ENH: Making nearestPointClassify query for triangle.

This is to access the face/edge/point status of the nearest at the
same time to ensure a consistent result.

Using getVolumeType query in distanceSurface, not simple normal
dot-product comparison, fails on edges.
This commit is contained in:
graham
2010-10-06 10:25:26 +01:00
parent 0a26787282
commit 6cdbd0ada7
11 changed files with 439 additions and 581 deletions

View File

@ -79,21 +79,6 @@ class triangle
PointRef a_, b_, c_;
// Private Member Functions
//- Fast distance to triangle calculation. From
// "Distance Between Point and Trangle in 3D"
// David Eberly, Magic Software Inc. Aug. 2002.
// Works on function Q giving distance to point and tries to
// minimize this.
static pointHit nearestPoint
(
const Point& baseVertex,
const vector& E0,
const vector& E1,
const point& P
);
public:
@ -202,24 +187,27 @@ public:
const scalar tol = 0.0
) const;
//- Return nearest point to p on triangle
inline pointHit nearestPoint
(
const point& p
) const;
//- Classify point in triangle plane w.r.t. triangle edges.
// - inside (true returned)/outside (false returned)
// - near point (nearType=POINT, nearLabel=0, 1, 2)
// - near edge (nearType=EDGE, nearLabel=0, 1, 2)
//- Find the nearest point to p on the triangle and classify it:
// + near point (nearType=POINT, nearLabel=0, 1, 2)
// + near edge (nearType=EDGE, nearLabel=0, 1, 2)
// Note: edges are counted from starting
// vertex so e.g. edge 2 is from f[2] to f[0]
// tol is fraction to account for truncation error. Is only used
// when comparing normalized (0..1) numbers.
pointHit nearestPointClassify
(
const point& p,
label& nearType,
label& nearLabel
) const;
//- Return nearest point to p on triangle
inline pointHit nearestPoint(const point& p) const;
//- Classify nearest point to p in triangle plane
// w.r.t. triangle edges and points. Returns inside
// (true)/outside (false).
bool classify
(
const point& p,
const scalar tol,
label& nearType,
label& nearLabel
) const;

View File

@ -32,158 +32,6 @@ License
namespace Foam
{
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
template<class Point, class PointRef>
pointHit triangle<Point, PointRef>::nearestPoint
(
const Point& baseVertex,
const vector& E0,
const vector& E1,
const point& P
)
{
// Distance vector
const vector D(baseVertex - P);
// Some geometrical factors
const scalar a = E0 & E0;
const scalar b = E0 & E1;
const scalar c = E1 & E1;
// Precalculate distance factors
const scalar d = E0 & D;
const scalar e = E1 & D;
const scalar f = D & D;
// Do classification
const scalar det = a*c - b*b;
scalar s = b*e - c*d;
scalar t = b*d - a*e;
bool inside = false;
if (s+t < det)
{
if (s < 0)
{
if (t < 0)
{
// Region 4
if (e > 0)
{
// min on edge t = 0
t = 0;
s = (d >= 0 ? 0 : (-d >= a ? 1 : -d/a));
}
else
{
// min on edge s=0
s = 0;
t = (e >= 0 ? 0 : (-e >= c ? 1 : -e/c));
}
}
else
{
// Region 3. Min on edge s = 0
s = 0;
t = (e >= 0 ? 0 : (-e >= c ? 1 : -e/c));
}
}
else if (t < 0)
{
// Region 5
t = 0;
s = (d >= 0 ? 0 : (-d >= a ? 1 : -d/a));
}
else
{
// Region 0
const scalar invDet = 1/det;
s *= invDet;
t *= invDet;
inside = true;
}
}
else
{
if (s < 0)
{
// Region 2
const scalar tmp0 = b + d;
const scalar tmp1 = c + e;
if (tmp1 > tmp0)
{
// min on edge s+t=1
const scalar numer = tmp1 - tmp0;
const scalar denom = a-2*b+c;
s = (numer >= denom ? 1 : numer/denom);
t = 1 - s;
}
else
{
// min on edge s=0
s = 0;
t = (tmp1 <= 0 ? 1 : (e >= 0 ? 0 : - e/c));
}
}
else if (t < 0)
{
// Region 6
const scalar tmp0 = b + d;
const scalar tmp1 = c + e;
if (tmp1 > tmp0)
{
// min on edge s+t=1
const scalar numer = tmp1 - tmp0;
const scalar denom = a-2*b+c;
s = (numer >= denom ? 1 : numer/denom);
t = 1 - s;
}
else
{
// min on edge t=0
t = 0;
s = (tmp1 <= 0 ? 1 : (d >= 0 ? 0 : - d/a));
}
}
else
{
// Region 1
const scalar numer = c+e-(b+d);
if (numer <= 0)
{
s = 0;
}
else
{
const scalar denom = a-2*b+c;
s = (numer >= denom ? 1 : numer/denom);
}
}
t = 1 - s;
}
// Calculate distance.
// Note: Foam::mag used since truncation error causes negative distances
// with points very close to one of the triangle vertices.
// (Up to -2.77556e-14 seen). Could use +SMALL but that not large enough.
return pointHit
(
inside,
baseVertex + s*E0 + t*E1,
Foam::sqrt
(
Foam::mag(a*s*s + 2*b*s*t + c*t*t + 2*d*s + 2*e*t + f)
),
!inside
);
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
template<class Point, class PointRef>
@ -247,7 +95,7 @@ inline Point triangle<Point, PointRef>::centre() const
template<class Point, class PointRef>
inline scalar triangle<Point, PointRef>::mag() const
{
return ::Foam::mag(normal());
return Foam::mag(normal());
}
@ -536,7 +384,7 @@ inline pointHit triangle<Point, PointRef>::ray
inter.setMiss(eligible);
// The miss point is the nearest point on the triangle
inter.setPoint(nearestPoint(a_, E0, E1, p).rawPoint());
inter.setPoint(nearestPoint(p).rawPoint());
// The distance to the miss is the distance between the
// original point and plane of intersection
@ -633,18 +481,130 @@ inline pointHit triangle<Point, PointRef>::intersection
}
template<class Point, class PointRef>
pointHit triangle<Point, PointRef>::nearestPointClassify
(
const point& p,
label& nearType,
label& nearLabel
) const
{
// Adapted from:
// Real-time collision detection, Christer Ericson, 2005, 136-142
// Check if P in vertex region outside A
vector ab = b_ - a_;
vector ac = c_ - a_;
vector ap = p - a_;
scalar d1 = ab & ap;
scalar d2 = ac & ap;
if (d1 <= 0.0 && d2 <= 0.0)
{
// barycentric coordinates (1, 0, 0)
nearType = POINT;
nearLabel = 0;
return pointHit(false, a_, Foam::mag(a_ - p), true);
}
// Check if P in vertex region outside B
vector bp = p - b_;
scalar d3 = ab & bp;
scalar d4 = ac & bp;
if (d3 >= 0.0 && d4 <= d3)
{
// barycentric coordinates (0, 1, 0)
nearType = POINT;
nearLabel = 1;
return pointHit(false, b_, Foam::mag(b_ - p), true);
}
// Check if P in edge region of AB, if so return projection of P onto AB
scalar vc = d1*d4 - d3*d2;
if (vc <= 0.0 && d1 >= 0.0 && d3 <= 0.0)
{
// barycentric coordinates (1-v, v, 0)
scalar v = d1/(d1 - d3);
point nearPt = a_ + v*ab;
nearType = EDGE;
nearLabel = 0;
return pointHit(false, nearPt, Foam::mag(nearPt - p), true);
}
// Check if P in vertex region outside C
vector cp = p - c_;
scalar d5 = ab & cp;
scalar d6 = ac & cp;
if (d6 >= 0.0 && d5 <= d6)
{
// barycentric coordinates (0, 0, 1)
nearType = POINT;
nearLabel = 2;
return pointHit(false, c_, Foam::mag(c_ - p), true);
}
// Check if P in edge region of AC, if so return projection of P onto AC
scalar vb = d5*d2 - d1*d6;
if (vb <= 0.0 && d2 >= 0.0 && d6 <= 0.0)
{
// barycentric coordinates (1-w, 0, w)
scalar w = d2/(d2 - d6);
point nearPt = a_ + w*ac;
nearType = EDGE;
nearLabel = 2;
return pointHit(false, nearPt, Foam::mag(nearPt - p), true);
}
// Check if P in edge region of BC, if so return projection of P onto BC
scalar va = d3*d6 - d5*d4;
if (va <= 0.0 && (d4 - d3) >= 0.0 && (d5 - d6) >= 0.0)
{
// barycentric coordinates (0, 1-w, w)
scalar w = (d4 - d3)/((d4 - d3) + (d5 - d6));
point nearPt = b_ + w*(c_ - b_);
nearType = EDGE;
nearLabel = 1;
return pointHit(false, nearPt, Foam::mag(nearPt - p), true);
}
// P inside face region. Compute Q through its barycentric
// coordinates (u, v, w)
scalar denom = 1.0/(va + vb + vc);
scalar v = vb * denom;
scalar w = vc * denom;
// = u*a + v*b + w*c, u = va*denom = 1.0 - v - w
point nearPt = a_ + ab*v + ac*w;
nearType = NONE,
nearLabel = -1;
return pointHit(true, nearPt, Foam::mag(nearPt - p), false);
}
template<class Point, class PointRef>
inline pointHit triangle<Point, PointRef>::nearestPoint
(
const point& p
) const
{
// Express triangle in terms of baseVertex (point a_) and
// two edge vectors
vector E0 = b_ - a_;
vector E1 = c_ - a_;
// Dummy labels
label nearType = -1;
label nearLabel = -1;
return nearestPoint(a_, E0, E1, p);
return nearestPointClassify(p, nearType, nearLabel);
}
@ -652,160 +612,14 @@ template<class Point, class PointRef>
inline bool triangle<Point, PointRef>::classify
(
const point& p,
const scalar tol,
label& nearType,
label& nearLabel
) const
{
const vector E0 = b_ - a_;
const vector E1 = c_ - a_;
const vector n = 0.5*(E0 ^ E1);
// Get largest component of normal
scalar magX = Foam::mag(n.x());
scalar magY = Foam::mag(n.y());
scalar magZ = Foam::mag(n.z());
label i0 = -1;
if ((magX >= magY) && (magX >= magZ))
{
i0 = 0;
}
else if ((magY >= magX) && (magY >= magZ))
{
i0 = 1;
}
else
{
i0 = 2;
}
// Get other components
label i1 = (i0 + 1) % 3;
label i2 = (i1 + 1) % 3;
scalar u1 = E0[i1];
scalar v1 = E0[i2];
scalar u2 = E1[i1];
scalar v2 = E1[i2];
scalar det = v2*u1 - u2*v1;
scalar u0 = p[i1] - a_[i1];
scalar v0 = p[i2] - a_[i2];
scalar alpha = 0;
scalar beta = 0;
bool hit = false;
if (Foam::mag(u1) < ROOTVSMALL)
{
beta = u0/u2;
alpha = (v0 - beta*v2)/v1;
hit = ((alpha >= 0) && ((alpha + beta) <= 1));
}
else
{
beta = (v0*u1 - u0*v1)/det;
alpha = (u0 - beta*u2)/u1;
hit = ((alpha >= 0) && ((alpha + beta) <= 1));
}
//
// Now alpha, beta are the coordinates in the triangle local coordinate
// system E0, E1
//
//Pout<< "alpha:" << alpha << endl;
//Pout<< "beta:" << beta << endl;
//Pout<< "hit:" << hit << endl;
//Pout<< "tol:" << tol << endl;
if (hit)
{
// alpha,beta might get negative due to precision errors
alpha = max(0.0, min(1.0, alpha));
beta = max(0.0, min(1.0, beta));
}
nearType = NONE;
nearLabel = -1;
if (Foam::mag(alpha+beta-1) <= tol)
{
// On edge between vert 1-2 (=edge 1)
if (Foam::mag(alpha) <= tol)
{
nearType = POINT;
nearLabel = 2;
}
else if (Foam::mag(beta) <= tol)
{
nearType = POINT;
nearLabel = 1;
}
else if ((alpha >= 0) && (alpha <= 1) && (beta >= 0) && (beta <= 1))
{
nearType = EDGE;
nearLabel = 1;
}
}
else if (Foam::mag(alpha) <= tol)
{
// On edge between vert 2-0 (=edge 2)
if (Foam::mag(beta) <= tol)
{
nearType = POINT;
nearLabel = 0;
}
else if (Foam::mag(beta-1) <= tol)
{
nearType = POINT;
nearLabel = 2;
}
else if ((beta >= 0) && (beta <= 1))
{
nearType = EDGE;
nearLabel = 2;
}
}
else if (Foam::mag(beta) <= tol)
{
// On edge between vert 0-1 (= edge 0)
if (Foam::mag(alpha) <= tol)
{
nearType = POINT;
nearLabel = 0;
}
else if (Foam::mag(alpha-1) <= tol)
{
nearType = POINT;
nearLabel = 1;
}
else if ((alpha >= 0) && (alpha <= 1))
{
nearType = EDGE;
nearLabel = 0;
}
}
return hit;
return nearestPointClassify(p, nearType, nearLabel).hit();
}
// * * * * * * * * * * * * * * * Ostream Operator * * * * * * * * * * * * * //
template<class point, class pointRef>

View File

@ -35,145 +35,145 @@ defineTypeNameAndDebug(Foam::treeDataTriSurface, 0);
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
// Fast distance to triangle calculation. From
// "Distance Between Point and Trangle in 3D"
// David Eberly, Magic Software Inc. Aug. 2003.
// Works on function Q giving distance to point and tries to minimize this.
Foam::scalar Foam::treeDataTriSurface::nearestCoords
(
const point& base,
const point& E0,
const point& E1,
const scalar a,
const scalar b,
const scalar c,
const point& P,
scalar& s,
scalar& t
)
{
// distance vector
const vector D(base - P);
// // Fast distance to triangle calculation. From
// // "Distance Between Point and Triangle in 3D"
// // David Eberly, Magic Software Inc. Aug. 2003.
// // Works on function Q giving distance to point and tries to minimize this.
// Foam::scalar Foam::treeDataTriSurface::nearestCoords
// (
// const point& base,
// const point& E0,
// const point& E1,
// const scalar a,
// const scalar b,
// const scalar c,
// const point& P,
// scalar& s,
// scalar& t
// )
// {
// // distance vector
// const vector D(base - P);
// Precalculate distance factors.
const scalar d = E0 & D;
const scalar e = E1 & D;
// // Precalculate distance factors.
// const scalar d = E0 & D;
// const scalar e = E1 & D;
// Do classification
const scalar det = a*c - b*b;
// // Do classification
// const scalar det = a*c - b*b;
s = b*e - c*d;
t = b*d - a*e;
// s = b*e - c*d;
// t = b*d - a*e;
if (s+t < det)
{
if (s < 0)
{
if (t < 0)
{
//region 4
if (e > 0)
{
//min on edge t = 0
t = 0;
s = (d >= 0 ? 0 : (-d >= a ? 1 : -d/a));
}
else
{
//min on edge s=0
s = 0;
t = (e >= 0 ? 0 : (-e >= c ? 1 : -e/c));
}
}
else
{
//region 3. Min on edge s = 0
s = 0;
t = (e >= 0 ? 0 : (-e >= c ? 1 : -e/c));
}
}
else if (t < 0)
{
//region 5
t = 0;
s = (d >= 0 ? 0 : (-d >= a ? 1 : -d/a));
}
else
{
//region 0
const scalar invDet = 1/det;
s *= invDet;
t *= invDet;
}
}
else
{
if (s < 0)
{
//region 2
const scalar tmp0 = b + d;
const scalar tmp1 = c + e;
if (tmp1 > tmp0)
{
//min on edge s+t=1
const scalar numer = tmp1 - tmp0;
const scalar denom = a-2*b+c;
s = (numer >= denom ? 1 : numer/denom);
t = 1 - s;
}
else
{
//min on edge s=0
s = 0;
t = (tmp1 <= 0 ? 1 : (e >= 0 ? 0 : - e/c));
}
}
else if (t < 0)
{
//region 6
const scalar tmp0 = b + d;
const scalar tmp1 = c + e;
if (tmp1 > tmp0)
{
//min on edge s+t=1
const scalar numer = tmp1 - tmp0;
const scalar denom = a-2*b+c;
s = (numer >= denom ? 1 : numer/denom);
t = 1 - s;
}
else
{
//min on edge t=0
t = 0;
s = (tmp1 <= 0 ? 1 : (d >= 0 ? 0 : - d/a));
}
}
else
{
//region 1
const scalar numer = c+e-(b+d);
if (numer <= 0)
{
s = 0;
}
else
{
const scalar denom = a-2*b+c;
s = (numer >= denom ? 1 : numer/denom);
}
}
t = 1 - s;
}
// if (s+t < det)
// {
// if (s < 0)
// {
// if (t < 0)
// {
// //region 4
// if (e > 0)
// {
// //min on edge t = 0
// t = 0;
// s = (d >= 0 ? 0 : (-d >= a ? 1 : -d/a));
// }
// else
// {
// //min on edge s=0
// s = 0;
// t = (e >= 0 ? 0 : (-e >= c ? 1 : -e/c));
// }
// }
// else
// {
// //region 3. Min on edge s = 0
// s = 0;
// t = (e >= 0 ? 0 : (-e >= c ? 1 : -e/c));
// }
// }
// else if (t < 0)
// {
// //region 5
// t = 0;
// s = (d >= 0 ? 0 : (-d >= a ? 1 : -d/a));
// }
// else
// {
// //region 0
// const scalar invDet = 1/det;
// s *= invDet;
// t *= invDet;
// }
// }
// else
// {
// if (s < 0)
// {
// //region 2
// const scalar tmp0 = b + d;
// const scalar tmp1 = c + e;
// if (tmp1 > tmp0)
// {
// //min on edge s+t=1
// const scalar numer = tmp1 - tmp0;
// const scalar denom = a-2*b+c;
// s = (numer >= denom ? 1 : numer/denom);
// t = 1 - s;
// }
// else
// {
// //min on edge s=0
// s = 0;
// t = (tmp1 <= 0 ? 1 : (e >= 0 ? 0 : - e/c));
// }
// }
// else if (t < 0)
// {
// //region 6
// const scalar tmp0 = b + d;
// const scalar tmp1 = c + e;
// if (tmp1 > tmp0)
// {
// //min on edge s+t=1
// const scalar numer = tmp1 - tmp0;
// const scalar denom = a-2*b+c;
// s = (numer >= denom ? 1 : numer/denom);
// t = 1 - s;
// }
// else
// {
// //min on edge t=0
// t = 0;
// s = (tmp1 <= 0 ? 1 : (d >= 0 ? 0 : - d/a));
// }
// }
// else
// {
// //region 1
// const scalar numer = c+e-(b+d);
// if (numer <= 0)
// {
// s = 0;
// }
// else
// {
// const scalar denom = a-2*b+c;
// s = (numer >= denom ? 1 : numer/denom);
// }
// }
// t = 1 - s;
// }
// Calculate distance.
// Note: abs should not be needed but truncation error causes problems
// with points very close to one of the triangle vertices.
// (seen up to -9e-15). Alternatively add some small value.
// // Calculate distance.
// // Note: abs should not be needed but truncation error causes problems
// // with points very close to one of the triangle vertices.
// // (seen up to -9e-15). Alternatively add some small value.
const scalar f = D & D;
return Foam::mag(a*s*s + 2*b*s*t + c*t*t + 2*d*s + 2*e*t + f);
}
// const scalar f = D & D;
// return Foam::mag(a*s*s + 2*b*s*t + c*t*t + 2*d*s + 2*e*t + f);
// }
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
@ -234,9 +234,7 @@ Foam::label Foam::treeDataTriSurface::getVolumeType
(
surface_,
sample,
pHit.index(),
pHit.hitPoint(),
indexedOctree<treeDataTriSurface>::perturbTol()
pHit.index()
);
if (t == triSurfaceTools::UNKNOWN)
@ -353,39 +351,43 @@ void Foam::treeDataTriSurface::findNearest
// )
//)
{
// Get spanning vectors of triangle
vector base(p1);
vector E0(p0 - p1);
vector E1(p2 - p1);
// // Get spanning vectors of triangle
// vector base(p1);
// vector E0(p0 - p1);
// vector E1(p2 - p1);
scalar a(E0& E0);
scalar b(E0& E1);
scalar c(E1& E1);
// scalar a(E0& E0);
// scalar b(E0& E1);
// scalar c(E1& E1);
// Get nearest point in s,t coordinates (s is along E0, t is along
// E1)
scalar s;
scalar t;
// // Get nearest point in s,t coordinates (s is along E0, t is along
// // E1)
// scalar s;
// scalar t;
scalar distSqr = nearestCoords
(
base,
E0,
E1,
a,
b,
c,
sample,
// scalar distSqr = nearestCoords
// (
// base,
// E0,
// E1,
// a,
// b,
// c,
// sample,
s,
t
);
// s,
// t
// );
pointHit pHit = triPointRef(p0, p1, p2).nearestPoint(sample);
scalar distSqr = sqr(pHit.distance());
if (distSqr < nearestDistSqr)
{
nearestDistSqr = distSqr;
minIndex = index;
nearestPoint = base + s*E0 + t*E1;
nearestPoint = pHit.rawPoint();
}
}
}

View File

@ -60,20 +60,20 @@ class treeDataTriSurface
// Private Member Functions
//- fast triangle nearest point calculation. Returns point in E0, E1
// coordinate system: base + s*E0 + t*E1
static scalar nearestCoords
(
const point& base,
const point& E0,
const point& E1,
const scalar a,
const scalar b,
const scalar c,
const point& P,
scalar& s,
scalar& t
);
// //- fast triangle nearest point calculation. Returns point in E0, E1
// // coordinate system: base + s*E0 + t*E1
// static scalar nearestCoords
// (
// const point& base,
// const point& E0,
// const point& E1,
// const scalar a,
// const scalar b,
// const scalar c,
// const point& P,
// scalar& s,
// scalar& t
// );
public:

View File

@ -430,10 +430,7 @@ bool Foam::edgeIntersections::offsetPerturb
point ctr = tri.centre();
// Get measure for tolerance.
scalar tolDim = 0.001*mag(tri.a() - ctr);
tri.classify(pHit.hitPoint(), tolDim, nearType, nearLabel);
tri.classify(pHit.hitPoint(), nearType, nearLabel);
if (nearType == triPointRef::POINT || nearType == triPointRef::EDGE)
{

View File

@ -315,7 +315,7 @@ void Foam::surfaceIntersection::classifyHit
surf2Pts[f2[0]],
surf2Pts[f2[1]],
surf2Pts[f2[2]]
).classify(pHit.hitPoint(), tolDim, nearType, nearLabel);
).classify(pHit.hitPoint(), nearType, nearLabel);
// Classify points on edge of surface1
label edgeEnd =

View File

@ -43,7 +43,7 @@ Foam::scalar Foam::octreeDataTriSurface::tol(1E-6);
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
// Fast distance to triangle calculation. From
// "Distance Between Point and Trangle in 3D"
// "Distance Between Point and Triangle in 3D"
// David Eberly, Magic Software Inc. Aug. 2003.
// Works on function Q giving distance to point and tries to minimize this.
void Foam::octreeDataTriSurface::nearestCoords

View File

@ -234,9 +234,7 @@ void Foam::orientedSurface::propagateOrientation
(
s,
samplePoint,
nearestFaceI,
nearestPt,
10*SMALL
nearestFaceI
);
if (side == triSurfaceTools::UNKNOWN)

View File

@ -2121,12 +2121,13 @@ Foam::vector Foam::triSurfaceTools::surfaceNormal
label nearType;
label nearLabel;
triPointRef
(
points[f[0]],
points[f[1]],
points[f[2]]
).classify(nearestPt, 1E-6, nearType, nearLabel);
).classify(nearestPt, nearType, nearLabel);
if (nearType == triPointRef::NONE)
{
@ -2199,28 +2200,60 @@ Foam::triSurfaceTools::sideType Foam::triSurfaceTools::surfaceSide
(
const triSurface& surf,
const point& sample,
const label nearestFaceI, // nearest face
const point& nearestPoint, // nearest point on nearest face
const scalar tol
const label nearestFaceI
)
{
const labelledTri& f = surf[nearestFaceI];
const pointField& points = surf.points();
// Find where point is on triangle. Note tolerance needed. Is relative
// one (used in comparing normalized [0..1] triangle coordinates).
// Find where point is on triangle.
label nearType, nearLabel;
triPointRef
pointHit pHit = triPointRef
(
points[f[0]],
points[f[1]],
points[f[2]]
).classify(nearestPoint, tol, nearType, nearLabel);
).nearestPointClassify(sample, nearType, nearLabel);
const point& nearestPoint(pHit.rawPoint());
if (nearType == triPointRef::NONE)
{
// Nearest to face interior. Use faceNormal to determine side
<<<<<<< HEAD
scalar c = (sample - nearestPoint) & surf.faceNormals()[nearestFaceI];
=======
scalar c = sampleNearestVec & surf.faceNormals()[nearestFaceI];
// If the sample is essentially on the face, do not check for
// it being perpendicular.
if (magSampleNearestVec > SMALL)
{
c /= magSampleNearestVec*mag(surf.faceNormals()[nearestFaceI]);
if (mag(c) < 0.99)
{
FatalErrorIn("triSurfaceTools::surfaceSide")
<< "nearestPoint identified as being on triangle face "
<< "but vector from nearestPoint to sample is not "
<< "perpendicular to the normal." << nl
<< "sample: " << sample << nl
<< "nearestPoint: " << nearestPoint << nl
<< "sample - nearestPoint: " << sample - nearestPoint << nl
<< "normal: " << surf.faceNormals()[nearestFaceI] << nl
<< "mag(sample - nearestPoint): "
<< mag(sample - nearestPoint) << nl
<< "normalised dot product: " << c << nl
<< "triangle vertices: " << nl
<< " " << points[f[0]] << nl
<< " " << points[f[1]] << nl
<< " " << points[f[2]] << nl
<< abort(FatalError);
}
}
>>>>>>> 0bb6ebd... ENH: Making nearestPointClassify query for triangle.
if (c > 0)
{
@ -2239,27 +2272,27 @@ Foam::triSurfaceTools::sideType Foam::triSurfaceTools::surfaceSide
// Get the edge. Assume order of faceEdges same as face vertices.
label edgeI = surf.faceEdges()[nearestFaceI][nearLabel];
//if (debug)
//{
// // Check order of faceEdges same as face vertices.
// const edge& e = surf.edges()[edgeI];
// const labelList& meshPoints = surf.meshPoints();
// const edge meshEdge(meshPoints[e[0]], meshPoints[e[1]]);
//
// if
// (
// meshEdge
// != edge(f[nearLabel], f[f.fcIndex(nearLabel)])
// )
// {
// FatalErrorIn("triSurfaceTools::surfaceSide")
// << "Edge:" << edgeI << " local vertices:" << e
// << " mesh vertices:" << meshEdge
// << " not at position " << nearLabel
// << " in face " << f
// << abort(FatalError);
// }
//}
// if (debug)
{
// Check order of faceEdges same as face vertices.
const edge& e = surf.edges()[edgeI];
const labelList& meshPoints = surf.meshPoints();
const edge meshEdge(meshPoints[e[0]], meshPoints[e[1]]);
if
(
meshEdge
!= edge(f[nearLabel], f[f.fcIndex(nearLabel)])
)
{
FatalErrorIn("triSurfaceTools::surfaceSide")
<< "Edge:" << edgeI << " local vertices:" << e
<< " mesh vertices:" << meshEdge
<< " not at position " << nearLabel
<< " in face " << f
<< abort(FatalError);
}
}
return edgeSide(surf, sample, nearestPoint, edgeI);
}
@ -2717,7 +2750,14 @@ void Foam::triSurfaceTools::calcInterpolationWeights
triPointRef tri(f.tri(points));
pointHit nearest = tri.nearestPoint(samplePt);
label nearType, nearLabel;
pointHit nearest = tri.nearestPointClassify
(
samplePt,
nearType,
nearLabel
);
if (nearest.hit())
{
@ -2741,14 +2781,6 @@ void Foam::triSurfaceTools::calcInterpolationWeights
minDistance = nearest.distance();
// Outside triangle. Store nearest.
label nearType, nearLabel;
tri.classify
(
nearest.rawPoint(),
1E-6, // relative tolerance
nearType,
nearLabel
);
if (nearType == triPointRef::POINT)
{
@ -2779,12 +2811,12 @@ void Foam::triSurfaceTools::calcInterpolationWeights
max
(
0,
mag(nearest.rawPoint()-p0)/mag(p1-p0)
mag(nearest.rawPoint() - p0)/mag(p1 - p0)
)
);
// Interpolate
weights[0] = 1-s;
weights[0] = 1 - s;
weights[1] = s;
weights[2] = -GREAT;
@ -2830,7 +2862,6 @@ Foam::surfaceLocation Foam::triSurfaceTools::classify
triPointRef(s[triI].tri(s.points())).classify
(
trianglePoint,
1E-6,
elemType,
index
);

View File

@ -458,9 +458,7 @@ public:
(
const triSurface& surf,
const point& sample,
const label nearestFaceI, // nearest face
const point& nearestPt, // nearest point on nearest face
const scalar tol // tolerance for nearness test.
const label nearestFaceI
);
// Triangulation of faces

View File

@ -89,20 +89,29 @@ void Foam::distanceSurface::createGeometry()
if (signed_)
{
vectorField normal;
surfPtr_().getNormal(nearest, normal);
List<searchableSurface::volumeType> volType;
forAll(nearest, i)
surfPtr_().getVolumeType(cc, volType);
forAll(volType, i)
{
vector d(cc[i]-nearest[i].hitPoint());
searchableSurface::volumeType vT = volType[i];
if ((d&normal[i]) > 0)
if (vT == searchableSurface::OUTSIDE)
{
fld[i] = Foam::mag(d);
fld[i] = Foam::mag(cc[i] - nearest[i].hitPoint());
}
else if (vT == searchableSurface::INSIDE)
{
fld[i] = -Foam::mag(cc[i] - nearest[i].hitPoint());
}
else
{
fld[i] = -Foam::mag(d);
FatalErrorIn
(
"void Foam::distanceSurface::createGeometry()"
) << "getVolumeType failure, neither INSIDE or OUTSIDE"
<< exit(FatalError);
}
}
}
@ -132,20 +141,30 @@ void Foam::distanceSurface::createGeometry()
if (signed_)
{
vectorField normal;
surfPtr_().getNormal(nearest, normal);
List<searchableSurface::volumeType> volType;
forAll(nearest, i)
surfPtr_().getVolumeType(cc, volType);
forAll(volType, i)
{
vector d(cc[i]-nearest[i].hitPoint());
searchableSurface::volumeType vT = volType[i];
if ((d&normal[i]) > 0)
if (vT == searchableSurface::OUTSIDE)
{
fld[i] = Foam::mag(d);
fld[i] = Foam::mag(cc[i] - nearest[i].hitPoint());
}
else if (vT == searchableSurface::INSIDE)
{
fld[i] = -Foam::mag(cc[i] - nearest[i].hitPoint());
}
else
{
fld[i] = -Foam::mag(d);
FatalErrorIn
(
"void Foam::distanceSurface::createGeometry()"
) << "getVolumeType failure, "
<< "neither INSIDE or OUTSIDE"
<< exit(FatalError);
}
}
}
@ -179,20 +198,31 @@ void Foam::distanceSurface::createGeometry()
if (signed_)
{
vectorField normal;
surfPtr_().getNormal(nearest, normal);
List<searchableSurface::volumeType> volType;
forAll(nearest, i)
surfPtr_().getVolumeType(pts, volType);
forAll(volType, i)
{
vector d(pts[i]-nearest[i].hitPoint());
searchableSurface::volumeType vT = volType[i];
if ((d&normal[i]) > 0)
if (vT == searchableSurface::OUTSIDE)
{
pointDistance_[i] = Foam::mag(d);
pointDistance_[i] =
Foam::mag(pts[i] - nearest[i].hitPoint());
}
else if (vT == searchableSurface::INSIDE)
{
pointDistance_[i] =
-Foam::mag(pts[i] - nearest[i].hitPoint());
}
else
{
pointDistance_[i] = -Foam::mag(d);
FatalErrorIn
(
"void Foam::distanceSurface::createGeometry()"
) << "getVolumeType failure, neither INSIDE or OUTSIDE"
<< exit(FatalError);
}
}
}