Added fvOptions support to interFoam

Now supports MRF
MRFInterFoam removed
This commit is contained in:
Henry
2014-02-11 17:34:50 +00:00
parent 803cac8303
commit 658fa412b5
31 changed files with 12 additions and 4799 deletions

View File

@ -4,7 +4,6 @@ set -x
wclean
wclean interDyMFoam
wclean MRFInterFoam
wclean porousInterFoam
wclean LTSInterFoam
wclean interMixingFoam

View File

@ -4,7 +4,6 @@ set -x
wmake
wmake interDyMFoam
wmake MRFInterFoam
wmake porousInterFoam
wmake LTSInterFoam
wmake interMixingFoam

View File

@ -1,125 +0,0 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2013 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
MRFInterFoam
Description
Solver for 2 incompressible, isothermal immiscible fluids using a VOF
(volume of fluid) phase-fraction based interface capturing approach.
The momentum and other fluid properties are of the "mixture" and a single
momentum equation is solved.
Turbulence modelling is generic, i.e. laminar, RAS or LES may be selected.
For a two-fluid approach see twoPhaseEulerFoam.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "CMULES.H"
#include "subCycle.H"
#include "interfaceProperties.H"
#include "incompressibleTwoPhaseMixture.H"
#include "turbulenceModel.H"
#include "IOMRFZoneList.H"
#include "pimpleControl.H"
#include "fvIOoptionList.H"
#include "fixedFluxPressureFvPatchScalarField.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
#include "setRootCase.H"
#include "createTime.H"
#include "createMesh.H"
#include "initContinuityErrs.H"
#include "createFields.H"
#include "createMRFZones.H"
#include "readTimeControls.H"
pimpleControl pimple(mesh);
#include "createPrghCorrTypes.H"
#include "correctPhi.H"
#include "CourantNo.H"
#include "setInitialDeltaT.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
while (runTime.run())
{
#include "readTimeControls.H"
#include "CourantNo.H"
#include "alphaCourantNo.H"
#include "setDeltaT.H"
runTime++;
Info<< "Time = " << runTime.timeName() << nl << endl;
// --- Pressure-velocity PIMPLE corrector loop
while (pimple.loop())
{
#include "alphaControls.H"
if (pimple.firstIter() || alphaOuterCorrectors)
{
twoPhaseProperties.correct();
#include "alphaEqnSubCycle.H"
interface.correct();
#include "zonePhaseVolumes.H"
}
#include "UEqn.H"
// --- Pressure corrector loop
while (pimple.correct())
{
#include "pEqn.H"
}
if (pimple.turbCorr())
{
turbulence->correct();
}
}
runTime.write();
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //

View File

@ -1,3 +0,0 @@
MRFInterFoam.C
EXE = $(FOAM_APPBIN)/MRFInterFoam

View File

@ -1,24 +0,0 @@
EXE_INC = \
-I.. \
-I$(LIB_SRC)/transportModels/twoPhaseMixture/lnInclude \
-I$(LIB_SRC)/transportModels \
-I$(LIB_SRC)/transportModels/incompressible/lnInclude \
-I$(LIB_SRC)/transportModels/interfaceProperties/lnInclude \
-I$(LIB_SRC)/turbulenceModels/incompressible/turbulenceModel \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/fvOptions/lnInclude \
-I$(LIB_SRC)/sampling/lnInclude
EXE_LIBS = \
-ltwoPhaseMixture \
-linterfaceProperties \
-ltwoPhaseProperties \
-lincompressibleTransportModels \
-lincompressibleTurbulenceModel \
-lincompressibleRASModels \
-lincompressibleLESModels \
-lfiniteVolume \
-lmeshTools \
-lfvOptions \
-lsampling

View File

@ -1,38 +0,0 @@
surfaceScalarField muEff
(
"muEff",
twoPhaseProperties.muf()
+ fvc::interpolate(rho*turbulence->nut())
);
fvVectorMatrix UEqn
(
fvm::ddt(rho, U)
+ fvm::div(rhoPhi, U)
- fvm::laplacian(muEff, U)
- (fvc::grad(U) & fvc::grad(muEff))
//- fvc::div(muEff*(fvc::interpolate(dev(fvc::grad(U))) & mesh.Sf()))
==
fvOptions(rho, U)
);
mrfZones.addCoriolis(rho, UEqn);
UEqn.relax();
fvOptions.constrain(UEqn);
if (pimple.momentumPredictor())
{
solve
(
UEqn
==
fvc::reconstruct
(
(
fvc::interpolate(interface.sigmaK())*fvc::snGrad(alpha1)
- ghf*fvc::snGrad(rho)
- fvc::snGrad(p_rgh)
) * mesh.magSf()
)
);
}

View File

@ -1,2 +0,0 @@
IOMRFZoneList mrfZones(mesh);
mrfZones.correctBoundaryVelocity(U);

View File

@ -1,72 +0,0 @@
{
volScalarField rAU("rAU", 1.0/UEqn.A());
surfaceScalarField rAUf("rAUf", fvc::interpolate(rAU));
volVectorField HbyA("HbyA", U);
HbyA = rAU*UEqn.H();
surfaceScalarField phiHbyA
(
"phiHbyA",
(fvc::interpolate(HbyA) & mesh.Sf())
+ fvc::interpolate(rho*rAU)*fvc::ddtCorr(U, phi)
);
adjustPhi(phiHbyA, U, p_rgh);
mrfZones.makeRelative(phiHbyA);
surfaceScalarField phig
(
(
fvc::interpolate(interface.sigmaK())*fvc::snGrad(alpha1)
- ghf*fvc::snGrad(rho)
)*rAUf*mesh.magSf()
);
phiHbyA += phig;
// Update the fixedFluxPressure BCs to ensure flux consistency
setSnGrad<fixedFluxPressureFvPatchScalarField>
(
p_rgh.boundaryField(),
(
phiHbyA.boundaryField()
- mrfZones.relative(mesh.Sf().boundaryField() & U.boundaryField())
)/(mesh.magSf().boundaryField()*rAUf.boundaryField())
);
while (pimple.correctNonOrthogonal())
{
fvScalarMatrix p_rghEqn
(
fvm::laplacian(rAUf, p_rgh) == fvc::div(phiHbyA)
);
p_rghEqn.setReference(pRefCell, getRefCellValue(p_rgh, pRefCell));
p_rghEqn.solve(mesh.solver(p_rgh.select(pimple.finalInnerIter())));
if (pimple.finalNonOrthogonalIter())
{
phi = phiHbyA - p_rghEqn.flux();
U = HbyA + rAU*fvc::reconstruct((phig - p_rghEqn.flux())/rAUf);
U.correctBoundaryConditions();
fvOptions.correct(U);
}
}
#include "continuityErrs.H"
p == p_rgh + rho*gh;
if (p_rgh.needReference())
{
p += dimensionedScalar
(
"p",
p.dimensions(),
pRefValue - getRefCellValue(p, pRefCell)
);
p_rgh = p - rho*gh;
}
}

View File

@ -1,21 +0,0 @@
{
const scalarField& V = mesh.V();
forAll(mesh.cellZones(), czi)
{
const labelList& cellLabels = mesh.cellZones()[czi];
scalar phaseVolume = 0;
forAll(cellLabels, cli)
{
label celli = cellLabels[cli];
phaseVolume += alpha1[celli]*V[celli];
}
reduce(phaseVolume, sumOp<scalar>());
Info<< "Phase volume in zone " << mesh.cellZones()[czi].name()
<< " = " << phaseVolume*1e6 << " ml " << endl;
}
}

View File

@ -3,10 +3,14 @@
fvm::ddt(rho, U)
+ fvm::div(rhoPhi, U)
+ turbulence->divDevRhoReff(rho, U)
==
fvOptions(rho, U)
);
UEqn.relax();
fvOptions.constrain(UEqn);
if (pimple.momentumPredictor())
{
solve
@ -22,4 +26,6 @@
) * mesh.magSf()
)
);
fvOptions.correct(U);
}

View File

@ -11,8 +11,8 @@
(fvc::interpolate(HbyA) & mesh.Sf())
+ fvc::interpolate(rho*rAU)*fvc::ddtCorr(U, phi)
);
adjustPhi(phiHbyA, U, p_rgh);
fvOptions.makeRelative(phiHbyA);
surfaceScalarField phig
(
@ -30,7 +30,7 @@
p_rgh.boundaryField(),
(
phiHbyA.boundaryField()
- (mesh.Sf().boundaryField() & U.boundaryField())
- fvOptions.relative(mesh.Sf().boundaryField() & U.boundaryField())
)/(mesh.magSf().boundaryField()*rAUf.boundaryField())
);