twoPhaseEulerFoam: Added IATE

This commit is contained in:
Henry
2013-10-10 16:29:21 +01:00
parent 6ece4921f1
commit 79467c20ae
59 changed files with 5036 additions and 296 deletions

View File

@ -24,9 +24,19 @@ License
\*---------------------------------------------------------------------------*/
#include "twoPhaseSystem.H"
#include "fvMatrix.H"
#include "PhaseIncompressibleTurbulenceModel.H"
#include "surfaceInterpolate.H"
#include "fixedValueFvsPatchFields.H"
#include "MULES.H"
#include "subCycle.H"
#include "fvcDdt.H"
#include "fvcDiv.H"
#include "fvcSnGrad.H"
#include "fvcFlux.H"
#include "fvcCurl.H"
#include "fvmDdt.H"
#include "fvmLaplacian.H"
#include "fixedValueFvsPatchFields.H"
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
@ -63,6 +73,37 @@ Foam::twoPhaseSystem::twoPhaseSystem
wordList(lookup("phases"))[1]
),
phi_
(
IOobject
(
"phi",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
this->calcPhi()
),
dgdt_
(
IOobject
(
"dgdt",
mesh.time().timeName(),
mesh
),
pos(phase2_)*fvc::div(phi_)/max(phase2_, scalar(0.0001))
),
sigma_
(
"sigma",
dimensionSet(1, 0, -2, 0, 0),
lookup("sigma")
),
Cvm_
(
"Cvm",
@ -170,7 +211,7 @@ Foam::tmp<Foam::volVectorField> Foam::twoPhaseSystem::U() const
}
Foam::tmp<Foam::surfaceScalarField> Foam::twoPhaseSystem::phi() const
Foam::tmp<Foam::surfaceScalarField> Foam::twoPhaseSystem::calcPhi() const
{
return
fvc::interpolate(phase1_)*phase1_.phi()
@ -366,18 +407,242 @@ Foam::tmp<Foam::volScalarField> Foam::twoPhaseSystem::heatTransferCoeff() const
}
void Foam::twoPhaseSystem::solve()
{
const Time& runTime = mesh_.time();
volScalarField& alpha1 = phase1_;
volScalarField& alpha2 = phase2_;
const surfaceScalarField& phi1 = phase1_.phi();
const surfaceScalarField& phi2 = phase2_.phi();
const dictionary& alphaControls = mesh_.solverDict
(
alpha1.name()
);
label nAlphaSubCycles(readLabel(alphaControls.lookup("nAlphaSubCycles")));
label nAlphaCorr(readLabel(alphaControls.lookup("nAlphaCorr")));
Switch implicitPhasePressure
(
alphaControls.lookupOrDefault<Switch>("implicitPhasePressure", false)
);
word alphaScheme("div(phi," + alpha1.name() + ')');
word alpharScheme("div(phir," + alpha1.name() + ')');
alpha1.correctBoundaryConditions();
surfaceScalarField phic("phic", phi_);
surfaceScalarField phir("phir", phi1 - phi2);
surfaceScalarField alpha1f(fvc::interpolate(max(alpha1, scalar(0))));
tmp<surfaceScalarField> pPrimeByA;
if (implicitPhasePressure)
{
const volScalarField& rAU1 = mesh_.lookupObject<volScalarField>
(
IOobject::groupName("rAU", phase1_.name())
);
const volScalarField& rAU2 = mesh_.lookupObject<volScalarField>
(
IOobject::groupName("rAU", phase2_.name())
);
pPrimeByA =
fvc::interpolate((1.0/phase1_.rho())
*rAU1*phase1_.turbulence().pPrime())
+ fvc::interpolate((1.0/phase2_.rho())
*rAU2*phase2_.turbulence().pPrime());
surfaceScalarField phiP
(
pPrimeByA()*fvc::snGrad(alpha1, "bounded")*mesh_.magSf()
);
phic += alpha1f*phiP;
phir += phiP;
}
for (int acorr=0; acorr<nAlphaCorr; acorr++)
{
volScalarField::DimensionedInternalField Sp
(
IOobject
(
"Sp",
runTime.timeName(),
mesh_
),
mesh_,
dimensionedScalar("Sp", dgdt_.dimensions(), 0.0)
);
volScalarField::DimensionedInternalField Su
(
IOobject
(
"Su",
runTime.timeName(),
mesh_
),
// Divergence term is handled explicitly to be
// consistent with the explicit transport solution
fvc::div(phi_)*min(alpha1, scalar(1))
);
forAll(dgdt_, celli)
{
if (dgdt_[celli] > 0.0 && alpha1[celli] > 0.0)
{
Sp[celli] -= dgdt_[celli]*alpha1[celli];
Su[celli] += dgdt_[celli]*alpha1[celli];
}
else if (dgdt_[celli] < 0.0 && alpha1[celli] < 1.0)
{
Sp[celli] += dgdt_[celli]*(1.0 - alpha1[celli]);
}
}
dimensionedScalar totalDeltaT = runTime.deltaT();
if (nAlphaSubCycles > 1)
{
phase1_.phiAlpha() =
dimensionedScalar("0", phase1_.phiAlpha().dimensions(), 0);
}
for
(
subCycle<volScalarField> alphaSubCycle(alpha1, nAlphaSubCycles);
!(++alphaSubCycle).end();
)
{
surfaceScalarField alphaPhic1
(
fvc::flux
(
phic,
alpha1,
alphaScheme
)
+ fvc::flux
(
-fvc::flux(-phir, scalar(1) - alpha1, alpharScheme),
alpha1,
alpharScheme
)
);
// Ensure that the flux at inflow BCs is preserved
forAll(alphaPhic1.boundaryField(), patchi)
{
fvsPatchScalarField& alphaPhic1p =
alphaPhic1.boundaryField()[patchi];
if (!alphaPhic1p.coupled())
{
const scalarField& phi1p = phi1.boundaryField()[patchi];
const scalarField& alpha1p = alpha1.boundaryField()[patchi];
forAll(alphaPhic1p, facei)
{
if (phi1p[facei] < 0)
{
alphaPhic1p[facei] = alpha1p[facei]*phi1p[facei];
}
}
}
}
MULES::explicitSolve
(
geometricOneField(),
alpha1,
phi_,
alphaPhic1,
Sp,
Su,
1,
0
);
if (nAlphaSubCycles > 1)
{
phase1_.phiAlpha() += (runTime.deltaT()/totalDeltaT)*alphaPhic1;
}
else
{
phase1_.phiAlpha() = alphaPhic1;
}
}
if (implicitPhasePressure)
{
fvScalarMatrix alpha1Eqn
(
fvm::ddt(alpha1) - fvc::ddt(alpha1)
- fvm::laplacian(alpha1f*pPrimeByA, alpha1, "bounded")
);
alpha1Eqn.relax();
alpha1Eqn.solve();
phase1_.phiAlpha() += alpha1Eqn.flux();
}
phase2_.phiAlpha() = phi_ - phase1_.phiAlpha();
alpha2 = scalar(1) - alpha1;
Info<< alpha1.name() << " volume fraction = "
<< alpha1.weightedAverage(mesh_.V()).value()
<< " Min(alpha1) = " << min(alpha1).value()
<< " Max(alpha1) = " << max(alpha1).value()
<< endl;
}
}
void Foam::twoPhaseSystem::correct()
{
phase1_.correct();
phase2_.correct();
}
void Foam::twoPhaseSystem::correctTurbulence()
{
phase1_.turbulence().correct();
phase2_.turbulence().correct();
}
bool Foam::twoPhaseSystem::read()
{
if (regIOobject::read())
{
bool readOK = true;
readOK &= phase1_.read();
readOK &= phase2_.read();
readOK &= phase1_.read(*this);
readOK &= phase2_.read(*this);
lookup("sigma") >> sigma_;
lookup("Cvm") >> Cvm_;
lookup("Cl") >> Cl_;
// drag1_->read(*this);
// drag2_->read(*this);
// heatTransfer1_->read(*this);
// heatTransfer2_->read(*this);
lookup("dispersedPhase") >> dispersedPhase_;
lookup("residualPhaseFraction") >> residualPhaseFraction_;
lookup("residualSlip") >> residualSlip_;
return readOK;
}
else