ENH: Noise functionality library and application updates

This commit is contained in:
Andrew Heather
2016-06-29 20:46:20 +01:00
parent fe13ff56fc
commit 7972d0b0e3
12 changed files with 698 additions and 332 deletions

View File

@ -107,7 +107,7 @@ int main(int argc, char *argv[])
#include "setRootCase.H"
#include "createTime.H"
word dictName("noiseDict");
fileName dictName(runTime.system()/"noiseDict");
if (args.optionFound("dict"))
{
dictName = args["dict"];
@ -118,7 +118,6 @@ int main(int argc, char *argv[])
IOobject
(
dictName,
runTime.system(),
runTime,
IOobject::MUST_READ
)

View File

@ -0,0 +1,136 @@
/*--------------------------------*- C++ -*----------------------------------*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: plus |
| \\ / A nd | Web: www.OpenFOAM.com |
| \\/ M anipulation | |
\*---------------------------------------------------------------------------*/
FoamFile
{
version 2.0;
format ascii;
class dictionary;
location "system";
object noiseDict;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
noiseModel surfaceNoise;
surfaceNoiseCoeffs
{
windowModel Hanning;
HanningCoeffs
{
// Window overlap percentage
overlapPercent 50;
symmetric yes;
extended yes;
// Optional number of windows, default = all available
// nWindow 1;
}
/*
windowModel uniform;
uniformCoeffs
{
// Window overlap percentage
overlapPercent 50;
value 1;
// Optional number of windows, default = all available
// nWindow 1;
}
*/
// Input file
inputFile "postProcessing/faceSource1/surface/patch_motorBike_rider-helmet%65/patch_motorBike_rider-helmet%65.case";
// Surface reader
reader ensight;
// Surface writer
writer ensight;
// Collate times for ensight output - ensures geometry is only written once
writeOptions
{
ensight
{
collateTimes 1;
}
}
// Reference density (to convert from kinematic to static pressure)
rhoRef 1.205;
// Number of samples in sampling window
// Must be a power of 2, default = 2^16 (=65536)
N 4096; // 8192; // 4096;
// Lower frequency limit, default = 25Hz
//fl 25;
// Upper frequency limit, default = 10kHz
fu 15000;
// Start time, default = 0s
//startTime 0;
// Write interval for FFT data, default = 1
// fftWriteInterval 100;
}
pointNoiseCoeffs
{
csvFileData
{
fileName "pressureData";
nHeaderLine 1;
refColumn 0;
componentColumns (1);
separator " ";
mergeSeparators yes;
}
HanningCoeffs
{
// Window overlap percentage
overlapPercent 50;
symmetric yes;
extended yes;
// Optional number of windows, default = all available
//nWindow 5;
}
// Graph format, default = raw
graphFormat raw;
// Reference density (to convert from kinematic to static pressure)
rhoRef 1.2;
// Number of samples in sampling window
// Must be a power of 2, default = 2^16 (=65536)
N 4096;
// Lower frequency limit, default = 25Hz
//fl 25;
// Upper frequency limit, default = 10kHz
//fu 10000;
// Start time, default = 0s
//startTime 0;
// Write interval for FFT data, default = 1
fftWriteInterval 100;
}
// ************************************************************************* //

View File

@ -3,7 +3,6 @@ $(Kmesh)/Kmesh.C
fft = fft
$(fft)/fft.C
$(fft)/fftRenumber.C
$(fft)/calcEk.C
$(fft)/kShellIntegration.C
@ -26,6 +25,7 @@ windowModels = windowModels
$(windowModels)/windowModel/windowModel.C
$(windowModels)/windowModel/windowModelNew.C
$(windowModels)/Hanning/Hanning.C
$(windowModels)/uniform/uniform.C
LIB = $(FOAM_LIBBIN)/librandomProcesses

View File

@ -1,9 +1,11 @@
EXE_INC = \
-I$(FFTW_ARCH_PATH)/include \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/sampling/lnInclude \
-I$(LIB_SRC)/surfMesh/lnInclude
LIB_LIBS = \
-L$(FFTW_ARCH_PATH)/lib$(WM_COMPILER_LIB_ARCH) -lfftw3 \
-lfiniteVolume \
-lsampling \
-lsurfMesh

View File

@ -26,9 +26,10 @@ License
#include "noiseFFT.H"
#include "IFstream.H"
#include "DynamicList.H"
#include "fft.H"
#include "SubField.H"
#include "mathematicalConstants.H"
#include "HashSet.H"
#include "fft.H"
using namespace Foam::constant;
@ -44,7 +45,7 @@ Foam::tmp<Foam::scalarField> Foam::noiseFFT::frequencies
)
{
tmp<scalarField> tf(new scalarField(N/2, 0));
scalarField& f = tf();
scalarField& f = tf.ref();
scalar deltaf = 1.0/(N*deltaT);
forAll(f, i)
@ -56,70 +57,80 @@ Foam::tmp<Foam::scalarField> Foam::noiseFFT::frequencies
}
void Foam::noiseFFT::octaveFrequenciesIDs
Foam::tmp<Foam::scalarField> Foam::noiseFFT::PSD(const scalarField& PSDf)
{
return 10*log10(PSDf/sqr(p0));
}
Foam::tmp<Foam::scalarField> Foam::noiseFFT::SPL(const scalarField& Prms2)
{
return 10*log10(Prms2/sqr(p0));
}
void Foam::noiseFFT::octaveBandInfo
(
const scalarField& f,
const scalar fLower,
const scalar fUpper,
const scalar octave,
labelList& freqBandIDs
labelList& fBandIDs,
scalarField& fCentre
)
{
// Set the indices of to the lower frequency bands for the input frequency
// range. Ensure that the centre frequency passes though 1000 Hz
// Low frequency bound given by:
// fLow = f0*(2^(bandI/octave/2))
// Centre frequency given by:
// fCentre = f0*(2^(bandI/octave))
// fLow = f0*(2^(0.5*bandI/octave))
scalar f0 = 1000;
scalar minFrequency = max(fLower, min(f));
// Initial (lowest centre frequency)
scalar fTest = 15.625;
// Lower frequency band limit
label band0Low = ceil(2*octave*log(minFrequency/f0)/log(2.0));
const scalar fRatio = pow(2, 1.0/octave);
const scalar fRatioL2C = pow(2, 0.5/octave);
// Centre frequency band limit
//label band0Centre = ceil(octave*log(fLower/f0)/log(2.0));
// IDs of band IDs
labelHashSet bandIDs(f.size());
scalar fLowerBand = f0*pow(2, band0Low/octave/2);
scalar fRatio = pow(2, 1.0/octave);
// Centre frequencies
DynamicList<scalar> fc;
// Convert to lower band limit
fTest /= fRatioL2C;
bool complete = false;
DynamicList<label> bandIDs(f.size());
forAll(f, i)
{
while (f[i] >= fLowerBand)
if (f[i] >= fTest)
{
bandIDs.append(i);
fLowerBand *= fRatio;
if (fLowerBand > fUpper)
// Advance band if appropriate
while (f[i] > fTest)
{
fTest *= fRatio;
}
fTest /= fRatio;
if (bandIDs.insert(i))
{
// Also store (next) centre frequency
fc.append(fTest*fRatioL2C);
}
fTest *= fRatio;
if (fTest > fUpper)
{
complete = true;
break;
}
}
if (complete) break;
}
freqBandIDs.transfer(bandIDs);
}
fBandIDs = bandIDs.toc();
// Remove the last centre frequency (beyond upper frequency limit)
fc.remove();
Foam::tmp<Foam::scalarField> Foam::noiseFFT::octaveFrequencies
(
const scalarField& f,
const scalar fLower,
const scalar fUpper,
const scalar octave
)
{
labelList freqBandIDs;
octaveFrequenciesIDs(f, fLower, fUpper, octave, freqBandIDs);
tmp<scalarField> tf(new scalarField(f, freqBandIDs));
return tf;
fCentre.transfer(fc);
}
@ -133,7 +144,10 @@ Foam::noiseFFT::noiseFFT
:
scalarField(pressure),
deltaT_(deltaT)
{}
{
scalarField& p = *this;
p -= average(p);
}
Foam::noiseFFT::noiseFFT(const fileName& pFileName, const label skip)
@ -191,6 +205,9 @@ Foam::noiseFFT::noiseFFT(const fileName& pFileName, const label skip)
deltaT_ = (T1 - T0)/pData.size();
this->transfer(pData);
scalarField& p = *this;
p -= average(p);
}
@ -220,6 +237,8 @@ Foam::tmp<Foam::scalarField> Foam::noiseFFT::Pf
const tmp<scalarField>& tpn
) const
{
// Calculate the 2-sided fft
// Note: result not scaled
tmp<scalarField> tPn2
(
mag
@ -234,17 +253,15 @@ Foam::tmp<Foam::scalarField> Foam::noiseFFT::Pf
tpn.clear();
// Only storing the positive half
// Note: storing (N/2) values, DC component at position (0)
tmp<scalarField> tPn
(
new scalarField
(
scalarField::subField(tPn2(), tPn2().size()/2)
scalarField::subField(tPn2(), tPn2().size()/2 + 1)
)
);
scalarField& Pn = tPn();
Pn *= 2.0/sqrt(scalar(tPn2().size()));
Pn[0] /= 2.0;
return tPn;
}
@ -255,7 +272,7 @@ Foam::graph Foam::noiseFFT::meanPf(const windowModel& window) const
const label N = window.nSamples();
const label nWindow = window.nWindow();
scalarField meanPf(N/2, 0.0);
scalarField meanPf(N/2 + 1, 0.0);
for (label windowI = 0; windowI < nWindow; ++windowI)
{
@ -287,14 +304,13 @@ Foam::graph Foam::noiseFFT::RMSmeanPf(const windowModel& window) const
const label N = window.nSamples();
const label nWindow = window.nWindow();
scalarField RMSMeanPf(N/2, 0.0);
scalarField RMSMeanPf(N/2 + 1, 0.0);
for (label windowI = 0; windowI < nWindow; ++windowI)
{
RMSMeanPf += sqr(Pf(window.apply<scalar>(*this, windowI)));
}
RMSMeanPf = sqrt(RMSMeanPf/scalar(nWindow));
RMSMeanPf = sqrt(RMSMeanPf/scalar(nWindow))/scalar(N);
scalar deltaf = 1.0/(N*deltaT_);
scalarField f(RMSMeanPf.size());
@ -305,9 +321,9 @@ Foam::graph Foam::noiseFFT::RMSmeanPf(const windowModel& window) const
return graph
(
"P(f)",
"Prms(f)",
"f [Hz]",
"P(f) [Pa]",
"Prms(f) [Pa]",
f,
RMSMeanPf
);
@ -319,19 +335,30 @@ Foam::graph Foam::noiseFFT::PSDf(const windowModel& window) const
const label N = window.nSamples();
const label nWindow = window.nWindow();
scalarField psd(N/2, 0.0);
scalarField psd(N/2 + 1, 0.0);
for (label windowI = 0; windowI < nWindow; ++windowI)
{
psd += 0.5*sqr(Pf(window.apply<scalar>(*this, windowI)));
psd += sqr(Pf(window.apply<scalar>(*this, windowI)));
}
scalar deltaf = 1.0/(N*deltaT_);
scalar fs = 1.0/deltaT_;
psd /= scalar(nWindow)*fs*N;
psd /= nWindow*deltaf;
// Scaling due to use of 1-sided FFT
// Note: do not scale DC component
psd *= 2;
psd.first() /= 2;
psd.last() /= 2;
scalarField f(psd.size());
if (0) // if (debug)
{
Pout<< "Average PSD: " << average(psd) << endl;
}
forAll(f, i)
{
f[i] = i*deltaf;
@ -348,159 +375,87 @@ Foam::graph Foam::noiseFFT::PSDf(const windowModel& window) const
}
Foam::graph Foam::noiseFFT::PSD(const graph& gPSD) const
Foam::graph Foam::noiseFFT::PSD(const graph& gPSDf) const
{
return graph
(
"PSD(dB)",
"PSD(f)",
"f [Hz]",
"PSD_dB(f) [dB]",
gPSD.x(),
10*log10(gPSD.y()/sqr(p0))
"PSD_dB(f) [dB_Hz]",
gPSDf.x(),
10*log10(gPSDf.y()/sqr(p0))
);
}
Foam::graph Foam::noiseFFT::Lf(const graph& gPf) const
{
return graph
(
"L(f)",
"f [Hz]",
"L(f) [dB]",
gPf.x(),
20*log10(gPf.y()/p0)
);
}
Foam::graph Foam::noiseFFT::Ldelta
Foam::graph Foam::noiseFFT::octaves
(
const graph& gLf,
const labelList& freqBandIDs
const graph& g,
const labelList& freqBandIDs,
bool integrate
) const
{
if (freqBandIDs.size() < 2)
{
WarningInFunction
<< "Octave frequency bands are not defined "
<< "- skipping Ldelta calculation"
<< "- skipping octaves calculation"
<< endl;
return graph
(
"Ldelta",
"fm [Hz]",
"Ldelta [dB]",
"octave",
"x",
"y",
scalarField(),
scalarField()
);
}
const scalarField& f = gLf.x();
const scalarField& Lf = gLf.y();
const scalarField& f = g.x();
const scalarField& data = g.y();
scalarField ldelta(freqBandIDs.size() - 1, 0.0);
scalarField octData(freqBandIDs.size() - 1, 0.0);
scalarField fm(freqBandIDs.size() -1, 0.0);
for (label bandI = 0; bandI < freqBandIDs.size() - 1; bandI++)
{
label f0 = freqBandIDs[bandI];
label f1 = freqBandIDs[bandI+1];
fm[bandI] = f[f0];
label fb0 = freqBandIDs[bandI];
label fb1 = freqBandIDs[bandI+1];
fm[bandI] = f[fb0];
if (f0 == f1) continue;
if (fb0 == fb1) continue;
for (label freqI = f0; freqI < f1; freqI++)
if (integrate)
{
ldelta[bandI] += pow(10, Lf[freqI]/10.0);
for (label freqI = fb0; freqI < fb1; freqI++)
{
label f0 = f[freqI];
label f1 = f[freqI + 1];
scalar dataAve = 0.5*(data[freqI] + data[freqI + 1]);
octData[bandI] += dataAve*(f1 - f0);
}
}
else
{
for (label freqI = fb0; freqI < fb1; freqI++)
{
octData[bandI] += data[freqI];
}
}
ldelta[bandI] = 10*log10(ldelta[bandI]);
}
return graph
(
"Ldelta",
"octaves(f)",
"fm [Hz]",
"Ldelta [dB]",
"octave data",
fm,
ldelta
octData
);
}
Foam::graph Foam::noiseFFT::Pdelta
(
const graph& gPf,
const labelList& freqBandIDs
) const
{
if (freqBandIDs.size() < 2)
{
WarningInFunction
<< "Octave frequency bands are not defined "
<< "- skipping Pdelta calculation"
<< endl;
return graph
(
"Pdelta",
"fm [Hz]",
"Pdelta [dB]",
scalarField(),
scalarField()
);
}
const scalarField& f = gPf.x();
const scalarField& Pf = gPf.y();
scalarField pdelta(freqBandIDs.size() - 1, 0.0);
scalarField fm(pdelta.size());
for (label bandI = 0; bandI < freqBandIDs.size() - 1; bandI++)
{
label f0 = freqBandIDs[bandI];
label f1 = freqBandIDs[bandI+1];
fm[bandI] = f[f0];
if (f0 == f1) continue;
for (label freqI = f0; freqI < f1; freqI++)
{
pdelta[bandI] += sqr(Pf[freqI]);
}
pdelta[bandI] = sqrt((2.0/3.0)*pdelta[bandI]);
}
return graph
(
"Pdelta",
"fm [Hz]",
"Pdelta [dB]",
fm,
pdelta
);
}
Foam::scalar Foam::noiseFFT::Lsum(const graph& gLf) const
{
const scalarField& Lf = gLf.y();
scalar lsum = 0.0;
forAll(Lf, i)
{
lsum += pow(10, Lf[i]/10.0);
}
lsum = 10*log10(lsum);
return lsum;
}
Foam::scalar Foam::noiseFFT::dbToPa(const scalar db) const
{
return p0*pow(10.0, db/20.0);

View File

@ -32,12 +32,12 @@ Description
- meanPf: multi-window mean fft
- RMSmeanPf: multi-window RMS mean fft
- PSDf: multi-window power spectral density (PSD) in frequency domain
- PSD: multi-window power spectral density (PSD) in dB
- Lf: narrow-band pressure-fluctuation level (PFL) in frequency domain
- PSD: power spectral density in dB/Hz
- SPL: sound pressure level in dB
Octave-based data:
- Ldelta: PFL spectrum
- Pdelta: pressure spectrum
- PSD spectrum
- SPL spectrum
SourceFiles
noiseFFT.C
@ -72,6 +72,17 @@ class noiseFFT
//- Time spacing of the raw data
scalar deltaT_;
struct octaveBandInfo
{
label octave;
// IDs of bin boundaries in pressure data
labelList binIDs;
// Centre frequencies for each bin
scalarField centreFreq;
};
public:
@ -104,27 +115,27 @@ public:
const scalar deltaT
);
//- Return the PSD [dB/Hz]
// Input PSD in [Pa^2/Hz]
static tmp<scalarField> PSD(const scalarField& PSDf);
//- Return the SPL [dB]
// Input P(rms)^2 in [Pa^2]
static tmp<scalarField> SPL(const scalarField& Prms2);
//- Return a list of the frequency indices wrt f field that
// correspond to the bands limits for a given octave
static void octaveFrequenciesIDs
static void octaveBandInfo
(
const scalarField& f,
const scalar fLower,
const scalar fUpper,
const scalar octave,
labelList& freqBandIDs
labelList& fBandIDs,
scalarField& fCentre
);
//- Return the 1/octave octave frequency bounds
static tmp<scalarField> octaveFrequencies
(
const scalarField& f,
const scalar fLower,
const scalar fUpper,
const scalar octave
);
//- Return the graph of p(t)
//- Return the graph of pressure as a function of time
graph pt() const;
//- Return the fft of the given pressure data
@ -141,32 +152,18 @@ public:
// pressure data [Pa^2/Hz]
graph PSDf(const windowModel& window) const;
//- Return the PSD [dB]
graph PSD(const graph& gPSD) const;
//- Return the PSD [dB/Hz]
// Takes PSD in [Pa^2/Hz]
graph PSD(const graph& gPSDf) const;
//- Return the narrow-band PFL (pressure-fluctuation level)
// spectrum [dB]
graph Lf(const graph& gPf) const;
//- Return the octave-band PFL spectrum starting at octave
// frequencies given by the supplied frequency bands [dB]
graph Ldelta
//- Generate octave data
graph octaves
(
const graph& gLf,
const labelList& freqBandIDs
const graph& g,
const labelList& freqBandIDs,
bool integrate
) const;
//- Return the octave-band pressure spectrum at octave
// frequencies given by the supplied frequency bands [dB]
graph Pdelta
(
const graph& gLf,
const labelList& freqBandIDs
) const;
//- Return the total PFL as the sum of Lf over all frequencies
scalar Lsum(const graph& gLf) const;
//- Convert the db into Pa
scalar dbToPa(const scalar db) const;

View File

@ -2,7 +2,7 @@
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2015 OpenCFD Ltd.
\\ / A nd | Copyright (C) 2015-2016 OpenCFD Ltd.
\\/ M anipulation |
-------------------------------------------------------------------------------
License
@ -97,12 +97,13 @@ Foam::label Foam::noiseModel::findStartTimeIndex
Foam::noiseModel::noiseModel(const dictionary& dict)
:
dict_(dict),
pRef_(dict.lookupOrDefault("pRef", 0)),
nSamples_(dict.lookupOrDefault("N", 65536)),
fLower_(dict.lookupOrDefault("fl", 25)),
fUpper_(dict.lookupOrDefault("fu", 10000)),
startTime_(dict.lookupOrDefault("startTime", 0)),
windowModelPtr_(windowModel::New(dict, nSamples_))
rhoRef_(dict.lookupOrDefault<scalar>("rhoRef", 1)),
nSamples_(dict.lookupOrDefault<label>("N", 65536)),
fLower_(dict.lookupOrDefault<scalar>("fl", 25)),
fUpper_(dict.lookupOrDefault<scalar>("fu", 10000)),
startTime_(dict.lookupOrDefault<scalar>("startTime", 0)),
windowModelPtr_(windowModel::New(dict, nSamples_)),
graphFormat_(dict.lookupOrDefault<word>("graphFormat", "raw"))
{
// Check number of samples - must be a power of 2 for our FFT
bool powerOf2 = ((nSamples_ != 0) && !(nSamples_ & (nSamples_ - 1)));

View File

@ -30,7 +30,7 @@ Description
Data is read from a dictionary, e.g.
\verbatim
pRef 0;
rhoRef 0;
N 4096;
fl 25;
fu 25;
@ -40,10 +40,12 @@ Description
where
\table
Property | Description | Required | Default value
pRef | Reference pressure | no | 0
rhoRef | Reference density | no | 1
N | Number of samples in sampling window | no | 65536 (2^16)
fl | Lower frequency bounds | no | 25
fu | Upper frequency bounds | no | 10000
startTime | Start time | no | 0
graphFormat | Graph format | no | raw
\endtable
Note
@ -94,8 +96,8 @@ protected:
//- Copy of dictionary used for construction
const dictionary dict_;
//- Reference pressure
scalar pRef_;
//- Reference density (to convert from kinematic to static pressure)
scalar rhoRef_;
//- Number of samples in sampling window, default = 2^16
label nSamples_;
@ -112,6 +114,8 @@ protected:
//- Window model
autoPtr<windowModel> windowModelPtr_;
//- Graph format
word graphFormat_;
// Protected Member Functions

View File

@ -43,7 +43,7 @@ addToRunTimeSelectionTable(noiseModel, pointNoise, dictionary);
void pointNoise::filterTimeData
(
const CSV<scalar>& pData,
const Function1Types::CSV<scalar>& pData,
scalarField& t,
scalarField& p
)
@ -80,12 +80,13 @@ void pointNoise::calculate()
Info<< "Reading data file" << endl;
CSV<scalar> pData("pressure", dict_, "Data");
fileName baseFileName(pData.fName().lessExt());
Function1Types::CSV<scalar> pData("pressure", dict_, "Data");
// Time and pressure history data
scalarField t, p;
filterTimeData(pData, t, p);
p *= rhoRef_;
Info<< " read " << t.size() << " values" << nl << endl;
Info<< "Creating noise FFT" << endl;
@ -93,38 +94,94 @@ void pointNoise::calculate()
// Determine the windowing
windowModelPtr_->validate(t.size());
const windowModel& win = windowModelPtr_();
const scalar deltaf = 1.0/(deltaT*win.nSamples());
fileName outDir(fileName("postProcessing")/"noise"/typeName);
// Create the fft
noiseFFT nfft(deltaT, p);
nfft -= pRef_;
graph Pf(nfft.RMSmeanPf(windowModelPtr_()));
Info<< " Creating graph for " << Pf.title() << endl;
Pf.write(baseFileName + graph::wordify(Pf.title()), graphFormat_);
// Narrow band data
// ----------------
graph Lf(nfft.Lf(Pf));
Info<< " Creating graph for " << Lf.title() << endl;
Lf.write(baseFileName + graph::wordify(Lf.title()), graphFormat_);
// RMS pressure [Pa]
graph Prmsf(nfft.RMSmeanPf(win));
Info<< " Creating graph for " << Prmsf.title() << endl;
Prmsf.write(outDir, graph::wordify(Prmsf.title()), graphFormat_);
graph PSDf(nfft.PSDf(windowModelPtr_()));
// PSD [Pa^2/Hz]
graph PSDf(nfft.PSDf(win));
Info<< " Creating graph for " << PSDf.title() << endl;
PSDf.write(baseFileName + graph::wordify(PSDf.title()), graphFormat_);
PSDf.write(outDir, graph::wordify(PSDf.title()), graphFormat_);
graph PSD(nfft.PSD(PSDf));
Info<< " Creating graph for " << PSD.title() << endl;
PSD.write(baseFileName + graph::wordify(PSD.title()), graphFormat_);
// PSD [dB/Hz]
graph PSDg
(
"PSD_dB_Hz(f)",
"f [Hz]",
"PSD(f) [dB_Hz]",
Prmsf.x(),
noiseFFT::PSD(PSDf.y())
);
Info<< " Creating graph for " << PSDg.title() << endl;
PSDg.write(outDir, graph::wordify(PSDg.title()), graphFormat_);
// SPL [dB]
graph SPLg
(
"SPL_dB(f)",
"f [Hz]",
"SPL(f) [dB]",
Prmsf.x(),
noiseFFT::SPL(PSDf.y()*deltaf)
);
Info<< " Creating graph for " << SPLg.title() << endl;
SPLg.write(outDir, graph::wordify(SPLg.title()), graphFormat_);
labelList octave13BandIDs;
noiseFFT::octaveFrequenciesIDs(Pf.x(), fLower_, fUpper_, 3, octave13BandIDs);
scalarField octave13FreqCentre;
noiseFFT::octaveBandInfo
(
Prmsf.x(),
fLower_,
fUpper_,
3,
octave13BandIDs,
octave13FreqCentre
);
graph Ldelta(nfft.Ldelta(Lf, octave13BandIDs));
Info<< " Creating graph for " << Ldelta.title() << endl;
Ldelta.write(baseFileName + graph::wordify(Ldelta.title()), graphFormat_);
graph Pdelta(nfft.Pdelta(Pf, octave13BandIDs));
Info<< " Creating graph for " << Pdelta.title() << endl;
Pdelta.write(baseFileName + graph::wordify(Pdelta.title()), graphFormat_);
// 1/3 octave data
// ---------------
// PSD [Pa^2/Hz]
graph PSD13f(nfft.octaves(PSDf, octave13BandIDs, false));
// Integrated PSD = P(rms)^2 [Pa^2]
graph Prms13f2(nfft.octaves(PSDf, octave13BandIDs, true));
graph PSD13g
(
"PSD13_dB_Hz(fm)",
"fm [Hz]",
"PSD(fm) [dB_Hz]",
octave13FreqCentre,
noiseFFT::PSD(PSD13f.y())
);
Info<< " Creating graph for " << PSD13g.title() << endl;
PSD13g.write(outDir, graph::wordify(PSD13g.title()), graphFormat_);
graph SPL13g
(
"SPL13_dB(fm)",
"fm [Hz]",
"SPL(fm) [dB]",
octave13FreqCentre,
noiseFFT::SPL(Prms13f2.y())
);
Info<< " Creating graph for " << SPL13g.title() << endl;
SPL13g.write(outDir, graph::wordify(SPL13g.title()), graphFormat_);
}
@ -132,8 +189,7 @@ void pointNoise::calculate()
pointNoise::pointNoise(const dictionary& dict)
:
noiseModel(dict),
graphFormat_(dict.lookupOrDefault<word>("graphFormat", "raw"))
noiseModel(dict)
{}

View File

@ -100,17 +100,11 @@ class pointNoise
protected:
// Protected data
//- Graph format
word graphFormat_;
// Protected Member Functions
void filterTimeData
(
const CSV<scalar>& pData,
const Function1Types::CSV<scalar>& pData,
scalarField& t,
scalarField& p
);

View File

@ -46,6 +46,8 @@ addToRunTimeSelectionTable(noiseModel, surfaceNoise, dictionary);
void surfaceNoise::initialise(const dictionary& dict)
{
label nAvailableTimes = 0;
// All reading performed on the master processor only
if (Pstream::master())
{
@ -81,10 +83,22 @@ void surfaceNoise::initialise(const dictionary& dict)
startTimeIndex_ = findStartTimeIndex(allTimes, startTime_);
// Determine the windowing
label nAvailableTimes = allTimes.size() - startTimeIndex_;
label nRequiredTimes = windowModelPtr_->validate(nAvailableTimes);
nAvailableTimes = allTimes.size() - startTimeIndex_;
}
Pstream::scatter(pIndex_);
Pstream::scatter(startTimeIndex_);
Pstream::scatter(nAvailableTimes);
// Note: all processors should call the windowing validate function
label nRequiredTimes = windowModelPtr_->validate(nAvailableTimes);
if (Pstream::master())
{
// Restrict times
const instantList allTimes = readerPtr_->times();
times_.setSize(nRequiredTimes);
forAll(times_, timeI)
{
@ -92,13 +106,12 @@ void surfaceNoise::initialise(const dictionary& dict)
}
deltaT_ = checkUniformTimeStep(times_);
// Read the surface geometry
const meshedSurface& surf = readerPtr_->geometry();
nFace_ = surf.size();
}
Pstream::scatter(pIndex_);
Pstream::scatter(times_);
Pstream::scatter(startTimeIndex_);
Pstream::scatter(deltaT_);
Pstream::scatter(nFace_);
}
@ -154,6 +167,9 @@ void surfaceNoise::readSurfaceData
// Read pressure at all faces for time timeI
scalarField p(readerPtr_->field(timeI, pIndex_, scalar(0)));
// Apply conversions
p *= rhoRef_;
// Send subset of faces to each processor
for (label procI = 0; procI < Pstream::nProcs(); procI++)
{
@ -201,7 +217,7 @@ void surfaceNoise::readSurfaceData
forAll(p, faceI)
{
pData[faceI][i] = p[faceI];
pData[faceI][i] = p[faceI]*rhoRef_;
}
}
}
@ -214,7 +230,7 @@ void surfaceNoise::readSurfaceData
}
void surfaceNoise::writeSurfaceData
Foam::scalar surfaceNoise::writeSurfaceData
(
const word& fName,
const word& groupName,
@ -245,6 +261,7 @@ void surfaceNoise::writeSurfaceData
pBufs.finishedSends();
scalar areaAverage = 0;
if (Pstream::master())
{
const meshedSurface& surf = readerPtr_->geometry();
@ -278,7 +295,20 @@ void surfaceNoise::writeSurfaceData
allData,
false
);
// TODO: Move faceAreas to demand-driven function in MeshedSurface
scalarField faceAreas(surf.faces().size());
forAll(faceAreas, i)
{
faceAreas[i] = surf.faces()[i].mag(surf.points());
}
// areaAverage = sum(allData*faceAreas)/sum(faceAreas);
areaAverage = sum(allData)/allData.size();
}
Pstream::scatter(areaAverage);
return areaAverage;
}
else
{
@ -294,6 +324,91 @@ void surfaceNoise::writeSurfaceData
data,
false
);
// TODO: Move faceAreas to demand-driven function in MeshedSurface
scalarField faceAreas(surf.faces().size());
forAll(faceAreas, i)
{
faceAreas[i] = surf.faces()[i].mag(surf.points());
}
// return sum(data*faceAreas)/sum(faceAreas);
return sum(data)/data.size();
}
}
Foam::scalar surfaceNoise::surfaceAverage
(
const scalarField& data,
const labelList& procFaceOffset
) const
{
if (Pstream::parRun())
{
// Collect the surface data so that we can output the surfaces
PstreamBuffers pBufs(Pstream::nonBlocking);
if (!Pstream::master())
{
UOPstream toProc(0, pBufs);
toProc << data;
}
pBufs.finishedSends();
scalar areaAverage = 0;
if (Pstream::master())
{
const meshedSurface& surf = readerPtr_->geometry();
scalarField allData(surf.size());
forAll(data, faceI)
{
// Master procFaceOffset is zero...
allData[faceI] = data[faceI];
}
for (label procI = 1; procI < Pstream::nProcs(); procI++)
{
UIPstream fromProc(procI, pBufs);
scalarList dataSlice(fromProc);
forAll(dataSlice, i)
{
label faceI = procFaceOffset[procI] + i;
allData[faceI] = dataSlice[i];
}
}
// TODO: Move faceAreas to demand-driven function in MeshedSurface
scalarField faceAreas(surf.faces().size());
forAll(faceAreas, i)
{
faceAreas[i] = surf.faces()[i].mag(surf.points());
}
// areaAverage = sum(allData*faceAreas)/sum(faceAreas);
areaAverage = sum(allData)/allData.size();
}
Pstream::scatter(areaAverage);
return areaAverage;
}
else
{
const meshedSurface& surf = readerPtr_->geometry();
// TODO: Move faceAreas to demand-driven function in MeshedSurface
scalarField faceAreas(surf.faces().size());
forAll(faceAreas, i)
{
faceAreas[i] = surf.faces()[i].mag(surf.points());
}
// return sum(data*faceAreas)/sum(faceAreas);
return sum(data)/data.size();
}
}
@ -358,123 +473,226 @@ void surfaceNoise::calculate()
const label nLocalFace = pData.size();
const scalarField freq1(noiseFFT::frequencies(nSamples_, deltaT_));
const label nFFT = freq1.size()/fftWriteInterval_;
List<scalarField> surfPf(nFFT);
List<scalarField> surfLf(nFFT);
List<scalarField> surfPSD(nFFT);
forAll(surfPf, freqI)
List<scalarField> surfPrmsf(nFFT);
List<scalarField> surfPSDf(nFFT);
forAll(surfPrmsf, freqI)
{
surfPf[freqI].setSize(nLocalFace);
surfLf[freqI].setSize(nLocalFace);
surfPSD[freqI].setSize(nLocalFace);
surfPrmsf[freqI].setSize(nLocalFace);
surfPSDf[freqI].setSize(nLocalFace);
}
// Storage for 1/3 octave data
labelList octave13BandIDs;
noiseFFT::octaveFrequenciesIDs(freq1, fLower_, fUpper_, 3, octave13BandIDs);
scalarField octave13FreqCentre;
noiseFFT::octaveBandInfo
(
freq1,
fLower_,
fUpper_,
3,
octave13BandIDs,
octave13FreqCentre
);
List<scalarField> surfPdelta(octave13BandIDs.size() - 1);
List<scalarField> surfLdelta(octave13BandIDs.size() - 1);
forAll(surfPdelta, freqI)
List<scalarField> surfPSD13f(octave13BandIDs.size() - 1);
List<scalarField> surfPrms13f2(octave13BandIDs.size() - 1);
forAll(surfPSD13f, freqI)
{
surfPdelta[freqI].setSize(nLocalFace);
surfLdelta[freqI].setSize(nLocalFace);
surfPSD13f[freqI].setSize(nLocalFace);
surfPrms13f2[freqI].setSize(nLocalFace);
}
const windowModel& win = windowModelPtr_();
forAll(pData, faceI)
{
const scalarField& p = pData[faceI];
noiseFFT nfft(deltaT_, p);
nfft -= pRef_;
graph Pf(nfft.RMSmeanPf(windowModelPtr_()));
graph Lf(nfft.Lf(Pf));
graph PSDf(nfft.PSDf(windowModelPtr_()));
graph PSD(nfft.PSD(PSDf));
graph Prmsf(nfft.RMSmeanPf(win));
graph PSDf(nfft.PSDf(win));
// Store the frequency results in slot for face of surface
forAll(surfPf, i)
forAll(surfPrmsf, i)
{
label freqI = (i + 1)*fftWriteInterval_ - 1;
surfPf[i][faceI] = Pf.y()[freqI];
surfLf[i][faceI] = Lf.y()[freqI];
surfPSD[i][faceI] = PSD.y()[freqI];
surfPrmsf[i][faceI] = Prmsf.y()[freqI];
surfPSDf[i][faceI] = PSDf.y()[freqI];
}
graph Pdelta(nfft.Pdelta(Pf, octave13BandIDs));
graph Ldelta(nfft.Ldelta(Lf, octave13BandIDs));
// PSD [Pa^2/Hz]
graph PSD13f(nfft.octaves(PSDf, octave13BandIDs, false));
// Integrated PSD = P(rms)^2 [Pa^2]
graph Prms13f2(nfft.octaves(PSDf, octave13BandIDs, true));
// Store the 1/3 octave results in slot for face of surface
forAll(surfPdelta, freqI)
forAll(surfPSD13f, freqI)
{
surfPdelta[freqI][faceI] = Pdelta.y()[freqI];
surfLdelta[freqI][faceI] = Ldelta.y()[freqI];
surfPSD13f[freqI][faceI] = PSD13f.y()[freqI];
surfPrms13f2[freqI][faceI] = Prms13f2.y()[freqI];
}
// Free the storage for p
// p.clear();
}
Info<< "Writing fft surface data" << endl;
// Output directory for graphs
fileName outDir(fileName("postProcessing")/"noise"/typeName);
forAll(surfPf, i)
const scalar deltaf = 1.0/(deltaT_*win.nSamples());
Info<< "Writing fft surface data" << endl;
{
label freqI = i*fftWriteInterval_;
const word& fName = inputFileName_.name(true);
const word gName = "fft";
writeSurfaceData
scalarField PrmsfAve(surfPrmsf.size(), 0);
scalarField PSDfAve(surfPrmsf.size(), 0);
scalarField fOut(surfPrmsf.size(), 0);
forAll(surfPrmsf, i)
{
label freqI = i*fftWriteInterval_;
fOut[i] = freq1[freqI];
const word& fName = inputFileName_.name(true);
const word gName = "fft";
PrmsfAve[i] = writeSurfaceData
(
fName,
gName,
"Prmsf",
freq1[freqI],
surfPrmsf[i],
procFaceOffset
);
PSDfAve[i] = writeSurfaceData
(
fName,
gName,
"PSDf",
freq1[freqI],
surfPSDf[i],
procFaceOffset
);
writeSurfaceData
(
fName,
gName,
"PSD",
freq1[freqI],
noiseFFT::PSD(surfPSDf[i]),
procFaceOffset
);
writeSurfaceData
(
fName,
gName,
"SPL",
freq1[freqI],
noiseFFT::SPL(surfPSDf[i]*deltaf),
procFaceOffset
);
}
graph Prmsfg
(
fName,
gName,
"Pf",
freq1[freqI],
surfPf[i],
procFaceOffset
"Average Prms(f)",
"f [Hz]",
"P(f) [Pa]",
fOut,
PrmsfAve
);
writeSurfaceData
Prmsfg.write(outDir, graph::wordify(Prmsfg.title()), graphFormat_);
graph PSDfg
(
fName,
gName,
"Lf",
freq1[freqI],
surfLf[i],
procFaceOffset
"Average PSD_f(f)",
"f [Hz]",
"PSD(f) [PaPa_Hz]",
fOut,
PSDfAve
);
writeSurfaceData
PSDfg.write(outDir, graph::wordify(PSDfg.title()), graphFormat_);
graph PSDg
(
fName,
gName,
"PSD",
freq1[freqI],
surfPSD[i],
procFaceOffset
"Average PSD_dB_Hz(f)",
"f [Hz]",
"PSD(f) [dB_Hz]",
fOut,
noiseFFT::PSD(PSDfAve)
);
PSDg.write(outDir, graph::wordify(PSDg.title()), graphFormat_);
graph SPLg
(
"Average SPL_dB(f)",
"f [Hz]",
"SPL(f) [dB]",
fOut,
noiseFFT::SPL(PSDfAve*deltaf)
);
SPLg.write(outDir, graph::wordify(SPLg.title()), graphFormat_);
}
Info<< "Writing one-third octave surface data" << endl;
forAll(surfPdelta, i)
Info<< "Writing one-third octave surface data" << endl;
{
const word& fName = inputFileName_.name(true);
const word gName = "oneThirdOctave";
writeSurfaceData
scalarField PSDfAve(surfPSD13f.size(), 0);
scalarField Prms13f2Ave(surfPSD13f.size(), 0);
forAll(surfPSD13f, i)
{
const word& fName = inputFileName_.name(true);
const word gName = "oneThirdOctave";
PSDfAve[i] = writeSurfaceData
(
fName,
gName,
"PSD13f",
octave13FreqCentre[i],
surfPSD13f[i],
procFaceOffset
);
writeSurfaceData
(
fName,
gName,
"PSD13",
octave13FreqCentre[i],
noiseFFT::PSD(surfPSD13f[i]),
procFaceOffset
);
writeSurfaceData
(
fName,
gName,
"SPL13",
octave13FreqCentre[i],
noiseFFT::SPL(surfPrms13f2[i]),
procFaceOffset
);
Prms13f2Ave[i] = surfaceAverage(surfPrms13f2[i], procFaceOffset);
}
graph PSD13g
(
fName,
gName,
"Pdelta",
octave13BandIDs[i],
surfPdelta[i],
procFaceOffset
"Average PSD13_dB_Hz(fm)",
"fm [Hz]",
"PSD(fm) [dB_Hz]",
octave13FreqCentre,
noiseFFT::PSD(PSDfAve)
);
writeSurfaceData
PSD13g.write(outDir, graph::wordify(PSD13g.title()), graphFormat_);
graph SPL13g
(
fName,
gName,
"Ldelta",
octave13BandIDs[i],
surfLdelta[i],
procFaceOffset
"Average SPL13_dB(fm)",
"fm [Hz]",
"SPL(fm) [dB]",
octave13FreqCentre,
noiseFFT::SPL(Prms13f2Ave)
);
SPL13g.write(outDir, graph::wordify(SPL13g.title()), graphFormat_);
}
}
@ -485,6 +703,3 @@ void surfaceNoise::calculate()
} // End namespace Foam
// ************************************************************************* //

View File

@ -158,7 +158,8 @@ protected:
);
//- Write surface data to file
void writeSurfaceData
// Returns the area average value
scalar writeSurfaceData
(
const word& fName,
const word& groupName,
@ -168,6 +169,12 @@ protected:
const labelList& procFaceOffset
) const;
//- Calculate the area average value
scalar surfaceAverage
(
const scalarField& data,
const labelList& procFaceOffset
) const;
public: