Merge branch 'master' of /home/noisy3/OpenFOAM/OpenFOAM-dev

This commit is contained in:
mattijs
2009-04-28 12:15:14 +01:00
8 changed files with 494 additions and 233 deletions

View File

@ -91,7 +91,7 @@ int main(int argc, char *argv[])
runTime.write();
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
Info<< nl << "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
}

View File

@ -390,7 +390,7 @@ Foam::scalar Foam::Particle<ParticleType>::trackToFace
// slightly towards the cell-centre.
if (trackFraction < SMALL)
{
position_ += 1.0e-6*(mesh.cellCentres()[celli_] - position_);
position_ += 1.0e-3*(mesh.cellCentres()[celli_] - position_);
}
return trackFraction;

View File

@ -37,6 +37,7 @@ Foam::scalar Foam::DsmcCloud<ParcelType>::kb = 1.380650277e-23;
template<class ParcelType>
Foam::scalar Foam::DsmcCloud<ParcelType>::Tref = 273;
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
template<class ParcelType>
@ -113,14 +114,57 @@ void Foam::DsmcCloud<ParcelType>::initialise
numberDensities /= nParticle_;
scalar x0 = mesh_.bounds().min().x();
scalar xR = mesh_.bounds().max().x() - x0;
forAll(mesh_.cells(), cell)
{
const vector& cC = mesh_.cellCentres()[cell];
const labelList& cellFaces = mesh_.cells()[cell];
const scalar cV = mesh_.cellVolumes()[cell];
scalar y0 = mesh_.bounds().min().y();
scalar yR = mesh_.bounds().max().y() - y0;
label nTets = 0;
scalar z0 = mesh_.bounds().min().z();
scalar zR = mesh_.bounds().max().z() - z0;
// Each face is split into nEdges (or nVertices) - 2 tets.
forAll(cellFaces, face)
{
nTets += mesh_.faces()[cellFaces[face]].size() - 2;
}
// Calculate the cumulative tet volumes circulating around the cell and
// record the vertex labels of each.
scalarList cTetVFracs(nTets, 0.0);
List<labelList> tetPtIs(nTets, labelList(3,-1));
// Keep track of which tet this is.
label tet = 0;
forAll(cellFaces, face)
{
const labelList& facePoints = mesh_.faces()[cellFaces[face]];
label pointI = 1;
while ((pointI + 1) < facePoints.size())
{
const vector& pA = mesh_.points()[facePoints[0]];
const vector& pB = mesh_.points()[facePoints[pointI]];
const vector& pC = mesh_.points()[facePoints[pointI + 1]];
cTetVFracs[tet] =
mag(((pA - cC) ^ (pB - cC)) & (pC - cC))/(cV*6.0)
+ cTetVFracs[max((tet - 1),0)];
tetPtIs[tet][0] = facePoints[0];
tetPtIs[tet][1] = facePoints[pointI];
tetPtIs[tet][2] = facePoints[pointI + 1];
pointI++;
tet++;
}
}
// Force the last volume fraction value to 1.0 to avoid any
// rounding/non-flat face errors giving a value < 1.0
cTetVFracs[nTets - 1] = 1.0;
forAll(molecules, i)
{
@ -135,38 +179,73 @@ void Foam::DsmcCloud<ParcelType>::initialise
<< abort(FatalError);
}
const typename ParcelType::constantProperties& cP = constProps(typeId);
const typename ParcelType::constantProperties& cP =
constProps(typeId);
scalar numberDensity = numberDensities[i];
scalar spacing = pow(numberDensity,-(1.0/3.0));
// Calculate the number of particles required
scalar particlesRequired = numberDensity*mesh_.cellVolumes()[cell];
int ni = label(xR/spacing) + 1;
int nj = label(yR/spacing) + 1;
int nk = label(zR/spacing) + 1;
// Only integer numbers of particles can be inserted
label nParticlesToInsert = label(particlesRequired);
vector delta(xR/ni, yR/nj, zR/nk);
scalar pert = spacing;
for (int i = 0; i < ni; i++)
// Add another particle with a probability proportional to the
// remainder of taking the integer part of particlesRequired
if ((particlesRequired - nParticlesToInsert) > rndGen_.scalar01())
{
for (int j = 0; j < nj; j++)
{
for (int k = 0; k < nk; k++)
{
point p
(
x0 + (i + 0.5)*delta.x(),
y0 + (j + 0.5)*delta.y(),
z0 + (k + 0.5)*delta.z()
);
nParticlesToInsert++;
}
p.x() += pert*(rndGen_.scalar01() - 0.5);
p.y() += pert*(rndGen_.scalar01() - 0.5);
p.z() += pert*(rndGen_.scalar01() - 0.5);
for (label pI = 0; pI < nParticlesToInsert; pI++)
{
// Choose a random point in a generic tetrahedron
label cell = mesh_.findCell(p);
scalar s = rndGen_.scalar01();
scalar t = rndGen_.scalar01();
scalar u = rndGen_.scalar01();
if (s + t > 1.0)
{
s = 1.0 - s;
t = 1.0 - t;
}
if (t + u > 1.0)
{
scalar tmp = u;
u = 1.0 - s - t;
t = 1.0 - tmp;
}
else if (s + t + u > 1.0)
{
scalar tmp = u;
u = s + t + u - 1.0;
s = 1.0 - t - tmp;
}
// Choose a tetrahedron to insert in, based on their relative
// volumes
scalar tetSelection = rndGen_.scalar01();
// Selected tetrahedron
label sTet = -1;
forAll(cTetVFracs, tet)
{
sTet = tet;
if (cTetVFracs[tet] >= tetSelection)
{
break;
}
}
vector p =
(1 - s - t - u)*cC
+ s*mesh_.points()[tetPtIs[sTet][0]]
+ t*mesh_.points()[tetPtIs[sTet][1]]
+ u*mesh_.points()[tetPtIs[sTet][2]];
vector U = equipartitionLinearVelocity
(
@ -182,8 +261,6 @@ void Foam::DsmcCloud<ParcelType>::initialise
U += velocity;
if (cell >= 0)
{
addNewParcel
(
p,
@ -195,8 +272,6 @@ void Foam::DsmcCloud<ParcelType>::initialise
}
}
}
}
}
// Initialise the sigmaTcRMax_ field to the product of the cross section of
// the most abundant species and the most probable thermal speed (Bird,
@ -551,6 +626,13 @@ Foam::DsmcCloud<ParcelType>::DsmcCloud
buildConstProps();
buildCellOccupancy();
// Initialise the collision selection remainder to a random value between 0
// and 1.
forAll(collisionSelectionRemainder_, i)
{
collisionSelectionRemainder_[i] = rndGen_.scalar01();
}
}
@ -739,8 +821,12 @@ void Foam::DsmcCloud<ParcelType>::info() const
Info<< "Cloud name: " << this->name() << nl
<< " Number of dsmc particles = "
<< nDsmcParticles << nl
<< " Number of molecules = "
<< nDsmcParticles
<< endl;
if (nDsmcParticles)
{
Info<< " Number of molecules = "
<< nMol << nl
<< " Mass in system = "
<< returnReduce(massInSystem(), sumOp<scalar>()) << nl
@ -753,9 +839,10 @@ void Foam::DsmcCloud<ParcelType>::info() const
<< " Average internal energy = "
<< internalEnergy/nMol << nl
<< " Average total energy = "
<< (internalEnergy + linearKineticEnergy)/nMol << nl
<< (internalEnergy + linearKineticEnergy)/nMol
<< endl;
}
}
template<class ParcelType>
@ -785,7 +872,11 @@ Foam::scalar Foam::DsmcCloud<ParcelType>::equipartitionInternalEnergy
{
scalar Ei = 0.0;
if (iDof < 2.0 + SMALL && iDof > 2.0 - SMALL)
if (iDof < SMALL)
{
return Ei;
}
else if (iDof < 2.0 + SMALL && iDof > 2.0 - SMALL)
{
// Special case for iDof = 2, i.e. diatomics;
Ei = -log(rndGen_.scalar01())*kb*temperature;
@ -796,7 +887,7 @@ Foam::scalar Foam::DsmcCloud<ParcelType>::equipartitionInternalEnergy
scalar energyRatio;
scalar P;
scalar P = -1;
do
{

View File

@ -299,6 +299,12 @@ public:
scalar mass
) const;
inline scalarField maxwellianAverageSpeed
(
scalarField temperature,
scalar mass
) const;
//- RMS particle speed
inline scalar maxwellianRMSSpeed
(
@ -306,6 +312,12 @@ public:
scalar mass
) const;
inline scalarField maxwellianRMSSpeed
(
scalarField temperature,
scalar mass
) const;
//- Most probable speed
inline scalar maxwellianMostProbableSpeed
(
@ -313,6 +325,11 @@ public:
scalar mass
) const;
inline scalarField maxwellianMostProbableSpeed
(
scalarField temperature,
scalar mass
) const;
// Sub-models

View File

@ -302,6 +302,17 @@ inline Foam::scalar Foam::DsmcCloud<ParcelType>::maxwellianAverageSpeed
}
template<class ParcelType>
inline Foam::scalarField Foam::DsmcCloud<ParcelType>::maxwellianAverageSpeed
(
scalarField temperature,
scalar mass
) const
{
return 2.0*sqrt(2.0*kb*temperature/(mathematicalConstant::pi*mass));
}
template<class ParcelType>
inline Foam::scalar Foam::DsmcCloud<ParcelType>::maxwellianRMSSpeed
(
@ -313,6 +324,17 @@ inline Foam::scalar Foam::DsmcCloud<ParcelType>::maxwellianRMSSpeed
}
template<class ParcelType>
inline Foam::scalarField Foam::DsmcCloud<ParcelType>::maxwellianRMSSpeed
(
scalarField temperature,
scalar mass
) const
{
return sqrt(3.0*kb*temperature/mass);
}
template<class ParcelType>
inline Foam::scalar
Foam::DsmcCloud<ParcelType>::maxwellianMostProbableSpeed
@ -325,6 +347,18 @@ Foam::DsmcCloud<ParcelType>::maxwellianMostProbableSpeed
}
template<class ParcelType>
inline Foam::scalarField
Foam::DsmcCloud<ParcelType>::maxwellianMostProbableSpeed
(
scalarField temperature,
scalar mass
) const
{
return sqrt(2.0*kb*temperature/mass);
}
template<class ParcelType>
inline const Foam::tmp<Foam::volScalarField>
Foam::DsmcCloud<ParcelType>::rhoN() const
@ -343,7 +377,7 @@ Foam::DsmcCloud<ParcelType>::rhoN() const
false
),
mesh_,
dimensionedScalar("zero", dimensionSet(0, -3, 0, 0, 0), 0.0)
dimensionedScalar("zero", dimensionSet(0, -3, 0, 0, 0), VSMALL)
)
);
@ -380,7 +414,7 @@ Foam::DsmcCloud<ParcelType>::rhoM() const
false
),
mesh_,
dimensionedScalar("zero", dimensionSet(1, -3, 0, 0, 0), 0.0)
dimensionedScalar("zero", dimensionSet(1, -3, 0, 0, 0), VSMALL)
)
);
@ -568,7 +602,7 @@ Foam::DsmcCloud<ParcelType>::iDof() const
false
),
mesh_,
dimensionedScalar("zero", dimensionSet(0, -3, 0, 0, 0), 0.0)
dimensionedScalar("zero", dimensionSet(0, -3, 0, 0, 0), VSMALL)
)
);

View File

@ -36,31 +36,26 @@ Foam::FreeStream<CloudType>::FreeStream
)
:
InflowBoundaryModel<CloudType>(dict, cloud, typeName),
patchIndex_(),
temperature_(readScalar(this->coeffDict().lookup("temperature"))),
velocity_(this->coeffDict().lookup("velocity")),
patches_(),
moleculeTypeIds_(),
numberDensities_(),
particleFluxAccumulators_()
{
word patchName = this->coeffDict().lookup("patch");
// Identify which patches to use
patchIndex_ = cloud.mesh().boundaryMesh().findPatchID(patchName);
DynamicList<label> patches;
const polyPatch& patch = cloud.mesh().boundaryMesh()[patchIndex_];
if (patchIndex_ == -1)
forAll(cloud.mesh().boundaryMesh(), p)
{
FatalErrorIn
(
"Foam::FreeStream<CloudType>::FreeStream"
"("
"const dictionary&, "
"CloudType&"
")"
) << "patch " << patchName << " not found." << nl
<< abort(FatalError);
const polyPatch& patch = cloud.mesh().boundaryMesh()[p];
if (patch.type() == polyPatch::typeName)
{
patches.append(p);
}
}
patches_.transfer(patches);
const dictionary& numberDensitiesDict
(
@ -69,10 +64,24 @@ Foam::FreeStream<CloudType>::FreeStream
List<word> molecules(numberDensitiesDict.toc());
numberDensities_.setSize(molecules.size());
// Initialise the particleFluxAccumulators_
particleFluxAccumulators_.setSize(patches_.size());
forAll(patches_, p)
{
const polyPatch& patch = cloud.mesh().boundaryMesh()[patches_[p]];
particleFluxAccumulators_[p] = List<Field<scalar> >
(
molecules.size(),
Field<scalar>(patch.size(), 0.0)
);
}
moleculeTypeIds_.setSize(molecules.size());
numberDensities_.setSize(molecules.size());
forAll(molecules, i)
{
numberDensities_[i] = readScalar
@ -97,12 +106,6 @@ Foam::FreeStream<CloudType>::FreeStream
}
numberDensities_ /= cloud.nParticle();
particleFluxAccumulators_.setSize
(
molecules.size(),
Field<scalar>(patch.size(), 0)
);
}
@ -127,17 +130,65 @@ void Foam::FreeStream<CloudType>::inflow()
Random& rndGen(cloud.rndGen());
const polyPatch& patch = mesh.boundaryMesh()[patchIndex_];
scalar sqrtPi = sqrt(mathematicalConstant::pi);
label particlesInserted = 0;
const volScalarField::GeometricBoundaryField& boundaryT
(
cloud.T().boundaryField()
);
const volVectorField::GeometricBoundaryField& boundaryU
(
cloud.U().boundaryField()
);
forAll(patches_, p)
{
label patchI = patches_[p];
const polyPatch& patch = mesh.boundaryMesh()[patchI];
// Add mass to the accumulators. negative face area dotted with the
// velocity to point flux into the domain.
forAll(particleFluxAccumulators_, i)
// Take a reference to the particleFluxAccumulator for this patch
List<Field<scalar> >& pFA = particleFluxAccumulators_[p];
forAll(pFA, i)
{
particleFluxAccumulators_[i] +=
-patch.faceAreas() & (velocity_*numberDensities_[i]*deltaT);
label typeId = moleculeTypeIds_[i];
scalar mass = cloud.constProps(typeId).mass();
scalarField mostProbableSpeed
(
cloud.maxwellianMostProbableSpeed
(
boundaryT[patchI],
mass
)
);
// Dotting boundary velocity with the face unit normal (which points
// out of the domain, so it must be negated), dividing by the most
// probable speed to form molecularSpeedRatio * cosTheta
scalarField sCosTheta =
boundaryU[patchI]
& -patch.faceAreas()/mag(patch.faceAreas())
/mostProbableSpeed;
// From Bird eqn 4.22
pFA[i] +=
mag(patch.faceAreas())*numberDensities_[i]*deltaT
*mostProbableSpeed
*(
exp(-sqr(sCosTheta)) + sqrtPi*sCosTheta*(1 + erf(sCosTheta))
)
/(2.0*sqrtPi);
}
forAll(patch, f)
@ -157,7 +208,7 @@ void Foam::FreeStream<CloudType>::inflow()
scalar fA = mag(patch.faceAreas()[f]);
// Cummulative triangle area fractions
// Cumulative triangle area fractions
List<scalar> cTriAFracs(nVertices);
for (label v = 0; v < nVertices - 1; v++)
@ -177,35 +228,47 @@ void Foam::FreeStream<CloudType>::inflow()
// Normal unit vector *negative* so normal is pointing into the
// domain
vector nw = patch.faceAreas()[f];
nw /= -mag(nw);
vector n = patch.faceAreas()[f];
n /= -mag(n);
// Wall tangential unit vector. Use the direction between the
// face centre and the first vertex in the list
vector tw1 = fC - (mesh.points()[faceVertices[0]]);
tw1 /= mag(tw1);
vector t1 = fC - (mesh.points()[faceVertices[0]]);
t1 /= mag(t1);
// Other tangential unit vector. Rescaling in case face is not
// flat and nw and tw1 aren't perfectly orthogonal
vector tw2 = nw^tw1;
tw2 /= mag(tw2);
// flat and n and t1 aren't perfectly orthogonal
vector t2 = n^t1;
t2 /= mag(t2);
forAll(particleFluxAccumulators_, i)
scalar faceTemperature = boundaryT[patchI][f];
const vector& faceVelocity = boundaryU[patchI][f];
forAll(pFA, i)
{
scalar& faceAccumulator = particleFluxAccumulators_[i][f];
scalar& faceAccumulator = pFA[i][f];
// Number of particles to insert
// Number of whole particles to insert
label nI = max(label(faceAccumulator), 0);
// Add another particle with a probability proportional to the
// remainder of taking the integer part of faceAccumulator
if ((faceAccumulator - nI) > rndGen.scalar01())
{
nI++;
}
faceAccumulator -= nI;
label typeId = moleculeTypeIds_[i];
scalar mass = cloud.constProps(typeId).mass();
for (label n = 0; n < nI; n++)
for (label i = 0; i < nI; i++)
{
// Choose a triangle to insert on, based on their relative area
// Choose a triangle to insert on, based on their relative
// area
scalar triSelection = rndGen.scalar01();
@ -239,19 +302,76 @@ void Foam::FreeStream<CloudType>::inflow()
point p = (1 - t)*A + (1 - s)*t*B + s*t*C;
vector U =
sqrt(CloudType::kb*temperature_/mass)
*(
rndGen.GaussNormal()*tw1
+ rndGen.GaussNormal()*tw2
- sqrt(-2.0*log(max(1 - rndGen.scalar01(), VSMALL)))*nw
// Velocity generation
scalar mostProbableSpeed
(
cloud.maxwellianMostProbableSpeed
(
faceTemperature,
mass
)
);
U += velocity_;
scalar sCosTheta = (faceVelocity & n)/mostProbableSpeed;
// Coefficients required for Bird eqn 12.5
scalar uNormProbCoeffA =
sCosTheta + sqrt(sqr(sCosTheta) + 2.0);
scalar uNormProbCoeffB =
0.5*
(
1.0
+ sCosTheta*(sCosTheta - sqrt(sqr(sCosTheta) + 2.0))
);
// Equivalent to the QA value in Bird's DSMC3.FOR
scalar randomScaling = 3.0;
if (sCosTheta < -3)
{
randomScaling = mag(sCosTheta) + 1;
}
scalar P = -1;
// Normalised candidates for the normal direction velocity
// component
scalar uNormal;
scalar uNormalThermal;
// Select a velocity using Bird eqn 12.5
do
{
uNormalThermal =
randomScaling*(2.0*rndGen.scalar01() - 1);
uNormal = uNormalThermal + sCosTheta;
if (uNormal < 0.0)
{
P = -1;
}
else
{
P = 2.0*uNormal/uNormProbCoeffA
*exp(uNormProbCoeffB - sqr(uNormalThermal));
}
} while (P < rndGen.scalar01());
vector U =
sqrt(CloudType::kb*faceTemperature/mass)
*(
rndGen.GaussNormal()*t1
+ rndGen.GaussNormal()*t2
)
+ mostProbableSpeed*uNormal*n;
scalar Ei = cloud.equipartitionInternalEnergy
(
temperature_,
faceTemperature,
cloud.constProps(typeId).internalDegreesOfFreedom()
);
@ -268,6 +388,7 @@ void Foam::FreeStream<CloudType>::inflow()
}
}
}
}
reduce(particlesInserted, sumOp<label>());

View File

@ -26,8 +26,10 @@ Class
Foam::FreeStream
Description
Inserting new particles across the faces of a specified patch for a free
stream. Uniform values of temperature, velocity and number densities
Inserting new particles across the faces of a all patched of type
"patch" for a free stream. Uniform values number density, temperature
and velocity sourced face-by-face from the boundaryT and boundaryU fields
of the cloud.
\*---------------------------------------------------------------------------*/
@ -52,14 +54,8 @@ class FreeStream
{
// Private data
//- Index of patch to introduce particles across
label patchIndex_;
//- Temperature of the free stream
scalar temperature_;
//- Velocity of the free stream
vector velocity_;
//- The indices of patches to introduce molecules across
labelList patches_;
//- The molecule types to be introduced
List<label> moleculeTypeIds_;
@ -67,10 +63,13 @@ class FreeStream
//- The number density of the species in the inflow
Field<scalar> numberDensities_;
//- A List of Fields, one Field for every species to be introduced, each
// field entry corresponding to a face on the patch to be injected
// across.
List<Field<scalar> > particleFluxAccumulators_;
//- A List of Lists of Fields specifying carry-over of mass flux from
// one timestep to the next
// + Outer List - one inner List for each patch
// + Inner List - one Field for every species to be introduced
// + Each field entry corresponding to a face to be injected across
// with a particular species
List<List<Field<scalar> > > particleFluxAccumulators_;
public:

View File

@ -137,7 +137,7 @@ void Foam::dsmcFields::write()
iDofMeanName
);
if (min(rhoNMean).value() > VSMALL)
if (min(mag(rhoNMean)).value() > VSMALL)
{
Info<< "Calculating dsmcFields." << endl;
@ -223,10 +223,9 @@ void Foam::dsmcFields::write()
}
else
{
Info<< "Small or negative value (" << min(rhoNMean)
Info<< "Small value (" << min(mag(rhoNMean))
<< ") found in rhoNMean field. "
<< "Not calculating dsmcFields to avoid division by zero "
<< "or invalid results."
<< "Not calculating dsmcFields to avoid division by zero."
<< endl;
}
}