ENH: Updating utilities based on internal development line

This commit is contained in:
Andrew Heather
2015-12-02 10:17:28 +00:00
parent eaf5030600
commit 73dac8c7ee
56 changed files with 1040 additions and 360 deletions

View File

@ -390,15 +390,6 @@ class vtkPV4Foam
//- Reduce memory footprint after conversion
void reduceMemory();
//- Volume fields
void updateVolFields(vtkMultiBlockDataSet*);
//- Point fields
void updatePointFields(vtkMultiBlockDataSet*);
//- Lagrangian fields
void updateLagrangianFields(vtkMultiBlockDataSet*);
// Mesh conversion functions
@ -492,6 +483,16 @@ class vtkPV4Foam
// Convert OpenFOAM fields
//- Volume field - all types
template<class Type>
void convertVolField
(
const PtrList<PrimitivePatchInterpolation<primitivePatch> >&,
const GeometricField<Type, fvPatchField, volMesh>&,
const bool interpFields,
vtkMultiBlockDataSet* output
);
//- Volume fields - all types
template<class Type>
void convertVolFields
@ -503,6 +504,17 @@ class vtkPV4Foam
vtkMultiBlockDataSet* output
);
//- Volume internal fields (DimensionedField)- all types
template<class Type>
void convertDimFields
(
const fvMesh&,
const PtrList<PrimitivePatchInterpolation<primitivePatch> >&,
const IOobjectList&,
const bool interpFields,
vtkMultiBlockDataSet* output
);
//- Volume field - all selected parts
template<class Type>
void convertVolFieldBlock

View File

@ -2,7 +2,7 @@
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2013 OpenFOAM Foundation
\\ / A nd | Copyright (C) 2011-2014 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
@ -143,6 +143,27 @@ void Foam::vtkPV4Foam::convertVolFields
mesh, ppInterpList, objects, interpFields, output
);
convertDimFields<scalar>
(
mesh, ppInterpList, objects, interpFields, output
);
convertDimFields<vector>
(
mesh, ppInterpList, objects, interpFields, output
);
convertDimFields<sphericalTensor>
(
mesh, ppInterpList, objects, interpFields, output
);
convertDimFields<symmTensor>
(
mesh, ppInterpList, objects, interpFields, output
);
convertDimFields<tensor>
(
mesh, ppInterpList, objects, interpFields, output
);
if (debug)
{
Info<< "<end> Foam::vtkPV4Foam::convertVolFields" << endl;

View File

@ -99,6 +99,34 @@ void Foam::vtkPV4Foam::updateInfoFields
objects
);
//- Add dimensioned fields to GUI
addToSelection<DimensionedField<scalar, meshType> >
(
select,
objects
);
addToSelection<DimensionedField<vector, meshType> >
(
select,
objects
);
addToSelection<DimensionedField<sphericalTensor, meshType> >
(
select,
objects
);
addToSelection<DimensionedField<symmTensor, meshType> >
(
select,
objects
);
addToSelection<DimensionedField<tensor, meshType> >
(
select,
objects
);
// restore the enabled selections
setSelectedArrayEntries(select, enabledEntries);

View File

@ -2,7 +2,7 @@
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2013 OpenFOAM Foundation
\\ / A nd | Copyright (C) 2011-2014 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
@ -34,6 +34,7 @@ InClass
#include "wallPolyPatch.H"
#include "faceSet.H"
#include "volPointInterpolation.H"
#include "zeroGradientFvPatchField.H"
#include "vtkPV4FoamFaceField.H"
#include "vtkPV4FoamPatchField.H"
@ -42,6 +43,224 @@ InClass
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
template<class Type>
void Foam::vtkPV4Foam::convertVolField
(
const PtrList<PrimitivePatchInterpolation<primitivePatch> >& ppInterpList,
const GeometricField<Type, fvPatchField, volMesh>& tf,
const bool interpFields,
vtkMultiBlockDataSet* output
)
{
const fvMesh& mesh = tf.mesh();
const polyBoundaryMesh& patches = mesh.boundaryMesh();
// Interpolated field (demand driven)
autoPtr<GeometricField<Type, pointPatchField, pointMesh> > ptfPtr;
if (interpFields)
{
if (debug)
{
Info<< "convertVolFieldBlock interpolating:" << tf.name()
<< endl;
}
ptfPtr.reset
(
volPointInterpolation::New(mesh).interpolate(tf).ptr()
);
}
// Convert activated internalMesh regions
convertVolFieldBlock
(
tf,
ptfPtr,
output,
arrayRangeVolume_,
regionPolyDecomp_
);
// Convert activated cellZones
convertVolFieldBlock
(
tf,
ptfPtr,
output,
arrayRangeCellZones_,
zonePolyDecomp_
);
// Convert activated cellSets
convertVolFieldBlock
(
tf,
ptfPtr,
output,
arrayRangeCellSets_,
csetPolyDecomp_
);
//
// Convert patches - if activated
//
for
(
int partId = arrayRangePatches_.start();
partId < arrayRangePatches_.end();
++partId
)
{
const word patchName = getPartName(partId);
const label datasetNo = partDataset_[partId];
const label patchId = patches.findPatchID(patchName);
if (!partStatus_[partId] || datasetNo < 0 || patchId < 0)
{
continue;
}
const fvPatchField<Type>& ptf = tf.boundaryField()[patchId];
if
(
isType<emptyFvPatchField<Type> >(ptf)
||
(
reader_->GetExtrapolatePatches()
&& !polyPatch::constraintType(patches[patchId].type())
)
)
{
fvPatch p(ptf.patch().patch(), mesh.boundary());
tmp<Field<Type> > tpptf
(
fvPatchField<Type>(p, tf).patchInternalField()
);
convertPatchField
(
tf.name(),
tpptf(),
output,
arrayRangePatches_,
datasetNo
);
if (interpFields)
{
convertPatchPointField
(
tf.name(),
ppInterpList[patchId].faceToPointInterpolate(tpptf)(),
output,
arrayRangePatches_,
datasetNo
);
}
}
else
{
convertPatchField
(
tf.name(),
ptf,
output,
arrayRangePatches_,
datasetNo
);
if (interpFields)
{
convertPatchPointField
(
tf.name(),
ppInterpList[patchId].faceToPointInterpolate(ptf)(),
output,
arrayRangePatches_,
datasetNo
);
}
}
}
//
// Convert face zones - if activated
//
for
(
int partId = arrayRangeFaceZones_.start();
partId < arrayRangeFaceZones_.end();
++partId
)
{
const word zoneName = getPartName(partId);
const label datasetNo = partDataset_[partId];
if (!partStatus_[partId] || datasetNo < 0)
{
continue;
}
const faceZoneMesh& zMesh = mesh.faceZones();
const label zoneId = zMesh.findZoneID(zoneName);
if (zoneId < 0)
{
continue;
}
convertFaceField
(
tf,
output,
arrayRangeFaceZones_,
datasetNo,
mesh,
zMesh[zoneId]
);
// TODO: points
}
//
// Convert face sets - if activated
//
for
(
int partId = arrayRangeFaceSets_.start();
partId < arrayRangeFaceSets_.end();
++partId
)
{
const word selectName = getPartName(partId);
const label datasetNo = partDataset_[partId];
if (!partStatus_[partId] || datasetNo < 0)
{
continue;
}
const faceSet fSet(mesh, selectName);
convertFaceField
(
tf,
output,
arrayRangeFaceSets_,
datasetNo,
mesh,
fSet.toc()
);
// TODO: points
}
}
template<class Type>
void Foam::vtkPV4Foam::convertVolFields
(
@ -52,8 +271,6 @@ void Foam::vtkPV4Foam::convertVolFields
vtkMultiBlockDataSet* output
)
{
const polyBoundaryMesh& patches = mesh.boundaryMesh();
forAllConstIter(IOobjectList, objects, iter)
{
// restrict to GeometricField<Type, ...>
@ -73,209 +290,69 @@ void Foam::vtkPV4Foam::convertVolFields
mesh
);
// Interpolated field (demand driven)
autoPtr<GeometricField<Type, pointPatchField, pointMesh> > ptfPtr;
if (interpFields)
{
if (debug)
{
Info<< "convertVolFieldBlock interpolating:" << tf.name()
<< endl;
}
ptfPtr.reset
(
volPointInterpolation::New(tf.mesh()).interpolate(tf).ptr()
);
}
// Convert
convertVolField(ppInterpList, tf, interpFields, output);
}
}
// Convert activated internalMesh regions
convertVolFieldBlock
template<class Type>
void Foam::vtkPV4Foam::convertDimFields
(
const fvMesh& mesh,
const PtrList<PrimitivePatchInterpolation<primitivePatch> >& ppInterpList,
const IOobjectList& objects,
const bool interpFields,
vtkMultiBlockDataSet* output
)
{
forAllConstIter(IOobjectList, objects, iter)
{
// restrict to DimensionedField<Type, ...>
if
(
tf,
ptfPtr,
output,
arrayRangeVolume_,
regionPolyDecomp_
);
// Convert activated cellZones
convertVolFieldBlock
(
tf,
ptfPtr,
output,
arrayRangeCellZones_,
zonePolyDecomp_
);
// Convert activated cellSets
convertVolFieldBlock
(
tf,
ptfPtr,
output,
arrayRangeCellSets_,
csetPolyDecomp_
);
//
// Convert patches - if activated
//
for
(
int partId = arrayRangePatches_.start();
partId < arrayRangePatches_.end();
++partId
iter()->headerClassName()
!= DimensionedField<Type, volMesh>::typeName
)
{
const word patchName = getPartName(partId);
const label datasetNo = partDataset_[partId];
const label patchId = patches.findPatchID(patchName);
continue;
}
if (!partStatus_[partId] || datasetNo < 0 || patchId < 0)
{
continue;
}
// Load field
DimensionedField<Type, volMesh> dimFld(*iter(), mesh);
const fvPatchField<Type>& ptf = tf.boundaryField()[patchId];
if
// Construct volField with zero-gradient patch fields
IOobject io(dimFld);
io.readOpt() = IOobject::NO_READ;
PtrList<fvPatchField<Type> > patchFields(mesh.boundary().size());
forAll(patchFields, patchI)
{
patchFields.set
(
isType<emptyFvPatchField<Type> >(ptf)
||
patchI,
fvPatchField<Type>::New
(
reader_->GetExtrapolatePatches()
&& !polyPatch::constraintType(patches[patchId].type())
zeroGradientFvPatchField<scalar>::typeName,
mesh.boundary()[patchI],
dimFld
)
)
{
fvPatch p(ptf.patch().patch(), tf.mesh().boundary());
tmp<Field<Type> > tpptf
(
fvPatchField<Type>(p, tf).patchInternalField()
);
convertPatchField
(
tf.name(),
tpptf(),
output,
arrayRangePatches_,
datasetNo
);
if (interpFields)
{
convertPatchPointField
(
tf.name(),
ppInterpList[patchId].faceToPointInterpolate(tpptf)(),
output,
arrayRangePatches_,
datasetNo
);
}
}
else
{
convertPatchField
(
tf.name(),
ptf,
output,
arrayRangePatches_,
datasetNo
);
if (interpFields)
{
convertPatchPointField
(
tf.name(),
ppInterpList[patchId].faceToPointInterpolate(ptf)(),
output,
arrayRangePatches_,
datasetNo
);
}
}
}
//
// Convert face zones - if activated
//
for
(
int partId = arrayRangeFaceZones_.start();
partId < arrayRangeFaceZones_.end();
++partId
)
{
const word zoneName = getPartName(partId);
const label datasetNo = partDataset_[partId];
if (!partStatus_[partId] || datasetNo < 0)
{
continue;
}
const faceZoneMesh& zMesh = mesh.faceZones();
const label zoneId = zMesh.findZoneID(zoneName);
if (zoneId < 0)
{
continue;
}
convertFaceField
(
tf,
output,
arrayRangeFaceZones_,
datasetNo,
mesh,
zMesh[zoneId]
);
// TODO: points
}
//
// Convert face sets - if activated
//
for
GeometricField<Type, fvPatchField, volMesh> volFld
(
int partId = arrayRangeFaceSets_.start();
partId < arrayRangeFaceSets_.end();
++partId
)
{
const word selectName = getPartName(partId);
const label datasetNo = partDataset_[partId];
io,
dimFld.mesh(),
dimFld.dimensions(),
dimFld,
patchFields
);
volFld.correctBoundaryConditions();
if (!partStatus_[partId] || datasetNo < 0)
{
continue;
}
const faceSet fSet(mesh, selectName);
convertFaceField
(
tf,
output,
arrayRangeFaceSets_,
datasetNo,
mesh,
fSet.toc()
);
// TODO: points
}
convertVolField(ppInterpList, volFld, interpFields, output);
}
}