removing cavitatingFoam - behaviour can be recoved using rasCavitatingFoam etc

This commit is contained in:
andy
2008-05-13 11:07:10 +01:00
parent c56e344383
commit 62e1b23093
17 changed files with 0 additions and 574 deletions

View File

@ -1,59 +0,0 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 1991-2007 OpenCFD Ltd.
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Global
CourantNo
Description
Calculates and outputs the mean and maximum Courant Numbers.
\*---------------------------------------------------------------------------*/
scalar CoNum = 0.0;
scalar meanCoNum = 0.0;
scalar acousticCoNum = 0.0;
if (mesh.nInternalFaces())
{
surfaceScalarField SfUfbyDelta =
mesh.surfaceInterpolation::deltaCoeffs()*mag(phiv);
CoNum = max(SfUfbyDelta/mesh.magSf())
.value()*runTime.deltaT().value();
meanCoNum = (sum(SfUfbyDelta)/sum(mesh.magSf()))
.value()*runTime.deltaT().value();
acousticCoNum = max
(
mesh.surfaceInterpolation::deltaCoeffs()/sqrt(fvc::interpolate(psi))
).value()*runTime.deltaT().value();
}
Info<< "phiv Courant Number mean: " << meanCoNum
<< " max: " << CoNum
<< " acoustic max: " << acousticCoNum
<< endl;
// ************************************************************************* //

View File

@ -1,3 +0,0 @@
cavitatingFoam.C
EXE = $(FOAM_APPBIN)/cavitatingFoam

View File

@ -1,7 +0,0 @@
EXE_INC = \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/barotropicCompressibilityModel/lnInclude
EXE_LIBS = \
-lfiniteVolume \
-lbarotropicCompressibilityModel

View File

@ -1,16 +0,0 @@
surfaceScalarField gammaf = fvc::interpolate(gamma);
surfaceScalarField muf("muf", gammaf*muv + (1.0 - gammaf)*mul);
fvVectorMatrix UEqn
(
fvm::ddt(rho, U)
+ fvm::div(phi, U)
- fvm::laplacian(muf, U)
//- (fvc::grad(U) & fvc::grad(muf))
- fvc::div(muf*(fvc::interpolate(dev(fvc::grad(U))) & mesh.Sf()))
);
if (momentumPredictor)
{
solve(UEqn == -fvc::grad(p));
}

View File

@ -1,90 +0,0 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 1991-2007 OpenCFD Ltd.
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Application
cavitatingFoam
Description
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "barotropicCompressibilityModel.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
# include "setRootCase.H"
# include "createTime.H"
# include "createMesh.H"
# include "readThermodynamicProperties.H"
# include "readTransportProperties.H"
# include "readControls.H"
# include "createFields.H"
# include "initContinuityErrs.H"
# include "compressibleCourantNo.H"
# include "setInitialDeltaT.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
while (runTime.run())
{
# include "readControls.H"
# include "CourantNo.H"
# include "setDeltaT.H"
runTime++;
Info<< "Time = " << runTime.timeName() << nl << endl;
for (int outerCorr=0; outerCorr<nOuterCorr; outerCorr++)
{
# include "rhoEqn.H"
# include "gammaPsi.H"
# include "UEqn.H"
for (int corr=0; corr<nCorr; corr++)
{
# include "pEqn.H"
}
}
runTime.write();
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
}
Info<< "\n end \n";
return(0);
}
// ************************************************************************* //

View File

@ -1,22 +0,0 @@
{
volScalarField thermoRho = psi*p + (1.0 - gamma)*rhol0;
dimensionedScalar totalMass = fvc::domainIntegrate(rho);
scalar sumLocalContErr =
(
fvc::domainIntegrate(mag(rho - thermoRho))/totalMass
).value();
scalar globalContErr =
(
fvc::domainIntegrate(rho - thermoRho)/totalMass
).value();
cumulativeContErr += globalContErr;
Info<< "time step continuity errors : sum local = " << sumLocalContErr
<< ", global = " << globalContErr
<< ", cumulative = " << cumulativeContErr
<< endl;
}

View File

@ -1,75 +0,0 @@
Info<< "Reading field p\n" << endl;
volScalarField p
(
IOobject
(
"p",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
volScalarField rho
(
IOobject
(
"rho",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
volScalarField gamma
(
IOobject
(
"gamma",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
max(min((rho - rholSat)/(rhovSat - rholSat), scalar(1)), scalar(0))
);
gamma.oldTime();
Info<< "Creating barotropicompressibilityModel\n" << endl;
autoPtr<barotropicCompressibilityModel> psiModel =
barotropicCompressibilityModel::New
(
thermodynamicProperties,
gamma
);
const volScalarField& psi = psiModel->psi();
rho == max
(
psi*p
+ (1.0 - gamma)*rhol0
+ ((gamma*psiv + (1.0 - gamma)*psil) - psi)*pSat,
rhoMin
);
Info<< "Reading field U\n" << endl;
volVectorField U
(
IOobject
(
"U",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
# include "createPhiv.H"
# include "compressibleCreatePhi.H"

View File

@ -1,10 +0,0 @@
{
gamma = max(min((rho - rholSat)/(rhovSat - rholSat), scalar(1)), scalar(0));
Info<< "max-min gamma: " << max(gamma).value()
<< " " << min(gamma).value() << endl;
psiModel->correct();
//Info<< "min a: " << 1.0/sqrt(max(psi)).value() << endl;
}

View File

@ -1,80 +0,0 @@
{
if (nOuterCorr == 1)
{
p =
(
rho
- (1.0 - gamma)*rhol0
- ((gamma*psiv + (1.0 - gamma)*psil) - psi)*pSat
)/psi;
}
surfaceScalarField rhof = fvc::interpolate(rho, "rhof");
volScalarField rUA = 1.0/UEqn.A();
surfaceScalarField rUAf("rUAf", rhof*fvc::interpolate(rUA));
volVectorField HbyA = rUA*UEqn.H();
phiv = (fvc::interpolate(HbyA) & mesh.Sf())
+ fvc::ddtPhiCorr(rUA, rho, U, phiv);
p.boundaryField().updateCoeffs();
surfaceScalarField phiGradp = rUAf*mesh.magSf()*fvc::snGrad(p);
phiv -= phiGradp/rhof;
# include "resetPhivPatches.H"
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
{
fvScalarMatrix pEqn
(
fvm::ddt(psi, p)
- (rhol0 + (psil - psiv)*pSat)*fvc::ddt(gamma) - pSat*fvc::ddt(psi)
+ fvc::div(phiv, rho)
+ fvc::div(phiGradp)
- fvm::laplacian(rUAf, p)
);
pEqn.solve();
if (nonOrth == nNonOrthCorr)
{
phiv += (phiGradp + pEqn.flux())/rhof;
}
}
Info<< "max-min p: " << max(p).value()
<< " " << min(p).value() << endl;
U = HbyA - rUA*fvc::grad(p);
// Remove the swirl component of velocity for "wedge" cases
if (piso.found("removeSwirl"))
{
label swirlCmpt(readLabel(piso.lookup("removeSwirl")));
Info<< "Removing swirl component-" << swirlCmpt << " of U" << endl;
U.field().replace(swirlCmpt, 0.0);
}
U.correctBoundaryConditions();
Info<< "max(U) " << max(mag(U)).value() << endl;
rho == max
(
psi*p
+ (1.0 - gamma)*rhol0
+ ((gamma*psiv + (1.0 - gamma)*psil) - psi)*pSat,
rhoMin
);
Info<< "max-min rho: " << max(rho).value()
<< " " << min(rho).value() << endl;
# include "gammaPsi.H"
}

View File

@ -1,9 +0,0 @@
#include "readTimeControls.H"
scalar maxAcousticCo
(
readScalar(runTime.controlDict().lookup("maxAcousticCo"))
);
#include "readPISOControls.H"

View File

@ -1,27 +0,0 @@
Info<< "Reading thermodynamicProperties\n" << endl;
IOdictionary thermodynamicProperties
(
IOobject
(
"thermodynamicProperties",
runTime.constant(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
)
);
dimensionedScalar psil(thermodynamicProperties.lookup("psil"));
dimensionedScalar rholSat(thermodynamicProperties.lookup("rholSat"));
dimensionedScalar psiv(thermodynamicProperties.lookup("psiv"));
dimensionedScalar pSat(thermodynamicProperties.lookup("pSat"));
dimensionedScalar rhovSat("rhovSat", psiv*pSat);
dimensionedScalar rhol0("rhol0", rholSat - pSat*psil);
dimensionedScalar rhoMin(thermodynamicProperties.lookup("rhoMin"));

View File

@ -1,23 +0,0 @@
Info<< "Reading transportProperties\n" << endl;
IOdictionary transportProperties
(
IOobject
(
"transportProperties",
runTime.constant(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
)
);
dimensionedScalar mul
(
transportProperties.lookup("mul")
);
dimensionedScalar muv
(
transportProperties.lookup("muv")
);

View File

@ -1,15 +0,0 @@
fvsPatchScalarFieldField& phiPatches = phi.boundaryField();
const fvPatchScalarFieldField& rhoPatches = rho.boundaryField();
const fvPatchVectorFieldField& Upatches = U.boundaryField();
const fvsPatchVectorFieldField& SfPatches = mesh.Sf().boundaryField();
forAll(phiPatches, patchI)
{
if (phi.boundaryField().types()[patchI] == "calculated")
{
calculatedFvsPatchScalarField& phiPatch =
refCast<calculatedFvsPatchScalarField>(phiPatches[patchI]);
phiPatch == ((rhoPatches[patchI]*Upatches[patchI]) & SfPatches[patchI]);
}
}

View File

@ -1,14 +0,0 @@
surfaceScalarField::GeometricBoundaryField& phivPatches = phiv.boundaryField();
const volVectorField::GeometricBoundaryField& Upatches = U.boundaryField();
const surfaceVectorField::GeometricBoundaryField& SfPatches = mesh.Sf().boundaryField();
forAll(phivPatches, patchI)
{
if (phiv.boundaryField().types()[patchI] == "calculated")
{
calculatedFvsPatchScalarField& phivPatch =
refCast<calculatedFvsPatchScalarField>(phivPatches[patchI]);
phivPatch == (Upatches[patchI] & SfPatches[patchI]);
}
}

View File

@ -1,16 +0,0 @@
{
fvScalarMatrix rhoEqn
(
fvm::ddt(rho)
+ fvm::div(phiv, rho)
);
rhoEqn.solve();
phi = rhoEqn.flux();
Info<< "max-min rho: " << max(rho).value()
<< " " << min(rho).value() << endl;
rho == max(rho, rhoMin);
}

View File

@ -1,54 +0,0 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 1991-2007 OpenCFD Ltd.
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Global
setDeltaT
Description
Reset the timestep to maintain a constant maximum courant Number.
Reduction of time-step is imediate but increase is damped to avoid
unstable oscillations.
\*---------------------------------------------------------------------------*/
if (adjustTimeStep)
{
scalar maxDeltaTFact =
min(maxCo/(CoNum + SMALL), maxAcousticCo/(acousticCoNum + SMALL));
scalar deltaTFact = min(min(maxDeltaTFact, 1.0 + 0.1*maxDeltaTFact), 1.2);
runTime.setDeltaT
(
min
(
deltaTFact*runTime.deltaT().value(),
maxDeltaT
)
);
Info<< "deltaT = " << runTime.deltaT().value() << endl;
}
// ************************************************************************* //

View File

@ -1,54 +0,0 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 1991-2007 OpenCFD Ltd.
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Global
setInitialDeltaT
Description
Set the initial timestep corresponding to the timestep adjustment
algorithm in setDeltaT
\*---------------------------------------------------------------------------*/
if (adjustTimeStep)
{
# include "CourantNo.H"
if (CoNum > SMALL)
{
scalar maxDeltaTFact =
min(maxCo/(CoNum + SMALL), maxAcousticCo/(acousticCoNum + SMALL));
runTime.setDeltaT
(
min
(
maxDeltaTFact*runTime.deltaT().value(),
maxDeltaT
)
);
}
}
// ************************************************************************* //