mirror of
https://develop.openfoam.com/Development/openfoam.git
synced 2025-11-28 03:28:01 +00:00
ENH: Removed duplicate solver from tutorials
This commit is contained in:
@ -1,3 +0,0 @@
|
||||
chemFoam.C
|
||||
|
||||
EXE = $(FOAM_USER_APPBIN)/chemFoam
|
||||
@ -1,21 +0,0 @@
|
||||
EXE_INC = \
|
||||
-I$(LIB_SRC)/finiteVolume/lnInclude \
|
||||
-I$(LIB_SRC)/turbulenceModels/compressible/turbulenceModel \
|
||||
-I$(LIB_SRC)/thermophysicalModels/specie/lnInclude \
|
||||
-I$(LIB_SRC)/thermophysicalModels/thermophysicalFunctions/lnInclude \
|
||||
-I$(LIB_SRC)/thermophysicalModels/reactionThermo/lnInclude \
|
||||
-I$(LIB_SRC)/thermophysicalModels/basic/lnInclude \
|
||||
-I$(LIB_SRC)/thermophysicalModels/laminarFlameSpeed/lnInclude \
|
||||
-I$(LIB_SRC)/ODE/lnInclude\
|
||||
-I$(LIB_SRC)/thermophysicalModels/chemistryModel/lnInclude \
|
||||
|
||||
|
||||
EXE_LIBS = \
|
||||
-lfiniteVolume \
|
||||
-lcompressibleRASModels \
|
||||
-lreactionThermophysicalModels \
|
||||
-lbasicThermophysicalModels \
|
||||
-lchemistryModel \
|
||||
-lODE \
|
||||
-lthermophysicalFunctions \
|
||||
-lspecie
|
||||
@ -1,12 +0,0 @@
|
||||
{
|
||||
forAll(Y, specieI)
|
||||
{
|
||||
volScalarField& Yi = Y[specieI];
|
||||
|
||||
solve
|
||||
(
|
||||
fvm::ddt(rho, Yi) - chemistry.RR(specieI),
|
||||
mesh.solver("Yi")
|
||||
);
|
||||
}
|
||||
}
|
||||
@ -1,91 +0,0 @@
|
||||
/*---------------------------------------------------------------------------*\
|
||||
========= |
|
||||
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
||||
\\ / O peration |
|
||||
\\ / A nd | Copyright (C) 2010-2010 OpenCFD Ltd.
|
||||
\\/ M anipulation |
|
||||
-------------------------------------------------------------------------------
|
||||
License
|
||||
This file is part of OpenFOAM.
|
||||
|
||||
OpenFOAM is free software: you can redistribute it and/or modify it
|
||||
under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
||||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
Application
|
||||
chemFoam
|
||||
|
||||
Description
|
||||
Solver chemistry problems
|
||||
- designed for use on single cell cases to provide comparison against
|
||||
other chemistry solvers
|
||||
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
#include "fvCFD.H"
|
||||
#include "hCombustionThermo.H"
|
||||
#include "turbulenceModel.H"
|
||||
#include "psiChemistryModel.H"
|
||||
#include "chemistrySolver.H"
|
||||
#include "OFstream.H"
|
||||
#include "thermoPhysicsTypes.H"
|
||||
#include "basicMultiComponentMixture.H"
|
||||
#include "cellModeller.H"
|
||||
|
||||
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
#include "setRootCase.H"
|
||||
#include "createTime.H"
|
||||
#include "createSingleCellMesh.H"
|
||||
#include "createFields.H"
|
||||
#include "readInitialConditions.H"
|
||||
|
||||
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
||||
|
||||
Info<< "\nStarting time loop\n" << endl;
|
||||
|
||||
while (runTime.run())
|
||||
{
|
||||
#include "readControls.H"
|
||||
|
||||
#include "setDeltaT.H"
|
||||
|
||||
runTime++;
|
||||
Info<< "Time = " << runTime.timeName() << nl << endl;
|
||||
|
||||
#include "solveChemistry.H"
|
||||
|
||||
{
|
||||
#include "YEqn.H"
|
||||
|
||||
#include "hEqn.H"
|
||||
|
||||
#include "pEqn.H"
|
||||
}
|
||||
|
||||
#include "output.H"
|
||||
|
||||
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
|
||||
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
|
||||
<< nl << endl;
|
||||
}
|
||||
|
||||
Info << "Number of steps = " << runTime.timeIndex() << endl;
|
||||
Info << "End" << nl << endl;
|
||||
|
||||
return(0);
|
||||
}
|
||||
|
||||
|
||||
// ************************************************************************* //
|
||||
@ -1,57 +0,0 @@
|
||||
// write base thermo fields - not registered since will be re-read by
|
||||
// thermo package
|
||||
|
||||
Info<< "Creating base fields for time " << runTime.timeName() << endl;
|
||||
{
|
||||
volScalarField Ydefault
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"Ydefault",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::READ_IF_PRESENT,
|
||||
IOobject::NO_WRITE,
|
||||
false
|
||||
),
|
||||
mesh,
|
||||
dimensionedScalar("Ydefault", dimless, 1)
|
||||
);
|
||||
|
||||
Ydefault.write();
|
||||
|
||||
volScalarField p
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"p",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::READ_IF_PRESENT,
|
||||
IOobject::NO_WRITE,
|
||||
false
|
||||
),
|
||||
mesh,
|
||||
dimensionedScalar("p", dimPressure, p0)
|
||||
);
|
||||
|
||||
p.write();
|
||||
|
||||
volScalarField T
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"T",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::READ_IF_PRESENT,
|
||||
IOobject::NO_WRITE,
|
||||
false
|
||||
),
|
||||
mesh,
|
||||
dimensionedScalar("T", dimTemperature, T0)
|
||||
);
|
||||
|
||||
T.write();
|
||||
}
|
||||
|
||||
@ -1,84 +0,0 @@
|
||||
if (mesh.nCells() != 1)
|
||||
{
|
||||
FatalErrorIn(args.executable())
|
||||
<< "Solver only applicable to single cell cases"
|
||||
<< exit(FatalError);
|
||||
}
|
||||
|
||||
Info<< "Reading initial conditions.\n" << endl;
|
||||
IOdictionary initialConditions
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"initialConditions",
|
||||
runTime.constant(),
|
||||
runTime,
|
||||
IOobject::MUST_READ_IF_MODIFIED,
|
||||
IOobject::NO_WRITE
|
||||
)
|
||||
);
|
||||
|
||||
scalar p0 = readScalar(initialConditions.lookup("p"));
|
||||
scalar T0 = readScalar(initialConditions.lookup("T"));
|
||||
|
||||
#include "createBaseFields.H"
|
||||
|
||||
Info<< nl << "Reading thermophysicalProperties" << endl;
|
||||
autoPtr<psiChemistryModel> pChemistry(psiChemistryModel::New(mesh));
|
||||
|
||||
psiChemistryModel& chemistry = pChemistry();
|
||||
scalar dtChem = refCast<const psiChemistryModel>(chemistry).deltaTChem()[0];
|
||||
|
||||
hsCombustionThermo& thermo = chemistry.thermo();
|
||||
basicMultiComponentMixture& composition = thermo.composition();
|
||||
PtrList<volScalarField>& Y = composition.Y();
|
||||
|
||||
volScalarField rho
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"rho",
|
||||
runTime.timeName(),
|
||||
runTime,
|
||||
IOobject::NO_READ,
|
||||
IOobject::AUTO_WRITE
|
||||
),
|
||||
thermo.rho()
|
||||
);
|
||||
volScalarField& p = thermo.p();
|
||||
volScalarField& hs = thermo.hs();
|
||||
|
||||
volVectorField U
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"U",
|
||||
runTime.timeName(),
|
||||
runTime,
|
||||
IOobject::NO_READ,
|
||||
IOobject::NO_WRITE
|
||||
),
|
||||
mesh,
|
||||
dimensionedVector("zero", dimVelocity, vector::zero),
|
||||
p.boundaryField().types()
|
||||
);
|
||||
|
||||
#include "createPhi.H"
|
||||
|
||||
Info << "Creating turbulence model.\n" << endl;
|
||||
autoPtr<compressible::turbulenceModel> turbulence
|
||||
(
|
||||
compressible::turbulenceModel::New
|
||||
(
|
||||
rho,
|
||||
U,
|
||||
phi,
|
||||
thermo
|
||||
)
|
||||
);
|
||||
|
||||
OFstream post(args.path()/"chemFoam.out");
|
||||
post<< "# Time" << token::TAB << "Temperature [K]" << token::TAB
|
||||
<< "Pressure [Pa]" << endl;
|
||||
|
||||
|
||||
@ -1,38 +0,0 @@
|
||||
Info<< "Constructing single cell mesh" << nl << endl;
|
||||
|
||||
labelList owner(6, 0);
|
||||
labelList neighbour(0);
|
||||
|
||||
pointField points(8);
|
||||
points[0] = vector(0, 0, 0);
|
||||
points[1] = vector(1, 0, 0);
|
||||
points[2] = vector(1, 1, 0);
|
||||
points[3] = vector(0, 1, 0);
|
||||
points[4] = vector(0, 0, 1);
|
||||
points[5] = vector(1, 0, 1);
|
||||
points[6] = vector(1, 1, 1);
|
||||
points[7] = vector(0, 1, 1);
|
||||
|
||||
const cellModel& hexa = *(cellModeller::lookup("hex"));
|
||||
faceList faces = hexa.modelFaces();
|
||||
|
||||
fvMesh mesh
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
fvMesh::defaultRegion,
|
||||
runTime.timeName(),
|
||||
runTime,
|
||||
IOobject::NO_READ
|
||||
),
|
||||
xferMove<Field<vector> >(points),
|
||||
faces.xfer(),
|
||||
owner.xfer(),
|
||||
neighbour.xfer()
|
||||
);
|
||||
|
||||
List<polyPatch*> patches(1);
|
||||
|
||||
patches[0] = new emptyPolyPatch("boundary", 6, 0, 0, mesh.boundaryMesh());
|
||||
|
||||
mesh.addFvPatches(patches);
|
||||
@ -1,10 +0,0 @@
|
||||
{
|
||||
if (constProp == "volume")
|
||||
{
|
||||
hs[0] = u0 + p[0]/rho[0] + integratedHeat;
|
||||
}
|
||||
else
|
||||
{
|
||||
hs[0] = hs0 + integratedHeat;
|
||||
}
|
||||
}
|
||||
@ -1,11 +0,0 @@
|
||||
runTime.write();
|
||||
|
||||
Info<< "Sh = " << Sh
|
||||
<< ", T = " << thermo.T()[0]
|
||||
<< ", p = " << thermo.p()[0]
|
||||
<< ", " << Y[0].name() << " = " << Y[0][0]
|
||||
<< endl;
|
||||
|
||||
post<< runTime.value() << token::TAB << thermo.T()[0] << token::TAB
|
||||
<< thermo.p()[0] << endl;
|
||||
|
||||
@ -1,9 +0,0 @@
|
||||
{
|
||||
thermo.correct();
|
||||
rho = thermo.rho();
|
||||
if (constProp == "volume")
|
||||
{
|
||||
p[0] = rho0*R0*thermo.T()[0];
|
||||
rho[0] = rho0;
|
||||
}
|
||||
}
|
||||
@ -1,8 +0,0 @@
|
||||
if (runTime.controlDict().lookupOrDefault("suppressSolverInfo", false))
|
||||
{
|
||||
lduMatrix::debug = 0;
|
||||
}
|
||||
|
||||
Switch adjustTimeStep(runTime.controlDict().lookup("adjustTimeStep"));
|
||||
|
||||
scalar maxDeltaT(readScalar(runTime.controlDict().lookup("maxDeltaT")));
|
||||
@ -1,111 +0,0 @@
|
||||
word constProp(initialConditions.lookup("constantProperty"));
|
||||
if (constProp == "pressure" || constProp == "volume")
|
||||
{
|
||||
Info << constProp << " will be held constant." << nl
|
||||
<< " p = " << p[0] << " [Pa]" << nl
|
||||
<< " T = " << thermo.T()[0] << " [K] " << nl
|
||||
<< " rho = " << rho[0] << " [kg/m3]" << nl
|
||||
<< endl;
|
||||
}
|
||||
else
|
||||
{
|
||||
FatalError << "in initialConditions, unknown constantProperty type "
|
||||
<< constProp << nl << " Valid types are: pressure volume."
|
||||
<< abort(FatalError);
|
||||
}
|
||||
|
||||
word fractionBasis(initialConditions.lookup("fractionBasis"));
|
||||
if ((fractionBasis != "mass") && (fractionBasis != "mole"))
|
||||
{
|
||||
FatalError << "in initialConditions, unknown fractionBasis type " << nl
|
||||
<< "Valid types are: mass or mole."
|
||||
<< fractionBasis << abort(FatalError);
|
||||
}
|
||||
|
||||
label nSpecie = Y.size();
|
||||
PtrList<gasThermoPhysics> specieData(Y.size());
|
||||
forAll(specieData, i)
|
||||
{
|
||||
specieData.set
|
||||
(
|
||||
i,
|
||||
new gasThermoPhysics
|
||||
(
|
||||
dynamic_cast<const reactingMixture<gasThermoPhysics>&>
|
||||
(thermo).speciesData()[i]
|
||||
)
|
||||
);
|
||||
}
|
||||
|
||||
scalarList Y0(nSpecie, 0.0);
|
||||
scalarList X0(nSpecie, 0.0);
|
||||
|
||||
dictionary fractions(initialConditions.subDict("fractions"));
|
||||
if (fractionBasis == "mole")
|
||||
{
|
||||
forAll(Y, i)
|
||||
{
|
||||
const word& name = Y[i].name();
|
||||
if (fractions.found(name))
|
||||
{
|
||||
X0[i] = readScalar(fractions.lookup(name));
|
||||
}
|
||||
}
|
||||
|
||||
scalar mw = 0.0;
|
||||
const scalar mTot = sum(X0);
|
||||
forAll(Y, i)
|
||||
{
|
||||
X0[i] /= mTot;
|
||||
mw += specieData[i].W()*X0[i];
|
||||
}
|
||||
|
||||
forAll(Y, i)
|
||||
{
|
||||
Y0[i] = X0[i]*specieData[i].W()/mw;
|
||||
}
|
||||
}
|
||||
else // mass fraction
|
||||
{
|
||||
forAll(Y, i)
|
||||
{
|
||||
const word& name = Y[i].name();
|
||||
if (fractions.found(name))
|
||||
{
|
||||
Y0[i] = readScalar(fractions.lookup(name));
|
||||
}
|
||||
}
|
||||
|
||||
scalar invW = 0.0;
|
||||
const scalar mTot = sum(Y0);
|
||||
forAll(Y, i)
|
||||
{
|
||||
Y0[i] /= mTot;
|
||||
invW += Y0[i]/specieData[i].W();
|
||||
}
|
||||
const scalar mw = 1.0/invW;
|
||||
|
||||
forAll(Y, i)
|
||||
{
|
||||
X0[i] = Y0[i]*mw/specieData[i].W();
|
||||
}
|
||||
}
|
||||
|
||||
scalar hs0 = 0.0;
|
||||
forAll(Y, i)
|
||||
{
|
||||
Y[i] = Y0[i];
|
||||
hs0 += Y0[i]*specieData[i].Hs(T0);
|
||||
}
|
||||
|
||||
hs = dimensionedScalar("hs", dimEnergy/dimMass, hs0);
|
||||
|
||||
thermo.correct();
|
||||
|
||||
rho = thermo.rho();
|
||||
scalar rho0 = rho[0];
|
||||
scalar u0 = hs0 - p0/rho0;
|
||||
scalar R0 = p0/(rho0*T0);
|
||||
|
||||
scalar integratedHeat = 0.0;
|
||||
|
||||
@ -1,6 +0,0 @@
|
||||
if (adjustTimeStep)
|
||||
{
|
||||
runTime.setDeltaT(min(dtChem, maxDeltaT));
|
||||
Info<< "deltaT = " << runTime.deltaT().value() << endl;
|
||||
}
|
||||
|
||||
@ -1,7 +0,0 @@
|
||||
dtChem = chemistry.solve
|
||||
(
|
||||
runTime.value() - runTime.deltaT().value(),
|
||||
runTime.deltaT().value()
|
||||
);
|
||||
scalar Sh = chemistry.Sh()()[0]/rho[0];
|
||||
integratedHeat += Sh*runTime.deltaT().value();
|
||||
Reference in New Issue
Block a user