ENH: extrudeToRegionMesh : allow extrusion on cyclics.

Still not good enough - only handles single extrusion vector per cyclic point.
This commit is contained in:
mattijs
2010-05-18 13:30:32 +01:00
parent bee7ba14b3
commit 5d3e38e34e
2 changed files with 286 additions and 84 deletions

View File

@ -158,7 +158,6 @@ void Foam::createShellMesh::calcPointRegions
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::createShellMesh::createShellMesh
@ -184,7 +183,6 @@ Foam::createShellMesh::createShellMesh
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
void Foam::createShellMesh::setRefinement
(
const pointField& thickness,

View File

@ -130,6 +130,7 @@ Usage
#include "volFields.H"
#include "surfaceFields.H"
#include "cyclicPolyPatch.H"
#include "syncTools.H"
using namespace Foam;
@ -595,6 +596,237 @@ void createDummyFvMeshFiles(const polyMesh& mesh, const word& regionName)
}
//XXXXXXXXX
label findUncoveredPatchFace
(
const fvMesh& mesh,
const UIndirectList<label>& extrudeMeshFaces,// mesh faces that are extruded
const label meshEdgeI // mesh edge
)
{
// Make set of extruded faces.
labelHashSet extrudeFaceSet(extrudeMeshFaces.size());
forAll(extrudeMeshFaces, i)
{
extrudeFaceSet.insert(extrudeMeshFaces[i]);
}
label patchI = -1;
const labelList& eFaces = mesh.edgeFaces()[meshEdgeI];
forAll(eFaces, i)
{
label faceI = eFaces[i];
if (!mesh.isInternalFace(faceI) && !extrudeFaceSet.found(faceI))
{
patchI = mesh.boundaryMesh().whichPatch(faceI);
break;
}
}
return patchI;
}
// Count the number of faces in patches that need to be created
void countExtrudePatches
(
const fvMesh& mesh,
const primitiveFacePatch& extrudePatch,
const label nZones,
const labelList& zoneID,
const labelList& extrudeMeshFaces,
const labelList& extrudeMeshEdges,
labelList& zoneSidePatch,
labelList& zoneZonePatch
)
{
const labelListList& edgeFaces = extrudePatch.edgeFaces();
forAll(edgeFaces, edgeI)
{
const labelList& eFaces = edgeFaces[edgeI];
if (eFaces.size() == 2)
{
label zone0 = zoneID[eFaces[0]];
label zone1 = zoneID[eFaces[1]];
if (zone0 != zone1)
{
label minZone = min(zone0,zone1);
label maxZone = max(zone0,zone1);
zoneZonePatch[minZone*nZones+maxZone]++;
}
}
else
{
// Check whether we are on a mesh edge with external patches. If
// so choose any uncovered one. If none found put face in
// undetermined zone 'side' patch
label patchI = findUncoveredPatchFace
(
mesh,
UIndirectList<label>(extrudeMeshFaces, eFaces),
extrudeMeshEdges[edgeI]
);
if (patchI == -1)
{
// Determine the min zone of all connected zones.
label minZone = zoneID[eFaces[0]];
for (label i = 1; i < eFaces.size(); i++)
{
minZone = min(minZone, zoneID[eFaces[i]]);
}
zoneSidePatch[minZone]++;
}
}
}
Pstream::listCombineGather(zoneSidePatch, plusEqOp<label>());
Pstream::listCombineScatter(zoneSidePatch);
Pstream::listCombineGather(zoneZonePatch, plusEqOp<label>());
Pstream::listCombineScatter(zoneZonePatch);
}
bool lessThan(const point& x, const point& y)
{
for (direction dir = 0; dir < point::nComponents; dir++)
{
if (x[dir] < y[dir]) return true;
if (x[dir] > y[dir]) return false;
}
return false;
}
class minEqVectorListOp
{
public:
void operator()(List<vector>& x, const List<vector>& y) const
{
if (y.size())
{
if (x.size())
{
forAll(x, i)
{
if (lessThan(y[i], x[i]))
{
x[i] = y[i];
}
}
}
else
{
x = y;
}
}
}
};
// Constrain&sync normals on points that are on coupled patches.
void constrainCoupledNormals
(
const fvMesh& mesh,
const primitiveFacePatch& extrudePatch,
const labelList& regionToPoint,
vectorField& regionNormals
)
{
// Invert regionToPoint to create pointToRegions.
labelListList pointToRegions
(
invertOneToMany
(
extrudePatch.nPoints(),
regionToPoint
)
);
// Sort acc. to region so (hopefully) coupled points will do the same.
forAll(pointToRegions, pointI)
{
sort(pointToRegions[pointI]);
}
const polyBoundaryMesh& patches = mesh.boundaryMesh();
// Constrain displacement on cyclic patches
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Note: bit contentious to always do this on cyclic - should user use
// different patch type, e.g. 'cyclicSlip' instead?
forAll(patches, patchI)
{
const polyPatch& pp = patches[patchI];
if (isA<cyclicPolyPatch>(pp))
{
forAll(pp.meshPoints(), pointI)
{
Map<label>::const_iterator fnd =
extrudePatch.meshPointMap().find
(
pp.meshPoints()[pointI]
);
if (fnd != extrudePatch.meshPointMap().end())
{
// fnd() is a point on this cyclic.
const vector& cycNormal = pp.pointNormals()[pointI];
const labelList& pRegions = pointToRegions[fnd()];
forAll(pRegions, i)
{
// Remove cyclic normal component.
vector& regionNormal = regionNormals[pRegions[i]];
regionNormal -= (regionNormal&cycNormal)*cycNormal;
}
}
}
}
}
// Synchronise regionNormals
// ~~~~~~~~~~~~~~~~~~~~~~~~~
// Re-work regionNormals into multiple normals per point
List<List<vector> > pointNormals(mesh.nPoints());
forAll(pointToRegions, pointI)
{
const labelList& pRegions = pointToRegions[pointI];
label meshPointI = extrudePatch.meshPoints()[pointI];
List<vector>& pNormals = pointNormals[meshPointI];
pNormals.setSize(pRegions.size());
forAll(pRegions, i)
{
pNormals[i] = regionNormals[pRegions[i]];
}
}
// Synchronise
syncTools::syncPointList
(
mesh,
pointNormals,
minEqVectorListOp(),
List<vector>(), // nullValue
false // applySeparation
);
// Re-work back into regionNormals
forAll(pointToRegions, pointI)
{
const labelList& pRegions = pointToRegions[pointI];
label meshPointI = extrudePatch.meshPoints()[pointI];
const List<vector>& pNormals = pointNormals[meshPointI];
forAll(pRegions, i)
{
regionNormals[pRegions[i]] = pNormals[i];
}
}
}
//XXXXXXXXX
tmp<pointField> calcOffset
(
const primitiveFacePatch& extrudePatch,
@ -739,6 +971,16 @@ int main(int argc, char *argv[])
<< endl;
// Determine corresponding mesh edges
const labelList extrudeMeshEdges
(
extrudePatch.meshEdges
(
mesh.edges(),
mesh.pointEdges()
)
);
// Check whether the zone is internal or external faces to determine
@ -772,7 +1014,7 @@ int main(int argc, char *argv[])
Info<< "FaceZone " << fz.name() << " has boundary faces" << endl;
}
}
Info<< endl;
@ -866,36 +1108,18 @@ int main(int argc, char *argv[])
labelList zoneSidePatch(faceZones.size(), 0);
labelList zoneZonePatch(faceZones.size()*faceZones.size(), 0);
forAll(edgeFaces, edgeI)
{
const labelList& eFaces = edgeFaces[edgeI];
if (eFaces.size() == 2)
{
label zone0 = zoneID[eFaces[0]];
label zone1 = zoneID[eFaces[1]];
countExtrudePatches
(
mesh,
extrudePatch,
faceZones.size(),
zoneID,
extrudeMeshFaces,
extrudeMeshEdges,
if (zone0 != zone1)
{
label minZone = min(zone0,zone1);
label maxZone = max(zone0,zone1);
zoneZonePatch[minZone*faceZones.size()+maxZone]++;
}
}
else
{
// Determine the min zone of all connected zones.
label minZone = zoneID[eFaces[0]];
for (label i = 1; i < eFaces.size(); i++)
{
minZone = min(minZone, zoneID[eFaces[i]]);
}
zoneSidePatch[minZone]++;
}
}
Pstream::listCombineGather(zoneSidePatch, plusEqOp<label>());
Pstream::listCombineScatter(zoneSidePatch);
Pstream::listCombineGather(zoneZonePatch, plusEqOp<label>());
Pstream::listCombineScatter(zoneZonePatch);
zoneSidePatch,
zoneZonePatch
);
// Now check which patches to add.
Info<< "Adding patches for edges on zones:" << nl << nl
@ -980,6 +1204,7 @@ int main(int argc, char *argv[])
// Is edge an non-manifold edge
PackedBoolList nonManifoldEdge(extrudePatch.nEdges());
// Note: logic has to be same as in countExtrudePatches.
forAll(edgeFaces, edgeI)
{
const labelList& eFaces = edgeFaces[edgeI];
@ -1003,64 +1228,30 @@ int main(int argc, char *argv[])
}
}
else
{
label patchI = findUncoveredPatchFace
(
mesh,
UIndirectList<label>(extrudeMeshFaces, eFaces),
extrudeMeshEdges[edgeI]
);
if (patchI != -1)
{
ePatches.setSize(eFaces.size(), patchI);
}
else
{
ePatches.setSize(eFaces.size());
forAll(eFaces, i)
{
ePatches[i] = zoneSidePatch[zoneID[eFaces[i]]];
}
}
nonManifoldEdge[edgeI] = 1;
}
}
// Override constraint types
{
const edgeList& extrudeEdges = extrudePatch.edges();
const labelList& extrudeMeshPts = extrudePatch.meshPoints();
// Map from mesh edge to local patch edge index
EdgeMap<label> extrudeMeshEdges(extrudePatch.nEdges());
forAll(extrudeEdges, edgeI)
{
if (edgeFaces[edgeI].size() == 1)
{
const edge& e = extrudeEdges[edgeI];
const edge meshE(extrudeMeshPts[e[0]], extrudeMeshPts[e[1]]);
extrudeMeshEdges.insert(meshE, edgeI);
}
}
forAll(patches, patchI)
{
const polyPatch& pp = patches[patchI];
if (polyPatch::constraintType(pp.type()))
{
const edgeList& edges = pp.edges();
forAll(edges, ppEdgeI)
{
const edge& e = edges[ppEdgeI];
edge meshE(pp.meshPoints()[e[0]], pp.meshPoints()[e[1]]);
EdgeMap<label>::const_iterator iter = extrudeMeshEdges.find
(
meshE
);
if (iter != extrudeMeshEdges.end())
{
label extrudeEdgeI = iter();
extrudeEdgePatches[extrudeEdgeI] = labelList
(
edgeFaces[extrudeEdgeI].size(),
patchI
);
}
}
}
}
}
// Assign point regions
@ -1075,6 +1266,7 @@ int main(int argc, char *argv[])
(
extrudePatch,
nonManifoldEdge,
pointRegions,
regionPoints
);
@ -1096,6 +1288,18 @@ int main(int argc, char *argv[])
}
regionNormals /= mag(regionNormals);
// Constrain&sync normals on points that are on coupled patches.
constrainCoupledNormals
(
mesh,
extrudePatch,
regionPoints,
regionNormals
);
// For debugging: dump hedgehog plot of normals
{
OFstream str(runTime.path()/"regionNormals.obj");
@ -1112,7 +1316,7 @@ int main(int argc, char *argv[])
meshTools::writeOBJ(str, pt);
vertI++;
meshTools::writeOBJ(str, pt+0.01*regionNormals[region]);
meshTools::writeOBJ(str, pt+thickness*regionNormals[region]);
vertI++;
str << "l " << vertI-1 << ' ' << vertI << nl;
}