Added compressibleLesInterFoam solver

This commit is contained in:
henry
2008-05-13 12:59:46 +01:00
parent 4b0fefae19
commit 6913778c8b
9 changed files with 514 additions and 0 deletions

View File

@ -0,0 +1,3 @@
compressibleLesInterFoam.C
EXE = $(FOAM_USER_APPBIN)/compressibleLesInterFoam

View File

@ -0,0 +1,15 @@
INTERFOAM = $(FOAM_SOLVERS)/multiphase/interFoam
EXE_INC = \
-I$(LIB_SRC)/transportModels \
-I$(LIB_SRC)/transportModels/incompressible/lnInclude \
-I$(LIB_SRC)/transportModels/interfaceProperties/lnInclude \
-I$(LIB_SRC)/LESmodels \
-I$(LIB_SRC)/LESmodels/LESdeltas/lnInclude \
-I$(LIB_SRC)/finiteVolume/lnInclude
EXE_LIBS = \
-linterfaceProperties \
-lincompressibleTransportModels \
-lincompressibleLESmodels \
-lfiniteVolume

View File

@ -0,0 +1,29 @@
surfaceScalarField muf =
twoPhaseProperties.muf()
+ fvc::interpolate(rho*turbulence->nuSgs());
fvVectorMatrix UEqn
(
fvm::ddt(rho, U)
+ fvm::div(rhoPhi, U)
- fvm::laplacian(muf, U)
- (fvc::grad(U) & fvc::grad(muf))
//- fvc::div(muf*(mesh.Sf() & fvc::interpolate(fvc::grad(U)().T())))
);
if (momentumPredictor)
{
solve
(
UEqn
==
fvc::reconstruct
(
(
fvc::interpolate(interface.sigmaK())*fvc::snGrad(alpha1)
- ghf*fvc::snGrad(rho)
- fvc::snGrad(pd)
) * mesh.magSf()
)
);
}

View File

@ -0,0 +1,76 @@
{
word alphaScheme("div(phi,alpha)");
word alpharScheme("div(phirb,alpha)");
surfaceScalarField phir = phic*interface.nHatf();
for (int gCorr=0; gCorr<nAlphaCorr; gCorr++)
{
volScalarField::DimensionedInternalField Sp
(
IOobject
(
"Sp",
runTime.timeName(),
mesh
),
mesh,
dimensionedScalar("Sp", dgdt.dimensions(), 0.0)
);
volScalarField::DimensionedInternalField Su
(
IOobject
(
"Su",
runTime.timeName(),
mesh
),
// Divergence term is handled explicitly to be
// consistent with the explicit transport solution
divU*min(alpha1, 1.0)
);
forAll(dgdt, celli)
{
if (dgdt[celli] > 0.0 && alpha1[celli] > 0.0)
{
Sp[celli] -= dgdt[celli]*alpha1[celli];
Su[celli] += dgdt[celli]*alpha1[celli];
}
else if (dgdt[celli] < 0.0 && alpha1[celli] < 1.0)
{
Sp[celli] += dgdt[celli]*(1.0 - alpha1[celli]);
}
}
surfaceScalarField phiAlpha1 =
fvc::flux
(
phi,
alpha1,
alphaScheme
)
+ fvc::flux
(
-fvc::flux(-phir, alpha2, alpharScheme),
alpha1,
alpharScheme
);
MULES::explicitSolve(oneField(), alpha1, phi, phiAlpha1, Sp, Su, 1, 0);
surfaceScalarField rho1f = fvc::interpolate(rho1);
surfaceScalarField rho2f = fvc::interpolate(rho2);
rhoPhi = phiAlpha1*(rho1f - rho2f) + phi*rho2f;
alpha2 = scalar(1) - alpha1;
}
Info<< "Liquid phase volume fraction = "
<< alpha1.weightedAverage(mesh.V()).value()
<< " Min(alpha1) = " << min(alpha1).value()
<< " Min(alpha2) = " << min(alpha2).value()
<< endl;
}

View File

@ -0,0 +1,43 @@
{
label nAlphaCorr
(
readLabel(piso.lookup("nAlphaCorr"))
);
label nAlphaSubCycles
(
readLabel(piso.lookup("nAlphaSubCycles"))
);
surfaceScalarField phic = mag(phi/mesh.magSf());
phic = min(interface.cGamma()*phic, max(phic));
volScalarField divU = fvc::div(phi);
if (nAlphaSubCycles > 1)
{
dimensionedScalar totalDeltaT = runTime.deltaT();
surfaceScalarField rhoPhiSum = 0.0*rhoPhi;
for
(
subCycle<volScalarField> alphaSubCycle(alpha1, nAlphaSubCycles);
!(++alphaSubCycle).end();
)
{
# include "alphaEqns.H"
rhoPhiSum += (runTime.deltaT()/totalDeltaT)*rhoPhi;
}
rhoPhi = rhoPhiSum;
}
else
{
# include "alphaEqns.H"
}
if (oCorr == 0)
{
interface.correct();
}
}

View File

@ -0,0 +1,105 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 1991-2007 OpenCFD Ltd.
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Application
compressibleLesInterFoam
Description
Solver for 2 compressible, isothermal immiscible fluids using a VOF
(volume of fluid) phase-fraction based interface capturing approach.
The momentum and other fluid properties are of the "mixture" and a single
momentum equation is solved. Turbulence is modelled using a run-time
selectable incompressible LES model.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "MULES.H"
#include "subCycle.H"
#include "interfaceProperties.H"
#include "twoPhaseMixture.H"
#include "incompressible/LESmodel/LESmodel.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
#include "setRootCase.H"
#include "createTime.H"
#include "createMesh.H"
#include "readEnvironmentalProperties.H"
#include "readControls.H"
#include "initContinuityErrs.H"
#include "createFields.H"
#include "CourantNo.H"
#include "setInitialDeltaT.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
while (runTime.run())
{
#include "readControls.H"
#include "CourantNo.H"
#include "setDeltaT.H"
runTime++;
Info<< "Time = " << runTime.timeName() << nl << endl;
turbulence->correct();
// --- Outer-corrector loop
for (int oCorr=0; oCorr<nOuterCorr; oCorr++)
{
#include "alphaEqnsSubCycle.H"
solve(fvm::ddt(rho) + fvc::div(rhoPhi));
#include "UEqn.H"
// --- PISO loop
for (int corr=0; corr<nCorr; corr++)
{
#include "pEqn.H"
}
}
rho = alpha1*rho1 + alpha2*rho2;
runTime.write();
Info<< "ExecutionTime = "
<< runTime.elapsedCpuTime()
<< " s\n\n" << endl;
}
Info<< "End\n" << endl;
return(0);
}
// ************************************************************************* //

View File

@ -0,0 +1,152 @@
Info<< "Reading field pd\n" << endl;
volScalarField pd
(
IOobject
(
"pd",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
Info<< "Reading field alpha1\n" << endl;
volScalarField alpha1
(
IOobject
(
"alpha1",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
Info<< "Calculating field alpha1\n" << endl;
volScalarField alpha2("alpha2", scalar(1) - alpha1);
Info<< "Reading field U\n" << endl;
volVectorField U
(
IOobject
(
"U",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
#include "createPhi.H"
Info<< "Calculating field g.h\n" << endl;
volScalarField gh("gh", g & mesh.C());
surfaceScalarField ghf("ghf", g & mesh.Cf());
Info<< "Reading transportProperties\n" << endl;
twoPhaseMixture twoPhaseProperties(U, phi);
dimensionedScalar rho10
(
twoPhaseProperties.subDict
(
twoPhaseProperties.phase1Name()
).lookup("rho0")
);
dimensionedScalar rho20
(
twoPhaseProperties.subDict
(
twoPhaseProperties.phase2Name()
).lookup("rho0")
);
dimensionedScalar psi1
(
twoPhaseProperties.subDict
(
twoPhaseProperties.phase1Name()
).lookup("psi")
);
dimensionedScalar psi2
(
twoPhaseProperties.subDict
(
twoPhaseProperties.phase2Name()
).lookup("psi")
);
dimensionedScalar pMin(twoPhaseProperties.lookup("pMin"));
volScalarField p
(
IOobject
(
"p",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
max
(
(pd + gh*(alpha1*rho10 + alpha2*rho20))
/(1.0 - gh*(alpha1*psi1 + alpha2*psi2)),
pMin
)
);
volScalarField rho1 = rho10 + psi1*p;
volScalarField rho2 = rho20 + psi2*p;
volScalarField rho
(
IOobject
(
"rho",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
alpha1*rho1 + alpha2*rho2
);
// Mass flux
// Initialisation does not matter because rhoPhi is reset after the
// alpha1 solution before it is used in the U equation.
surfaceScalarField rhoPhi
(
IOobject
(
"rho*phi",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
fvc::interpolate(rho)*phi
);
volScalarField dgdt =
pos(alpha2)*fvc::div(phi)/max(alpha2, 0.0001);
// Construct interface from alpha1 distribution
interfaceProperties interface(alpha1, U, twoPhaseProperties);
// Construct LES model
autoPtr<LESmodel> turbulence
(
LESmodel::New(U, phi, twoPhaseProperties)
);

View File

@ -0,0 +1,71 @@
{
volScalarField rUA = 1.0/UEqn.A();
surfaceScalarField rUAf = fvc::interpolate(rUA);
tmp<fvScalarMatrix> pdEqnComp;
if (transonic)
{
pdEqnComp =
(fvm::ddt(pd) + fvm::div(phi, pd) - fvm::Sp(fvc::div(phi), pd));
}
else
{
pdEqnComp =
(fvm::ddt(pd) + fvc::div(phi, pd) - fvc::Sp(fvc::div(phi), pd));
}
U = rUA*UEqn.H();
surfaceScalarField phiU
(
"phiU",
(fvc::interpolate(U) & mesh.Sf()) + fvc::ddtPhiCorr(rUA, rho, U, phi)
);
phi = phiU +
(
fvc::interpolate(interface.sigmaK())*fvc::snGrad(alpha1)
- ghf*fvc::snGrad(rho)
)*rUAf*mesh.magSf();
for(int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
{
fvScalarMatrix pdEqnIncomp
(
fvc::div(phi)
- fvm::laplacian(rUAf, pd)
);
solve
(
(max(alpha1, 0.0)*(psi1/rho1) + max(alpha2, 0.0)*(psi2/rho2))
*pdEqnComp()
+ pdEqnIncomp
);
if (nonOrth == nNonOrthCorr)
{
dgdt =
(pos(alpha2)*(psi2/rho2) - pos(alpha1)*(psi1/rho1))
*(pdEqnComp & pd);
phi += pdEqnIncomp.flux();
}
}
U += rUA*fvc::reconstruct((phi - phiU)/rUAf);
U.correctBoundaryConditions();
p = max
(
(pd + gh*(alpha1*rho10 + alpha2*rho20))/(1.0 - gh*(alpha1*psi1 + alpha2*psi2)),
pMin
);
rho1 = rho10 + psi1*p;
rho2 = rho20 + psi2*p;
Info<< "max(U) " << max(mag(U)).value() << endl;
Info<< "min(pd) " << min(pd).value() << endl;
}

View File

@ -0,0 +1,20 @@
#include "readPISOControls.H"
#include "readTimeControls.H"
label nAlphaCorr
(
readLabel(piso.lookup("nAlphaCorr"))
);
label nAlphaSubCycles
(
readLabel(piso.lookup("nAlphaSubCycles"))
);
if (nAlphaSubCycles > 1 && nOuterCorr != 1)
{
FatalErrorIn(args.executable())
<< "Sub-cycling alpha is only allowed for PISO, "
"i.e. when the number of outer-correctors = 1"
<< exit(FatalError);
}