primitiveShapes: Generalised tetrahedron and triangle cutting. Cuts are

now possible with level-sets as well as planes. Removed tetPoints class
as this wasn't really used anywhere except for the old tet-cutting
routines. Restored tetPointRef.H to be consistent with other primitive
shapes. Re-wrote tet-overlap mapping in terms of the new cutting.
This commit is contained in:
Will Bainbridge
2017-05-22 11:40:37 +01:00
committed by Andrew Heather
parent 04c11064b3
commit 62e3d37324
23 changed files with 1719 additions and 1268 deletions

View File

@ -2,7 +2,7 @@
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2012-2015 OpenFOAM Foundation
\\ / A nd | Copyright (C) 2012-2017 OpenFOAM Foundation
\\/ M anipulation | Copyright (C) 2016-2017 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
@ -24,13 +24,12 @@ License
\*---------------------------------------------------------------------------*/
#include "tetOverlapVolume.H"
#include "tetrahedron.H"
#include "tetPoints.H"
#include "polyMesh.H"
#include "OFstream.H"
#include "treeBoundBox.H"
#include "indexedOctree.H"
#include "treeDataCell.H"
#include "cut.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
@ -48,6 +47,67 @@ Foam::tetOverlapVolume::tetOverlapVolume()
// * * * * * * * * * * * Private Member Functions * * * * * * * * * * * * * //
Foam::scalar Foam::tetOverlapVolume::tetTetOverlapVol
(
const tetPointRef& tetA,
const tetPointRef& tetB
) const
{
// A maximum of three cuts are made (the tets that result from the final cut
// are not stored), and each cut can create at most three tets. The
// temporary storage must therefore extend to 3^3 = 27 tets.
typedef cutTetList<27> tetListType;
static tetListType cutTetList1, cutTetList2;
// face 0
const plane pl0(tetB.b(), tetB.d(), tetB.c());
const FixedList<point, 4> t({tetA.a(), tetA.b(), tetA.c(), tetA.d()});
cutTetList1.clear();
tetCut(t, pl0, cut::appendOp<tetListType>(cutTetList1), cut::noOp());
if (cutTetList1.size() == 0)
{
return 0;
}
// face 1
const plane pl1(tetB.a(), tetB.c(), tetB.d());
cutTetList2.clear();
for (label i = 0; i < cutTetList1.size(); i++)
{
const FixedList<point, 4>& t = cutTetList1[i];
tetCut(t, pl1, cut::appendOp<tetListType>(cutTetList2), cut::noOp());
}
if (cutTetList2.size() == 0)
{
return 0;
}
// face 2
const plane pl2(tetB.a(), tetB.d(), tetB.b());
cutTetList1.clear();
for (label i = 0; i < cutTetList2.size(); i++)
{
const FixedList<point, 4>& t = cutTetList2[i];
tetCut(t, pl2, cut::appendOp<tetListType>(cutTetList1), cut::noOp());
}
if (cutTetList1.size() == 0)
{
return 0;
}
// face 3
const plane pl3(tetB.a(), tetB.b(), tetB.c());
scalar v = 0;
for (label i = 0; i < cutTetList1.size(); i++)
{
const FixedList<point, 4>& t = cutTetList1[i];
v += tetCut(t, pl3, cut::volumeOp(), cut::noOp());
}
return v;
}
Foam::treeBoundBox Foam::tetOverlapVolume::pyrBb
(
const pointField& points,
@ -74,43 +134,122 @@ bool Foam::tetOverlapVolume::cellCellOverlapMinDecomp
const scalar threshold
) const
{
hasOverlapOp overlapCheckOp(threshold);
cellCellOverlapMinDecomp<hasOverlapOp>
(
meshA,
cellAI,
meshB,
cellBI,
cellBbB,
overlapCheckOp
);
const cell& cFacesA = meshA.cells()[cellAI];
const point& ccA = meshA.cellCentres()[cellAI];
return overlapCheckOp.ok_;
}
const cell& cFacesB = meshB.cells()[cellBI];
const point& ccB = meshB.cellCentres()[cellBI];
scalar vol = 0.0;
forAll(cFacesA, cFA)
{
label faceAI = cFacesA[cFA];
const face& fA = meshA.faces()[faceAI];
const treeBoundBox pyrA = pyrBb(meshA.points(), fA, ccA);
if (!pyrA.overlaps(cellBbB))
{
continue;
}
bool ownA = (meshA.faceOwner()[faceAI] == cellAI);
label tetBasePtAI = 0;
const point& tetBasePtA = meshA.points()[fA[tetBasePtAI]];
for (label tetPtI = 1; tetPtI < fA.size() - 1; tetPtI++)
{
label facePtAI = (tetPtI + tetBasePtAI) % fA.size();
label otherFacePtAI = fA.fcIndex(facePtAI);
label pt0I = -1;
label pt1I = -1;
if (ownA)
{
pt0I = fA[facePtAI];
pt1I = fA[otherFacePtAI];
}
else
{
pt0I = fA[otherFacePtAI];
pt1I = fA[facePtAI];
}
const tetPointRef tetA
(
ccA,
tetBasePtA,
meshA.points()[pt0I],
meshA.points()[pt1I]
);
const treeBoundBox tetABb(tetA.bounds());
Foam::scalar Foam::tetOverlapVolume::cellCellOverlapVolumeMinDecomp
(
const primitiveMesh& meshA,
const label cellAI,
// Loop over tets of cellB
forAll(cFacesB, cFB)
{
label faceBI = cFacesB[cFB];
const primitiveMesh& meshB,
const label cellBI,
const treeBoundBox& cellBbB
) const
{
sumOverlapOp overlapSumOp;
cellCellOverlapMinDecomp<sumOverlapOp>
(
meshA,
cellAI,
meshB,
cellBI,
cellBbB,
overlapSumOp
);
const face& fB = meshB.faces()[faceBI];
const treeBoundBox pyrB = pyrBb(meshB.points(), fB, ccB);
if (!pyrB.overlaps(pyrA))
{
continue;
}
return overlapSumOp.iop_.vol_;
bool ownB = (meshB.faceOwner()[faceBI] == cellBI);
label tetBasePtBI = 0;
const point& tetBasePtB = meshB.points()[fB[tetBasePtBI]];
for (label tetPtI = 1; tetPtI < fB.size() - 1; tetPtI++)
{
label facePtBI = (tetPtI + tetBasePtBI) % fB.size();
label otherFacePtBI = fB.fcIndex(facePtBI);
label pt0I = -1;
label pt1I = -1;
if (ownB)
{
pt0I = fB[facePtBI];
pt1I = fB[otherFacePtBI];
}
else
{
pt0I = fB[otherFacePtBI];
pt1I = fB[facePtBI];
}
const tetPointRef tetB
(
ccB,
tetBasePtB,
meshB.points()[pt0I],
meshB.points()[pt1I]
);
if (!tetB.bounds().overlaps(tetABb))
{
continue;
}
vol += tetTetOverlapVol(tetA, tetB);
if (vol > threshold)
{
return true;
}
}
}
}
}
return false;
}
@ -125,18 +264,116 @@ Foam::tetOverlapVolume::cellCellOverlapMomentMinDecomp
const treeBoundBox& cellBbB
) const
{
sumOverlapMomentOp overlapSumOp;
cellCellOverlapMinDecomp<sumOverlapMomentOp>
(
meshA,
cellAI,
meshB,
cellBI,
cellBbB,
overlapSumOp
);
const cell& cFacesA = meshA.cells()[cellAI];
const point& ccA = meshA.cellCentres()[cellAI];
return overlapSumOp.iop_.vol_;
const cell& cFacesB = meshB.cells()[cellBI];
const point& ccB = meshB.cellCentres()[cellBI];
scalar vol = 0.0;
forAll(cFacesA, cFA)
{
label faceAI = cFacesA[cFA];
const face& fA = meshA.faces()[faceAI];
const treeBoundBox pyrA = pyrBb(meshA.points(), fA, ccA);
if (!pyrA.overlaps(cellBbB))
{
continue;
}
bool ownA = (meshA.faceOwner()[faceAI] == cellAI);
label tetBasePtAI = 0;
const point& tetBasePtA = meshA.points()[fA[tetBasePtAI]];
for (label tetPtI = 1; tetPtI < fA.size() - 1; tetPtI++)
{
label facePtAI = (tetPtI + tetBasePtAI) % fA.size();
label otherFacePtAI = fA.fcIndex(facePtAI);
label pt0I = -1;
label pt1I = -1;
if (ownA)
{
pt0I = fA[facePtAI];
pt1I = fA[otherFacePtAI];
}
else
{
pt0I = fA[otherFacePtAI];
pt1I = fA[facePtAI];
}
const tetPointRef tetA
(
ccA,
tetBasePtA,
meshA.points()[pt0I],
meshA.points()[pt1I]
);
const treeBoundBox tetABb(tetA.bounds());
// Loop over tets of cellB
forAll(cFacesB, cFB)
{
label faceBI = cFacesB[cFB];
const face& fB = meshB.faces()[faceBI];
const treeBoundBox pyrB = pyrBb(meshB.points(), fB, ccB);
if (!pyrB.overlaps(pyrA))
{
continue;
}
bool ownB = (meshB.faceOwner()[faceBI] == cellBI);
label tetBasePtBI = 0;
const point& tetBasePtB = meshB.points()[fB[tetBasePtBI]];
for (label tetPtI = 1; tetPtI < fB.size() - 1; tetPtI++)
{
label facePtBI = (tetPtI + tetBasePtBI) % fB.size();
label otherFacePtBI = fB.fcIndex(facePtBI);
label pt0I = -1;
label pt1I = -1;
if (ownB)
{
pt0I = fB[facePtBI];
pt1I = fB[otherFacePtBI];
}
else
{
pt0I = fB[otherFacePtBI];
pt1I = fB[facePtBI];
}
const tetPointRef tetB
(
ccB,
tetBasePtB,
meshB.points()[pt0I],
meshB.points()[pt1I]
);
if (!tetB.bounds().overlaps(tetABb))
{
continue;
}
vol += tetTetOverlapVol(tetA, tetB);
}
}
}
}
return vol;
}

View File

@ -2,7 +2,7 @@
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2012-2014 OpenFOAM Foundation
\\ / A nd | Copyright (C) 2012-2017 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
@ -29,7 +29,6 @@ Description
SourceFiles
tetOverlapVolume.C
tetOverlapVolumeTemplates.C
\*---------------------------------------------------------------------------*/
@ -39,8 +38,7 @@ SourceFiles
#include "FixedList.H"
#include "labelList.H"
#include "treeBoundBox.H"
#include "Tuple2.H"
#include "tetrahedron.H"
#include "tetPointRef.H"
namespace Foam
{
@ -54,124 +52,67 @@ class polyMesh;
class tetOverlapVolume
{
// Private classes
//- tetPoints handling : sum resulting volumes
class sumMomentOp
{
public:
Tuple2<scalar, point> vol_;
inline sumMomentOp()
:
vol_(0.0, Zero)
{}
inline void operator()(const tetPoints& tet)
{
const tetPointRef t(tet.tet());
scalar tetVol = t.mag();
vol_.first() += tetVol;
vol_.second() += (tetVol*t.centre());
}
};
//- tetPoints combining : check for overlap
class hasOverlapOp
{
public:
const scalar threshold_;
tetPointRef::sumVolOp iop_;
bool ok_;
inline hasOverlapOp(const scalar threshold)
:
threshold_(threshold),
iop_(),
ok_(false)
{}
//- Overlap two tets
inline bool operator()(const tetPoints& A, const tetPoints& B)
{
tetTetOverlap<tetPointRef::sumVolOp>(A, B, iop_);
ok_ = (iop_.vol_ > threshold_);
return ok_;
}
};
//- tetPoints combining : sum overlap volume
class sumOverlapOp
{
public:
tetPointRef::sumVolOp iop_;
inline sumOverlapOp()
:
iop_()
{}
//- Overlap two tets
inline bool operator()(const tetPoints& A, const tetPoints& B)
{
tetTetOverlap<tetPointRef::sumVolOp>(A, B, iop_);
return false;
}
};
//- tetPoints combining : sum overlap volume
class sumOverlapMomentOp
{
public:
sumMomentOp iop_;
inline sumOverlapMomentOp()
:
iop_()
{}
//- Overlap two tets
inline bool operator()(const tetPoints& A, const tetPoints& B)
{
tetTetOverlap<sumMomentOp>(A, B, iop_);
return false;
}
};
// Private member functions
//- Tet overlap calculation
template<class tetPointsOp>
static void tetTetOverlap
//- Tet overlap volume
scalar tetTetOverlapVol
(
const tetPoints& tetA,
const tetPoints& tetB,
tetPointsOp& insideOp
);
//- Cell overlap calculation
template<class tetsOp>
static void cellCellOverlapMinDecomp
(
const primitiveMesh& meshA,
const label cellAI,
const primitiveMesh& meshB,
const label cellBI,
const treeBoundBox& cellBbB,
tetsOp& combineTetsOp
);
const tetPointRef& tetA,
const tetPointRef& tetB
) const;
//- Return a const treeBoundBox
static treeBoundBox pyrBb
treeBoundBox pyrBb
(
const pointField& points,
const face& f,
const point& fc
);
) const;
// Private classes
//- A fixed list of tets which simulates a dynamic list by incrementing
// a counter whenever its append method is called. This is used as an
// optimisation for the tetTetOverlapVol method.
template<unsigned Size>
class cutTetList
:
public FixedList<FixedList<point, 4>, Size>
{
private:
//- The number of stored elements
label n_;
public:
//- Construct null
cutTetList()
:
n_(0)
{}
//- Clear the array
void clear()
{
n_ = 0;
}
//- Get the current size
label size() const
{
return n_;
}
//- Add a new tet to the end of the array
void append(const FixedList<point, 4>& t)
{
this->operator[](n_) = t;
++ n_;
}
};
public:
@ -218,17 +159,6 @@ public:
const label cellBI,
const treeBoundBox& cellBbB
) const;
//- Calculates the overlap volume and moment
Tuple2<scalar, point> cellCellOverlapMomentMinDecomp
(
const primitiveMesh& meshA,
const label cellAI,
const primitiveMesh& meshB,
const label cellBI,
const treeBoundBox& cellBbB
) const;
};
@ -238,12 +168,6 @@ public:
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#ifdef NoRepository
# include "tetOverlapVolumeTemplates.C"
#endif
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#endif
// ************************************************************************* //

View File

@ -1,259 +0,0 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2015 OpenFOAM Foundation
\\/ M anipulation | Copyright (C) 2016 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "tetOverlapVolume.H"
#include "primitiveMesh.H"
// * * * * * * * * * * * Private Member Functions * * * * * * * * * * * * * //
template<class tetPointsOp>
void Foam::tetOverlapVolume::tetTetOverlap
(
const tetPoints& tetA,
const tetPoints& tetB,
tetPointsOp& insideOp
)
{
static tetPointRef::tetIntersectionList insideTets;
label nInside = 0;
static tetPointRef::tetIntersectionList cutInsideTets;
label nCutInside = 0;
tetPointRef::storeOp inside(insideTets, nInside);
tetPointRef::storeOp cutInside(cutInsideTets, nCutInside);
tetPointRef::dummyOp outside;
// Precompute the tet face areas and exit early if any face area is
// too small
static FixedList<vector, 4> tetAFaceAreas;
static FixedList<scalar, 4> tetAMag2FaceAreas;
tetPointRef tetATet = tetA.tet();
for (label facei = 0; facei < 4; ++facei)
{
tetAFaceAreas[facei] = -tetATet.tri(facei).normal();
tetAMag2FaceAreas[facei] = magSqr(tetAFaceAreas[facei]);
if (tetAMag2FaceAreas[facei] < ROOTVSMALL)
{
return;
}
}
static FixedList<vector, 4> tetBFaceAreas;
static FixedList<scalar, 4> tetBMag2FaceAreas;
tetPointRef tetBTet = tetB.tet();
for (label facei = 0; facei < 4; ++facei)
{
tetBFaceAreas[facei] = -tetBTet.tri(facei).normal();
tetBMag2FaceAreas[facei] = magSqr(tetBFaceAreas[facei]);
if (tetBMag2FaceAreas[facei] < ROOTVSMALL)
{
return;
}
}
// Face 0
{
vector n = tetBFaceAreas[0]/Foam::sqrt(tetBMag2FaceAreas[0]);
plane pl0(tetBTet.tri(0).a(), n, false);
tetA.tet().sliceWithPlane(pl0, cutInside, outside);
if (nCutInside == 0)
{
return;
}
}
// Face 1
{
vector n = tetBFaceAreas[1]/Foam::sqrt(tetBMag2FaceAreas[1]);
plane pl1(tetBTet.tri(1).a(), n, false);
nInside = 0;
for (label i = 0; i < nCutInside; i++)
{
const tetPointRef t = cutInsideTets[i].tet();
t.sliceWithPlane(pl1, inside, outside);
}
if (nInside == 0)
{
return;
}
}
// Face 2
{
vector n = tetBFaceAreas[2]/Foam::sqrt(tetBMag2FaceAreas[2]);
plane pl2(tetBTet.tri(2).a(), n, false);
nCutInside = 0;
for (label i = 0; i < nInside; i++)
{
const tetPointRef t = insideTets[i].tet();
t.sliceWithPlane(pl2, cutInside, outside);
}
if (nCutInside == 0)
{
return;
}
}
// Face 3
{
vector n = tetBFaceAreas[3]/Foam::sqrt(tetBMag2FaceAreas[3]);
plane pl3(tetBTet.tri(3).a(), n, false);
for (label i = 0; i < nCutInside; i++)
{
const tetPointRef t = cutInsideTets[i].tet();
t.sliceWithPlane(pl3, insideOp, outside);
}
}
}
template<class tetsOp>
void Foam::tetOverlapVolume::cellCellOverlapMinDecomp
(
const primitiveMesh& meshA,
const label cellAI,
const primitiveMesh& meshB,
const label cellBI,
const treeBoundBox& cellBbB,
tetsOp& combineTetsOp
)
{
const cell& cFacesA = meshA.cells()[cellAI];
const point& ccA = meshA.cellCentres()[cellAI];
const cell& cFacesB = meshB.cells()[cellBI];
const point& ccB = meshB.cellCentres()[cellBI];
forAll(cFacesA, cFA)
{
label faceAI = cFacesA[cFA];
const face& fA = meshA.faces()[faceAI];
const treeBoundBox pyrA = pyrBb(meshA.points(), fA, ccA);
if (!pyrA.overlaps(cellBbB))
{
continue;
}
bool ownA = (meshA.faceOwner()[faceAI] == cellAI);
label tetBasePtAI = 0;
const point& tetBasePtA = meshA.points()[fA[tetBasePtAI]];
for (label tetPtI = 1; tetPtI < fA.size() - 1; tetPtI++)
{
label facePtAI = (tetPtI + tetBasePtAI) % fA.size();
label otherFacePtAI = fA.fcIndex(facePtAI);
label pt0I = -1;
label pt1I = -1;
if (ownA)
{
pt0I = fA[facePtAI];
pt1I = fA[otherFacePtAI];
}
else
{
pt0I = fA[otherFacePtAI];
pt1I = fA[facePtAI];
}
const tetPoints tetA
(
ccA,
tetBasePtA,
meshA.points()[pt0I],
meshA.points()[pt1I]
);
const treeBoundBox tetABb(tetA.bounds());
// Loop over tets of cellB
forAll(cFacesB, cFB)
{
label faceBI = cFacesB[cFB];
const face& fB = meshB.faces()[faceBI];
const treeBoundBox pyrB = pyrBb(meshB.points(), fB, ccB);
if (!pyrB.overlaps(pyrA))
{
continue;
}
bool ownB = (meshB.faceOwner()[faceBI] == cellBI);
label tetBasePtBI = 0;
const point& tetBasePtB = meshB.points()[fB[tetBasePtBI]];
for (label tetPtI = 1; tetPtI < fB.size() - 1; tetPtI++)
{
label facePtBI = (tetPtI + tetBasePtBI) % fB.size();
label otherFacePtBI = fB.fcIndex(facePtBI);
label pt0I = -1;
label pt1I = -1;
if (ownB)
{
pt0I = fB[facePtBI];
pt1I = fB[otherFacePtBI];
}
else
{
pt0I = fB[otherFacePtBI];
pt1I = fB[facePtBI];
}
const tetPoints tetB
(
ccB,
tetBasePtB,
meshB.points()[pt0I],
meshB.points()[pt1I]
);
if (!tetB.bounds().overlaps(tetABb))
{
continue;
}
if (combineTetsOp(tetA, tetB))
{
return;
}
}
}
}
}
}
// ************************************************************************* //