/null
+++ b/applications/solvers/compressible/rhoCentralDyMFoam/rhoCentralDyMFoam.C
@@ -0,0 +1,245 @@
+/*---------------------------------------------------------------------------*\
+ ========= |
+ \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
+ \\ / O peration |
+ \\ / A nd | Copyright (C) 1991-2009 OpenCFD Ltd.
+ \\/ M anipulation |
+-------------------------------------------------------------------------------
+License
+ This file is part of OpenFOAM.
+
+ OpenFOAM is free software: you can redistribute it and/or modify it
+ under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+ OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
+ ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with OpenFOAM. If not, see .
+
+Application
+ rhoCentralFoam
+
+Description
+ Density-based compressible flow solver based on central-upwind schemes of
+ Kurganov and Tadmor
+
+\*---------------------------------------------------------------------------*/
+
+#include "fvCFD.H"
+#include "basicPsiThermo.H"
+#include "zeroGradientFvPatchFields.H"
+#include "fixedRhoFvPatchScalarField.H"
+#include "motionSolver.H"
+
+// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
+
+int main(int argc, char *argv[])
+{
+ #include "setRootCase.H"
+
+ #include "createTime.H"
+ #include "createMesh.H"
+ #include "createFields.H"
+ #include "readThermophysicalProperties.H"
+ #include "readTimeControls.H"
+
+ // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
+
+ #include "readFluxScheme.H"
+
+ dimensionedScalar v_zero("v_zero", dimVolume/dimTime, 0.0);
+
+ Info<< "\nStarting time loop\n" << endl;
+
+ autoPtr motionPtr = motionSolver::New(mesh);
+
+ while (runTime.run())
+ {
+ // --- upwind interpolation of primitive fields on faces
+
+ surfaceScalarField rho_pos =
+ fvc::interpolate(rho, pos, "reconstruct(rho)");
+ surfaceScalarField rho_neg =
+ fvc::interpolate(rho, neg, "reconstruct(rho)");
+
+ surfaceVectorField rhoU_pos =
+ fvc::interpolate(rhoU, pos, "reconstruct(U)");
+ surfaceVectorField rhoU_neg =
+ fvc::interpolate(rhoU, neg, "reconstruct(U)");
+
+ volScalarField rPsi = 1.0/psi;
+ surfaceScalarField rPsi_pos =
+ fvc::interpolate(rPsi, pos, "reconstruct(T)");
+ surfaceScalarField rPsi_neg =
+ fvc::interpolate(rPsi, neg, "reconstruct(T)");
+
+ surfaceScalarField e_pos =
+ fvc::interpolate(e, pos, "reconstruct(T)");
+ surfaceScalarField e_neg =
+ fvc::interpolate(e, neg, "reconstruct(T)");
+
+ surfaceVectorField U_pos = rhoU_pos/rho_pos;
+ surfaceVectorField U_neg = rhoU_neg/rho_neg;
+
+ surfaceScalarField p_pos = rho_pos*rPsi_pos;
+ surfaceScalarField p_neg = rho_neg*rPsi_neg;
+
+ surfaceScalarField phiv_pos = U_pos & mesh.Sf();
+ surfaceScalarField phiv_neg = U_neg & mesh.Sf();
+
+ volScalarField c = sqrt(thermo.Cp()/thermo.Cv()*rPsi);
+ surfaceScalarField cSf_pos =
+ fvc::interpolate(c, pos, "reconstruct(T)")*mesh.magSf();
+ surfaceScalarField cSf_neg =
+ fvc::interpolate(c, neg, "reconstruct(T)")*mesh.magSf();
+
+ surfaceScalarField ap =
+ max(max(phiv_pos + cSf_pos, phiv_neg + cSf_neg), v_zero);
+ surfaceScalarField am =
+ min(min(phiv_pos - cSf_pos, phiv_neg - cSf_neg), v_zero);
+
+ surfaceScalarField a_pos = ap/(ap - am);
+
+ surfaceScalarField amaxSf("amaxSf", max(mag(am), mag(ap)));
+
+ surfaceScalarField aSf = am*a_pos;
+
+ if (fluxScheme == "Tadmor")
+ {
+ aSf = -0.5*amaxSf;
+ a_pos = 0.5;
+ }
+
+ surfaceScalarField a_neg = (1.0 - a_pos);
+
+ phiv_pos *= a_pos;
+ phiv_neg *= a_neg;
+
+ surfaceScalarField aphiv_pos = phiv_pos - aSf;
+ surfaceScalarField aphiv_neg = phiv_neg + aSf;
+
+ // Reuse amaxSf for the maximum positive and negative fluxes
+ // estimated by the central scheme
+ amaxSf = max(mag(aphiv_pos), mag(aphiv_neg));
+
+ #include "compressibleCourantNo.H"
+ #include "readTimeControls.H"
+ #include "setDeltaT.H"
+
+ runTime++;
+
+ Info<< "Time = " << runTime.timeName() << nl << endl;
+
+ mesh.movePoints(motionPtr->newPoints());
+ phiv_pos = U_pos & mesh.Sf();
+ phiv_neg = U_neg & mesh.Sf();
+ fvc::makeRelative(phiv_pos, U);
+ fvc::makeRelative(phiv_neg, U);
+ phiv_neg -= mesh.phi();
+ phiv_pos *= a_pos;
+ phiv_neg *= a_neg;
+ aphiv_pos = phiv_pos - aSf;
+ aphiv_neg = phiv_neg + aSf;
+
+ surfaceScalarField phi("phi", aphiv_pos*rho_pos + aphiv_neg*rho_neg);
+
+ surfaceVectorField phiUp =
+ (aphiv_pos*rhoU_pos + aphiv_neg*rhoU_neg)
+ + (a_pos*p_pos + a_neg*p_neg)*mesh.Sf();
+
+ surfaceScalarField phiEp =
+ aphiv_pos*(rho_pos*(e_pos + 0.5*magSqr(U_pos)) + p_pos)
+ + aphiv_neg*(rho_neg*(e_neg + 0.5*magSqr(U_neg)) + p_neg)
+ + aSf*p_pos - aSf*p_neg;
+
+ volTensorField tauMC("tauMC", mu*dev2(fvc::grad(U)().T()));
+
+ // --- Solve density
+ Info<< max(rho) << " " << min(rho) << endl;
+ solve(fvm::ddt(rho) + fvc::div(phi));
+ Info<< max(rho) << " " << min(rho) << endl;
+
+ // --- Solve momentum
+ solve(fvm::ddt(rhoU) + fvc::div(phiUp));
+
+ U.dimensionedInternalField() =
+ rhoU.dimensionedInternalField()
+ /rho.dimensionedInternalField();
+ U.correctBoundaryConditions();
+ rhoU.boundaryField() = rho.boundaryField()*U.boundaryField();
+
+ if (!inviscid)
+ {
+ solve
+ (
+ fvm::ddt(rho, U) - fvc::ddt(rho, U)
+ - fvm::laplacian(mu, U)
+ - fvc::div(tauMC)
+ );
+ rhoU = rho*U;
+ }
+
+ // --- Solve energy
+ surfaceScalarField sigmaDotU =
+ (
+ (
+ fvc::interpolate(mu)*mesh.magSf()*fvc::snGrad(U)
+ + (mesh.Sf() & fvc::interpolate(tauMC))
+ )
+ & (a_pos*U_pos + a_neg*U_neg)
+ );
+
+ solve
+ (
+ fvm::ddt(rhoE)
+ + fvc::div(phiEp)
+ - fvc::div(sigmaDotU)
+ );
+
+ e = rhoE/rho - 0.5*magSqr(U);
+ e.correctBoundaryConditions();
+ thermo.correct();
+ rhoE.boundaryField() =
+ rho.boundaryField()*
+ (
+ e.boundaryField() + 0.5*magSqr(U.boundaryField())
+ );
+
+ if (!inviscid)
+ {
+ volScalarField k("k", thermo.Cp()*mu/Pr);
+ solve
+ (
+ fvm::ddt(rho, e) - fvc::ddt(rho, e)
+ - fvm::laplacian(thermo.alpha(), e)
+ + fvc::laplacian(thermo.alpha(), e)
+ - fvc::laplacian(k, T)
+ );
+ thermo.correct();
+ rhoE = rho*(e + 0.5*magSqr(U));
+ }
+
+ p.dimensionedInternalField() =
+ rho.dimensionedInternalField()
+ /psi.dimensionedInternalField();
+ p.correctBoundaryConditions();
+ rho.boundaryField() = psi.boundaryField()*p.boundaryField();
+
+ runTime.write();
+
+ Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
+ << " ClockTime = " << runTime.elapsedClockTime() << " s"
+ << nl << endl;
+ }
+
+ Info<< "End\n" << endl;
+
+ return 0;
+}
+
+// ************************************************************************* //