tidying up

This commit is contained in:
andy
2009-01-20 12:09:12 +00:00
parent ce12ace5a6
commit 7e08613522
3 changed files with 100 additions and 102 deletions

View File

@ -30,19 +30,19 @@ License
#include "mathematicalConstants.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
defineTypeNameAndDebug(unitInjector, 0);
defineTypeNameAndDebug(unitInjector, 0);
addToRunTimeSelectionTable
(
injectorType,
unitInjector,
dictionary
);
addToRunTimeSelectionTable
(
injectorType,
unitInjector,
dictionary
);
}
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
@ -74,26 +74,36 @@ Foam::unitInjector::unitInjector
// check if time entries for soi and eoi match
if (mag(massFlowRateProfile_[0][0]-TProfile_[0][0]) > SMALL)
{
FatalError << "unitInjector::unitInjector(const time& t, const dictionary dict) " << endl
<< " start-times do not match for TemperatureProfile and massFlowRateProfile."
<< abort(FatalError);
FatalErrorIn
(
"unitInjector::unitInjector(const time& t, const dictionary dict)"
)<< "start-times do not match for TemperatureProfile and "
<< " massFlowRateProfile." << nl << exit (FatalError);
}
if (mag(massFlowRateProfile_[massFlowRateProfile_.size()-1][0]-TProfile_[TProfile_.size()-1][0]) > SMALL)
if
(
mag(massFlowRateProfile_[massFlowRateProfile_.size()-1][0]
- TProfile_[TProfile_.size()-1][0])
> SMALL
)
{
FatalError << "unitInjector::unitInjector(const time& t, const dictionary dict) " << endl
<< " end-times do not match for TemperatureProfile and massFlowRateProfile."
<< abort(FatalError);
FatalErrorIn
(
"unitInjector::unitInjector(const time& t, const dictionary dict)"
)<< "end-times do not match for TemperatureProfile and "
<< "massFlowRateProfile." << nl << exit(FatalError);
}
// convert CA to real time
forAll(massFlowRateProfile_, i)
{
massFlowRateProfile_[i][0] = t.userTimeToTime(massFlowRateProfile_[i][0]);
massFlowRateProfile_[i][0] =
t.userTimeToTime(massFlowRateProfile_[i][0]);
velocityProfile_[i][0] = massFlowRateProfile_[i][0];
injectionPressureProfile_[i][0] = massFlowRateProfile_[i][0];
}
forAll(TProfile_, i)
{
TProfile_[i][0] = t.userTimeToTime(TProfile_[i][0]);
@ -105,14 +115,14 @@ Foam::unitInjector::unitInjector
{
// correct the massFlowRateProfile to match the injected mass
massFlowRateProfile_[i][1] *= mass_/integratedMFR;
CdProfile_[i][0] = massFlowRateProfile_[i][0];
CdProfile_[i][1] = Cd_;
}
// Normalize the direction vector
direction_ /= mag(direction_);
setTangentialVectors();
// check molar fractions
@ -124,9 +134,9 @@ Foam::unitInjector::unitInjector
if (mag(Xsum - 1.0) > SMALL)
{
Info << "Warning!!!\n unitInjector::unitInjector(const time& t, Istream& is)"
<< "X does not add up to 1.0, correcting molar fractions."
<< endl;
WarningIn("unitInjector::unitInjector(const time& t, Istream& is)")
<< "X does not sum to 1.0, correcting molar fractions."
<< nl << endl;
forAll(X_, i)
{
X_[i] /= Xsum;
@ -169,18 +179,18 @@ Foam::label Foam::unitInjector::nParcelsToInject
const scalar time1
) const
{
scalar mInj = mass_*(fractionOfInjection(time1)-fractionOfInjection(time0));
label nParcels = label(mInj/averageParcelMass_ + 0.49);
return nParcels;
}
const Foam::vector Foam::unitInjector::position(const label n) const
{
return position_;
}
Foam::vector Foam::unitInjector::position
(
const label n,
@ -212,7 +222,7 @@ Foam::vector Foam::unitInjector::position
scalar iAngle = 2.0*mathematicalConstant::pi*rndGen.scalar01();
return
(
(
position_
+ iRadius
* (
@ -220,22 +230,25 @@ Foam::vector Foam::unitInjector::position
+ tangentialInjectionVector2_*sin(iAngle)
)
);
}
return position_;
}
Foam::label Foam::unitInjector::nHoles() const
{
return 1;
}
Foam::scalar Foam::unitInjector::d() const
{
return d_;
}
const Foam::vector& Foam::unitInjector::direction
(
const label i,
@ -245,6 +258,7 @@ const Foam::vector& Foam::unitInjector::direction
return direction_;
}
Foam::scalar Foam::unitInjector::mass
(
const scalar time0,
@ -255,7 +269,7 @@ Foam::scalar Foam::unitInjector::mass
{
scalar mInj = mass_*(fractionOfInjection(time1)-fractionOfInjection(time0));
// correct mass if calculation is 2D
// correct mass if calculation is 2D
if (twoD)
{
mInj *= 0.5*angleOfWedge/mathematicalConstant::pi;
@ -264,82 +278,80 @@ Foam::scalar Foam::unitInjector::mass
return mInj;
}
Foam::scalar Foam::unitInjector::mass() const
{
return mass_;
}
const Foam::scalarField& Foam::unitInjector::X() const
{
return X_;
}
Foam::List<Foam::unitInjector::pair> Foam::unitInjector::T() const
{
return TProfile_;
}
Foam::scalar Foam::unitInjector::T(const scalar time) const
{
return getTableValue(TProfile_, time);
}
Foam::scalar Foam::unitInjector::tsoi() const
{
return massFlowRateProfile_[0][0];
}
Foam::scalar Foam::unitInjector::teoi() const
{
return massFlowRateProfile_[massFlowRateProfile_.size()-1][0];
}
Foam::scalar Foam::unitInjector::massFlowRate
(
const scalar time
) const
Foam::scalar Foam::unitInjector::massFlowRate(const scalar time) const
{
return getTableValue(massFlowRateProfile_, time);
}
Foam::scalar Foam::unitInjector::injectionPressure
(
const scalar time
) const
Foam::scalar Foam::unitInjector::injectionPressure(const scalar time) const
{
return getTableValue(injectionPressureProfile_, time);
}
Foam::scalar Foam::unitInjector::velocity
(
const scalar time
) const
Foam::scalar Foam::unitInjector::velocity(const scalar time) const
{
return getTableValue(velocityProfile_, time);
}
Foam::List<Foam::unitInjector::pair> Foam::unitInjector::CdProfile() const
{
return CdProfile_;
}
Foam::scalar Foam::unitInjector::Cd
(
const scalar time
) const
Foam::scalar Foam::unitInjector::Cd(const scalar time) const
{
return Cd_;
}
Foam::scalar Foam::unitInjector::fractionOfInjection(const scalar time) const
{
return integrateTable(massFlowRateProfile_, time)/mass_;
}
Foam::scalar Foam::unitInjector::injectedMass
(
const scalar t
) const
Foam::scalar Foam::unitInjector::injectedMass(const scalar t) const
{
return mass_*fractionOfInjection(t);
}
@ -351,7 +363,6 @@ void Foam::unitInjector::correctProfiles
const scalar referencePressure
)
{
scalar A = 0.25*mathematicalConstant::pi*pow(d_, 2.0);
scalar pDummy = 1.0e+5;
@ -365,14 +376,17 @@ void Foam::unitInjector::correctProfiles
}
}
Foam::vector Foam::unitInjector::tan1(const label n) const
Foam::vector Foam::unitInjector::tan1(const label) const
{
return tangentialInjectionVector1_;
}
Foam::vector Foam::unitInjector::tan2(const label n) const
Foam::vector Foam::unitInjector::tan2(const label) const
{
return tangentialInjectionVector2_;
}
// ************************************************************************* //

View File

@ -108,31 +108,19 @@ void reitzKHRT::breakupParcel
// frequency of the fastest growing KH-wave
scalar omegaKH =
(
0.34 + 0.38*pow(weGas, 1.5)
)/
(
(1 + ohnesorge)*(1 + 1.4*pow(taylor, 0.6))
)*sqrt(sigma/(rhoLiquid*pow(r, 3)) );
(0.34 + 0.38*pow(weGas, 1.5))
/((1 + ohnesorge)*(1 + 1.4*pow(taylor, 0.6)))
*sqrt(sigma/(rhoLiquid*pow(r, 3)));
// ... and the corresponding KH wave-length.
// corresponding KH wave-length.
scalar lambdaKH =
9.02*r*
(
1.0 + 0.45*sqrt(ohnesorge)
)*
(
1.0 + 0.4*pow(taylor, 0.7)
)/
pow
(
(
1.0 + 0.865*pow(weGas, 1.67)
),
0.6
);
9.02
*r
*(1.0 + 0.45*sqrt(ohnesorge))
*(1.0 + 0.4*pow(taylor, 0.7))
/pow(1.0 + 0.865*pow(weGas, 1.67), 0.6);
// the characteristic Kelvin-Helmholtz breakup time
// characteristic Kelvin-Helmholtz breakup time
scalar tauKH = 3.726*b1_*r/(omegaKH*lambdaKH);
// stable KH diameter
@ -140,7 +128,6 @@ void reitzKHRT::breakupParcel
// the frequency of the fastest growing RT wavelength.
scalar helpVariable = mag(gt*(rhoLiquid - rhoGas));
scalar omegaRT = sqrt
(
2.0*pow(helpVariable, 1.5)
@ -148,12 +135,9 @@ void reitzKHRT::breakupParcel
);
// RT wave number
scalar KRT = sqrt
(
helpVariable/(3.0*sigma + VSMALL)
);
scalar KRT = sqrt(helpVariable/(3.0*sigma + VSMALL));
// the wavelength of the fastest growing Raleigh-Taylor frequency
// wavelength of the fastest growing RT frequency
scalar lambdaRT = 2.0*mathematicalConstant::pi*cRT_/(KRT + VSMALL);
// if lambdaRT < diameter, then RT waves are growing on the surface
@ -163,7 +147,7 @@ void reitzKHRT::breakupParcel
p.ct() += deltaT;
}
// the characteristic RT breakup time
// characteristic RT breakup time
scalar tauRT = cTau_/(omegaRT + VSMALL);
// check if we have RT breakup
@ -178,7 +162,7 @@ void reitzKHRT::breakupParcel
// otherwise check for KH breakup
else if (dc < p.d())
{
// no breakup below weber = 12
// no breakup below Weber = 12
if (weGas > weberLimit_)
{
@ -188,25 +172,24 @@ void reitzKHRT::breakupParcel
// reduce the diameter according to the rate-equation
p.d() = (fraction*dc + p.d())/(1.0 + fraction);
scalar dc3 = pow(dc, 3.0);
scalar ms = rhoLiquid*Np*dc3*mathematicalConstant::pi/6.0;
scalar ms = rhoLiquid*Np*pow3(dc)*mathematicalConstant::pi/6.0;
p.ms() += ms;
label nParcels = spray_.injectors()[injector].properties()->nParcelsToInject
(
spray_.injectors()[injector].properties()->tsoi(),
spray_.injectors()[injector].properties()->teoi()
);
// Total number of parcels for the whole injection event
label nParcels =
spray_.injectors()[injector].properties()->nParcelsToInject
(
spray_.injectors()[injector].properties()->tsoi(),
spray_.injectors()[injector].properties()->teoi()
);
scalar averageParcelMass = spray_.injectors()[injector].properties()->mass()/nParcels;
scalar averageParcelMass =
spray_.injectors()[injector].properties()->mass()/nParcels;
if
(
(p.ms()/averageParcelMass > msLimit_)
)
if (p.ms()/averageParcelMass > msLimit_)
{
// set the initial ms value to -GREAT. This prevents
// new droplets from being formed from the childDroplet
// new droplets from being formed from the child droplet
// from the KH instability
// mass of stripped child parcel