mirror of
https://develop.openfoam.com/Development/openfoam.git
synced 2025-11-28 03:28:01 +00:00
Merge branch 'master' into dicts
This commit is contained in:
@ -85,15 +85,15 @@ int main(int argc, char *argv[])
|
||||
|
||||
for (int corr=1; corr<=1; corr++)
|
||||
{
|
||||
volScalarField rUA = 1.0/UEqn.A();
|
||||
volScalarField rAU = 1.0/UEqn.A();
|
||||
|
||||
U = rUA*UEqn.H();
|
||||
U = rAU*UEqn.H();
|
||||
phi = (fvc::interpolate(U) & mesh.Sf())
|
||||
+ fvc::ddtPhiCorr(rUA, U, phi);
|
||||
+ fvc::ddtPhiCorr(rAU, U, phi);
|
||||
|
||||
fvScalarMatrix pEqn
|
||||
(
|
||||
fvm::laplacian(rUA, p) == fvc::div(phi)
|
||||
fvm::laplacian(rAU, p) == fvc::div(phi)
|
||||
);
|
||||
|
||||
pEqn.solve();
|
||||
@ -102,7 +102,7 @@ int main(int argc, char *argv[])
|
||||
|
||||
#include "continuityErrs.H"
|
||||
|
||||
U -= rUA*fvc::grad(p);
|
||||
U -= rAU*fvc::grad(p);
|
||||
U.correctBoundaryConditions();
|
||||
}
|
||||
|
||||
|
||||
@ -1,6 +1,6 @@
|
||||
rho = thermo.rho();
|
||||
|
||||
volScalarField rUA = 1.0/UEqn.A();
|
||||
volScalarField rAU = 1.0/UEqn.A();
|
||||
U = invA & UEqn.H();
|
||||
|
||||
if (transonic)
|
||||
@ -11,7 +11,7 @@ if (transonic)
|
||||
fvc::interpolate(psi)
|
||||
*(
|
||||
(fvc::interpolate(U) & mesh.Sf())
|
||||
+ fvc::ddtPhiCorr(rUA, rho, U, phi)
|
||||
+ fvc::ddtPhiCorr(rAU, rho, U, phi)
|
||||
)
|
||||
);
|
||||
|
||||
@ -38,7 +38,7 @@ else
|
||||
fvc::interpolate(rho)*
|
||||
(
|
||||
(fvc::interpolate(U) & mesh.Sf())
|
||||
+ fvc::ddtPhiCorr(rUA, rho, U, phi)
|
||||
+ fvc::ddtPhiCorr(rAU, rho, U, phi)
|
||||
);
|
||||
|
||||
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
|
||||
|
||||
@ -1,7 +1,7 @@
|
||||
rho = thermo.rho();
|
||||
|
||||
volScalarField rUA = 1.0/UEqn.A();
|
||||
U = rUA*UEqn.H();
|
||||
volScalarField rAU = 1.0/UEqn.A();
|
||||
U = rAU*UEqn.H();
|
||||
|
||||
if (transonic)
|
||||
{
|
||||
@ -11,7 +11,7 @@ if (transonic)
|
||||
fvc::interpolate(psi)
|
||||
*(
|
||||
(fvc::interpolate(U) & mesh.Sf())
|
||||
+ fvc::ddtPhiCorr(rUA, rho, U, phi)
|
||||
+ fvc::ddtPhiCorr(rAU, rho, U, phi)
|
||||
)
|
||||
);
|
||||
|
||||
@ -21,7 +21,7 @@ if (transonic)
|
||||
(
|
||||
fvm::ddt(psi, p)
|
||||
+ fvm::div(phid, p)
|
||||
- fvm::laplacian(rho*rUA, p)
|
||||
- fvm::laplacian(rho*rAU, p)
|
||||
);
|
||||
|
||||
pEqn.solve();
|
||||
@ -38,7 +38,7 @@ else
|
||||
fvc::interpolate(rho)
|
||||
*(
|
||||
(fvc::interpolate(U) & mesh.Sf())
|
||||
+ fvc::ddtPhiCorr(rUA, rho, U, phi)
|
||||
+ fvc::ddtPhiCorr(rAU, rho, U, phi)
|
||||
);
|
||||
|
||||
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
|
||||
@ -47,7 +47,7 @@ else
|
||||
(
|
||||
fvm::ddt(psi, p)
|
||||
+ fvc::div(phi)
|
||||
- fvm::laplacian(rho*rUA, p)
|
||||
- fvm::laplacian(rho*rAU, p)
|
||||
);
|
||||
|
||||
pEqn.solve();
|
||||
@ -62,7 +62,7 @@ else
|
||||
#include "rhoEqn.H"
|
||||
#include "compressibleContinuityErrs.H"
|
||||
|
||||
U -= rUA*fvc::grad(p);
|
||||
U -= rAU*fvc::grad(p);
|
||||
U.correctBoundaryConditions();
|
||||
|
||||
DpDt = fvc::DDt(surfaceScalarField("phiU", phi/fvc::interpolate(rho)), p);
|
||||
|
||||
@ -1,7 +1,7 @@
|
||||
rho = thermo.rho();
|
||||
|
||||
volScalarField rUA = 1.0/UEqn.A();
|
||||
U = rUA*UEqn.H();
|
||||
volScalarField rAU = 1.0/UEqn.A();
|
||||
U = rAU*UEqn.H();
|
||||
|
||||
if (transonic)
|
||||
{
|
||||
@ -11,7 +11,7 @@ if (transonic)
|
||||
fvc::interpolate(psi)
|
||||
*(
|
||||
(fvc::interpolate(U) & mesh.Sf())
|
||||
+ fvc::ddtPhiCorr(rUA, rho, U, phi)
|
||||
+ fvc::ddtPhiCorr(rAU, rho, U, phi)
|
||||
)
|
||||
);
|
||||
|
||||
@ -21,7 +21,7 @@ if (transonic)
|
||||
(
|
||||
fvm::ddt(psi, p)
|
||||
+ fvm::div(phid, p)
|
||||
- fvm::laplacian(rho*rUA, p)
|
||||
- fvm::laplacian(rho*rAU, p)
|
||||
==
|
||||
Sevap
|
||||
);
|
||||
@ -40,7 +40,7 @@ else
|
||||
fvc::interpolate(rho)
|
||||
*(
|
||||
(fvc::interpolate(U) & mesh.Sf())
|
||||
+ fvc::ddtPhiCorr(rUA, rho, U, phi)
|
||||
+ fvc::ddtPhiCorr(rAU, rho, U, phi)
|
||||
);
|
||||
|
||||
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
|
||||
@ -49,7 +49,7 @@ else
|
||||
(
|
||||
fvm::ddt(psi, p)
|
||||
+ fvc::div(phi)
|
||||
- fvm::laplacian(rho*rUA, p)
|
||||
- fvm::laplacian(rho*rAU, p)
|
||||
==
|
||||
Sevap
|
||||
);
|
||||
@ -66,7 +66,7 @@ else
|
||||
#include "rhoEqn.H"
|
||||
#include "compressibleContinuityErrs.H"
|
||||
|
||||
U -= rUA*fvc::grad(p);
|
||||
U -= rAU*fvc::grad(p);
|
||||
U.correctBoundaryConditions();
|
||||
|
||||
DpDt = fvc::DDt(surfaceScalarField("phiU", phi/fvc::interpolate(rho)), p);
|
||||
|
||||
@ -1,7 +1,7 @@
|
||||
rho = thermo.rho();
|
||||
|
||||
volScalarField rUA = 1.0/UEqn.A();
|
||||
U = rUA*UEqn.H();
|
||||
volScalarField rAU = 1.0/UEqn.A();
|
||||
U = rAU*UEqn.H();
|
||||
|
||||
if (transonic)
|
||||
{
|
||||
@ -18,7 +18,7 @@ if (transonic)
|
||||
(
|
||||
fvm::ddt(psi, p)
|
||||
+ fvm::div(phid, p, "div(phid,p)")
|
||||
- fvm::laplacian(rho*rUA, p)
|
||||
- fvm::laplacian(rho*rAU, p)
|
||||
);
|
||||
|
||||
pEqn.solve();
|
||||
@ -40,7 +40,7 @@ else
|
||||
(
|
||||
fvm::ddt(psi, p)
|
||||
+ fvc::div(phi)
|
||||
- fvm::laplacian(rho*rUA, p)
|
||||
- fvm::laplacian(rho*rAU, p)
|
||||
);
|
||||
|
||||
pEqn.solve();
|
||||
@ -55,7 +55,7 @@ else
|
||||
#include "rhoEqn.H"
|
||||
#include "compressibleContinuityErrs.H"
|
||||
|
||||
U -= rUA*fvc::grad(p);
|
||||
U -= rAU*fvc::grad(p);
|
||||
U.correctBoundaryConditions();
|
||||
|
||||
DpDt = fvc::DDt(surfaceScalarField("phiU", phi/fvc::interpolate(rho)), p);
|
||||
|
||||
@ -1,29 +1,29 @@
|
||||
rho = thermo.rho();
|
||||
|
||||
volScalarField rUA = 1.0/UEqn.A();
|
||||
surfaceScalarField rhorUAf("(rho*(1|A(U)))", fvc::interpolate(rho*rUA));
|
||||
U = rUA*UEqn.H();
|
||||
volScalarField rAU = 1.0/UEqn.A();
|
||||
surfaceScalarField rhorAUf("(rho*(1|A(U)))", fvc::interpolate(rho*rAU));
|
||||
U = rAU*UEqn.H();
|
||||
|
||||
surfaceScalarField phiU
|
||||
(
|
||||
fvc::interpolate(rho)
|
||||
*(
|
||||
(fvc::interpolate(U) & mesh.Sf())
|
||||
+ fvc::ddtPhiCorr(rUA, rho, U, phi)
|
||||
+ fvc::ddtPhiCorr(rAU, rho, U, phi)
|
||||
)
|
||||
);
|
||||
|
||||
phi = phiU - rhorUAf*ghf*fvc::snGrad(rho)*mesh.magSf();
|
||||
phi = phiU - rhorAUf*ghf*fvc::snGrad(rho)*mesh.magSf();
|
||||
|
||||
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
|
||||
{
|
||||
surfaceScalarField rhorUAf = fvc::interpolate(rho*rUA);
|
||||
surfaceScalarField rhorAUf = fvc::interpolate(rho*rAU);
|
||||
|
||||
fvScalarMatrix p_rghEqn
|
||||
(
|
||||
fvm::ddt(psi, p_rgh) + fvc::ddt(psi, rho)*gh
|
||||
+ fvc::div(phi)
|
||||
- fvm::laplacian(rhorUAf, p_rgh)
|
||||
- fvm::laplacian(rhorAUf, p_rgh)
|
||||
);
|
||||
|
||||
p_rghEqn.solve
|
||||
@ -52,7 +52,7 @@ p = p_rgh + rho*gh;
|
||||
#include "rhoEqn.H"
|
||||
#include "compressibleContinuityErrs.H"
|
||||
|
||||
U += rUA*fvc::reconstruct((phi - phiU)/rhorUAf);
|
||||
U += rAU*fvc::reconstruct((phi - phiU)/rhorAUf);
|
||||
U.correctBoundaryConditions();
|
||||
|
||||
DpDt = fvc::DDt(surfaceScalarField("phiU", phi/fvc::interpolate(rho)), p);
|
||||
|
||||
@ -1,7 +1,7 @@
|
||||
rho = thermo.rho();
|
||||
|
||||
volScalarField rUA = 1.0/UEqn.A();
|
||||
U = rUA*UEqn.H();
|
||||
volScalarField rAU = 1.0/UEqn.A();
|
||||
U = rAU*UEqn.H();
|
||||
|
||||
if (transonic)
|
||||
{
|
||||
@ -11,7 +11,7 @@ if (transonic)
|
||||
fvc::interpolate(psi)
|
||||
*(
|
||||
(fvc::interpolate(U) & mesh.Sf())
|
||||
+ fvc::ddtPhiCorr(rUA, rho, U, phi)
|
||||
+ fvc::ddtPhiCorr(rAU, rho, U, phi)
|
||||
)
|
||||
);
|
||||
|
||||
@ -21,7 +21,7 @@ if (transonic)
|
||||
(
|
||||
fvm::ddt(psi, p)
|
||||
+ fvm::div(phid, p)
|
||||
- fvm::laplacian(rho*rUA, p)
|
||||
- fvm::laplacian(rho*rAU, p)
|
||||
);
|
||||
|
||||
pEqn.solve();
|
||||
@ -38,7 +38,7 @@ else
|
||||
fvc::interpolate(rho)
|
||||
*(
|
||||
(fvc::interpolate(U) & mesh.Sf())
|
||||
+ fvc::ddtPhiCorr(rUA, rho, U, phi)
|
||||
+ fvc::ddtPhiCorr(rAU, rho, U, phi)
|
||||
);
|
||||
|
||||
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
|
||||
@ -47,7 +47,7 @@ else
|
||||
(
|
||||
fvm::ddt(psi, p)
|
||||
+ fvc::div(phi)
|
||||
- fvm::laplacian(rho*rUA, p)
|
||||
- fvm::laplacian(rho*rAU, p)
|
||||
);
|
||||
|
||||
pEqn.solve();
|
||||
@ -62,7 +62,7 @@ else
|
||||
#include "rhoEqn.H"
|
||||
#include "compressibleContinuityErrs.H"
|
||||
|
||||
U -= rUA*fvc::grad(p);
|
||||
U -= rAU*fvc::grad(p);
|
||||
U.correctBoundaryConditions();
|
||||
|
||||
DpDt = fvc::DDt(surfaceScalarField("phiU", phi/fvc::interpolate(rho)), p);
|
||||
|
||||
@ -5,14 +5,14 @@
|
||||
// pressure solution - done in 2 parts. Part 1:
|
||||
thermo.rho() -= psi*p;
|
||||
|
||||
volScalarField rUA = 1.0/UEqn.A();
|
||||
U = rUA*UEqn.H();
|
||||
volScalarField rAU = 1.0/UEqn.A();
|
||||
U = rAU*UEqn.H();
|
||||
|
||||
if (transonic)
|
||||
{
|
||||
surfaceScalarField phiv =
|
||||
(fvc::interpolate(U) & mesh.Sf())
|
||||
+ fvc::ddtPhiCorr(rUA, rho, U, phi);
|
||||
+ fvc::ddtPhiCorr(rAU, rho, U, phi);
|
||||
|
||||
phi = fvc::interpolate(rho)*phiv;
|
||||
|
||||
@ -28,7 +28,7 @@
|
||||
(
|
||||
fvc::ddt(rho) + fvc::div(phi)
|
||||
+ correction(fvm::ddt(psi, p) + fvm::div(phid, p))
|
||||
- fvm::laplacian(rho*rUA, p)
|
||||
- fvm::laplacian(rho*rAU, p)
|
||||
);
|
||||
|
||||
pEqn.solve
|
||||
@ -58,7 +58,7 @@
|
||||
fvc::interpolate(rho)
|
||||
*(
|
||||
(fvc::interpolate(U) & mesh.Sf())
|
||||
+ fvc::ddtPhiCorr(rUA, rho, U, phi)
|
||||
+ fvc::ddtPhiCorr(rAU, rho, U, phi)
|
||||
);
|
||||
|
||||
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
|
||||
@ -67,7 +67,7 @@
|
||||
(
|
||||
fvc::ddt(rho) + psi*correction(fvm::ddt(p))
|
||||
+ fvc::div(phi)
|
||||
- fvm::laplacian(rho*rUA, p)
|
||||
- fvm::laplacian(rho*rAU, p)
|
||||
);
|
||||
|
||||
pEqn.solve
|
||||
@ -98,7 +98,7 @@
|
||||
#include "rhoEqn.H"
|
||||
#include "compressibleContinuityErrs.H"
|
||||
|
||||
U -= rUA*fvc::grad(p);
|
||||
U -= rAU*fvc::grad(p);
|
||||
U.correctBoundaryConditions();
|
||||
|
||||
DpDt = fvc::DDt(surfaceScalarField("phiU", phi/fvc::interpolate(rho)), p);
|
||||
|
||||
@ -9,7 +9,7 @@ tmp<fvVectorMatrix> UEqn
|
||||
|
||||
UEqn().relax();
|
||||
|
||||
volScalarField rUA = 1.0/UEqn().A();
|
||||
volScalarField rAU = 1.0/UEqn().A();
|
||||
|
||||
if (momentumPredictor)
|
||||
{
|
||||
@ -17,6 +17,6 @@ if (momentumPredictor)
|
||||
}
|
||||
else
|
||||
{
|
||||
U = rUA*(UEqn().H() - fvc::grad(p));
|
||||
U = rAU*(UEqn().H() - fvc::grad(p));
|
||||
U.correctBoundaryConditions();
|
||||
}
|
||||
|
||||
@ -1,6 +1,6 @@
|
||||
rho = thermo.rho();
|
||||
|
||||
U = rUA*UEqn().H();
|
||||
U = rAU*UEqn().H();
|
||||
|
||||
if (nCorr <= 1)
|
||||
{
|
||||
@ -15,7 +15,7 @@ if (transonic)
|
||||
fvc::interpolate(psi)
|
||||
*(
|
||||
(fvc::interpolate(U) & mesh.Sf())
|
||||
+ fvc::ddtPhiCorr(rUA, rho, U, phi)
|
||||
+ fvc::ddtPhiCorr(rAU, rho, U, phi)
|
||||
)
|
||||
);
|
||||
|
||||
@ -25,7 +25,7 @@ if (transonic)
|
||||
(
|
||||
fvm::ddt(psi, p)
|
||||
+ fvm::div(phid, p)
|
||||
- fvm::laplacian(rho*rUA, p)
|
||||
- fvm::laplacian(rho*rAU, p)
|
||||
);
|
||||
|
||||
pEqn.solve
|
||||
@ -55,7 +55,7 @@ else
|
||||
fvc::interpolate(rho)*
|
||||
(
|
||||
(fvc::interpolate(U) & mesh.Sf())
|
||||
+ fvc::ddtPhiCorr(rUA, rho, U, phi)
|
||||
+ fvc::ddtPhiCorr(rAU, rho, U, phi)
|
||||
);
|
||||
|
||||
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
|
||||
@ -65,7 +65,7 @@ else
|
||||
(
|
||||
fvm::ddt(psi, p)
|
||||
+ fvc::div(phi)
|
||||
- fvm::laplacian(rho*rUA, p)
|
||||
- fvm::laplacian(rho*rAU, p)
|
||||
);
|
||||
|
||||
pEqn.solve
|
||||
@ -101,7 +101,7 @@ rho = thermo.rho();
|
||||
Info<< "rho max/min : " << max(rho).value()
|
||||
<< " " << min(rho).value() << endl;
|
||||
|
||||
U -= rUA*fvc::grad(p);
|
||||
U -= rAU*fvc::grad(p);
|
||||
U.correctBoundaryConditions();
|
||||
|
||||
DpDt = fvc::DDt(surfaceScalarField("phiU", phi/fvc::interpolate(rho)), p);
|
||||
|
||||
@ -12,7 +12,7 @@ UEqn().relax();
|
||||
mrfZones.addCoriolis(rho, UEqn());
|
||||
pZones.addResistance(UEqn());
|
||||
|
||||
volScalarField rUA = 1.0/UEqn().A();
|
||||
volScalarField rAU = 1.0/UEqn().A();
|
||||
|
||||
if (momentumPredictor)
|
||||
{
|
||||
@ -20,6 +20,6 @@ if (momentumPredictor)
|
||||
}
|
||||
else
|
||||
{
|
||||
U = rUA*(UEqn().H() - fvc::grad(p));
|
||||
U = rAU*(UEqn().H() - fvc::grad(p));
|
||||
U.correctBoundaryConditions();
|
||||
}
|
||||
|
||||
@ -1,7 +1,7 @@
|
||||
rho = thermo.rho();
|
||||
|
||||
volScalarField rUA = 1.0/UEqn().A();
|
||||
U = rUA*UEqn().H();
|
||||
volScalarField rAU = 1.0/UEqn().A();
|
||||
U = rAU*UEqn().H();
|
||||
|
||||
if (nCorr <= 1)
|
||||
{
|
||||
@ -16,7 +16,7 @@ if (transonic)
|
||||
fvc::interpolate(psi)
|
||||
*(
|
||||
(fvc::interpolate(U) & mesh.Sf())
|
||||
+ fvc::ddtPhiCorr(rUA, rho, U, phi)
|
||||
+ fvc::ddtPhiCorr(rAU, rho, U, phi)
|
||||
)
|
||||
);
|
||||
mrfZones.relativeFlux(fvc::interpolate(psi), phid);
|
||||
@ -27,7 +27,7 @@ if (transonic)
|
||||
(
|
||||
fvm::ddt(psi, p)
|
||||
+ fvm::div(phid, p)
|
||||
- fvm::laplacian(rho*rUA, p)
|
||||
- fvm::laplacian(rho*rAU, p)
|
||||
);
|
||||
|
||||
pEqn.solve
|
||||
@ -57,7 +57,7 @@ else
|
||||
fvc::interpolate(rho)*
|
||||
(
|
||||
(fvc::interpolate(U) & mesh.Sf())
|
||||
//+ fvc::ddtPhiCorr(rUA, rho, U, phi)
|
||||
//+ fvc::ddtPhiCorr(rAU, rho, U, phi)
|
||||
);
|
||||
mrfZones.relativeFlux(fvc::interpolate(rho), phi);
|
||||
|
||||
@ -68,7 +68,7 @@ else
|
||||
(
|
||||
fvm::ddt(psi, p)
|
||||
+ fvc::div(phi)
|
||||
- fvm::laplacian(rho*rUA, p)
|
||||
- fvm::laplacian(rho*rAU, p)
|
||||
);
|
||||
|
||||
pEqn.solve
|
||||
@ -109,7 +109,7 @@ else
|
||||
<< " " << min(rho).value() << endl;
|
||||
}
|
||||
|
||||
U -= rUA*fvc::grad(p);
|
||||
U -= rAU*fvc::grad(p);
|
||||
U.correctBoundaryConditions();
|
||||
|
||||
DpDt = fvc::DDt(surfaceScalarField("phiU", phi/fvc::interpolate(rho)), p);
|
||||
|
||||
@ -3,8 +3,8 @@ rho = max(rho, rhoMin);
|
||||
rho = min(rho, rhoMax);
|
||||
rho.relax();
|
||||
|
||||
volScalarField rUA = 1.0/UEqn().A();
|
||||
U = rUA*UEqn().H();
|
||||
volScalarField rAU = 1.0/UEqn().A();
|
||||
U = rAU*UEqn().H();
|
||||
UEqn.clear();
|
||||
|
||||
bool closedVolume = false;
|
||||
@ -22,7 +22,7 @@ if (transonic)
|
||||
fvScalarMatrix pEqn
|
||||
(
|
||||
fvm::div(phid, p)
|
||||
- fvm::laplacian(rho*rUA, p)
|
||||
- fvm::laplacian(rho*rAU, p)
|
||||
);
|
||||
|
||||
// Relax the pressure equation to ensure diagonal-dominance
|
||||
@ -47,7 +47,7 @@ else
|
||||
{
|
||||
fvScalarMatrix pEqn
|
||||
(
|
||||
fvm::laplacian(rho*rUA, p) == fvc::div(phi)
|
||||
fvm::laplacian(rho*rAU, p) == fvc::div(phi)
|
||||
);
|
||||
|
||||
pEqn.setReference(pRefCell, pRefValue);
|
||||
@ -67,7 +67,7 @@ else
|
||||
// Explicitly relax pressure for momentum corrector
|
||||
p.relax();
|
||||
|
||||
U -= rUA*fvc::grad(p);
|
||||
U -= rAU*fvc::grad(p);
|
||||
U.correctBoundaryConditions();
|
||||
|
||||
// For closed-volume cases adjust the pressure and density levels
|
||||
|
||||
@ -1,7 +1,7 @@
|
||||
rho = thermo.rho();
|
||||
|
||||
volScalarField rUA = 1.0/UEqn.A();
|
||||
U = rUA*UEqn.H();
|
||||
volScalarField rAU = 1.0/UEqn.A();
|
||||
U = rAU*UEqn.H();
|
||||
|
||||
surfaceScalarField phid
|
||||
(
|
||||
@ -9,7 +9,7 @@ surfaceScalarField phid
|
||||
fvc::interpolate(psi)
|
||||
*(
|
||||
(fvc::interpolate(U) & mesh.Sf())
|
||||
+ fvc::ddtPhiCorr(rUA, rho, U, phi)
|
||||
+ fvc::ddtPhiCorr(rAU, rho, U, phi)
|
||||
)
|
||||
);
|
||||
|
||||
@ -19,7 +19,7 @@ for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
|
||||
(
|
||||
fvm::ddt(psi, p)
|
||||
+ fvm::div(phid, p)
|
||||
- fvm::laplacian(rho*rUA, p)
|
||||
- fvm::laplacian(rho*rAU, p)
|
||||
);
|
||||
|
||||
pEqn.solve();
|
||||
@ -33,5 +33,5 @@ for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
|
||||
#include "rhoEqn.H"
|
||||
#include "compressibleContinuityErrs.H"
|
||||
|
||||
U -= rUA*fvc::grad(p);
|
||||
U -= rAU*fvc::grad(p);
|
||||
U.correctBoundaryConditions();
|
||||
|
||||
@ -71,8 +71,8 @@ int main(int argc, char *argv[])
|
||||
|
||||
for (int corr=0; corr<nCorr; corr++)
|
||||
{
|
||||
volScalarField rUA = 1.0/UEqn.A();
|
||||
U = rUA*UEqn.H();
|
||||
volScalarField rAU = 1.0/UEqn.A();
|
||||
U = rAU*UEqn.H();
|
||||
|
||||
surfaceScalarField phid
|
||||
(
|
||||
@ -80,7 +80,7 @@ int main(int argc, char *argv[])
|
||||
psi
|
||||
*(
|
||||
(fvc::interpolate(U) & mesh.Sf())
|
||||
+ fvc::ddtPhiCorr(rUA, rho, U, phi)
|
||||
+ fvc::ddtPhiCorr(rAU, rho, U, phi)
|
||||
)
|
||||
);
|
||||
|
||||
@ -91,7 +91,7 @@ int main(int argc, char *argv[])
|
||||
fvm::ddt(psi, p)
|
||||
+ fvc::div(phi)
|
||||
+ fvm::div(phid, p)
|
||||
- fvm::laplacian(rho*rUA, p)
|
||||
- fvm::laplacian(rho*rAU, p)
|
||||
);
|
||||
|
||||
pEqn.solve();
|
||||
@ -100,7 +100,7 @@ int main(int argc, char *argv[])
|
||||
|
||||
#include "compressibleContinuityErrs.H"
|
||||
|
||||
U -= rUA*fvc::grad(p);
|
||||
U -= rAU*fvc::grad(p);
|
||||
U.correctBoundaryConditions();
|
||||
}
|
||||
|
||||
|
||||
@ -92,18 +92,18 @@ int main(int argc, char *argv[])
|
||||
|
||||
for (int corr=0; corr<nCorr; corr++)
|
||||
{
|
||||
volScalarField rUA = 1.0/UEqn.A();
|
||||
volScalarField rAU = 1.0/UEqn.A();
|
||||
|
||||
U = rUA*UEqn.H();
|
||||
U = rAU*UEqn.H();
|
||||
|
||||
phi = (fvc::interpolate(U) & mesh.Sf())
|
||||
+ fvc::ddtPhiCorr(rUA, U, phi);
|
||||
+ fvc::ddtPhiCorr(rAU, U, phi);
|
||||
|
||||
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
|
||||
{
|
||||
fvScalarMatrix pEqn
|
||||
(
|
||||
fvm::laplacian(rUA, p) == fvc::div(phi)
|
||||
fvm::laplacian(rAU, p) == fvc::div(phi)
|
||||
);
|
||||
|
||||
pEqn.setReference(pRefCell, pRefValue);
|
||||
@ -117,7 +117,7 @@ int main(int argc, char *argv[])
|
||||
|
||||
#include "continuityErrs.H"
|
||||
|
||||
U -= rUA*fvc::grad(p);
|
||||
U -= rAU*fvc::grad(p);
|
||||
U.correctBoundaryConditions();
|
||||
}
|
||||
}
|
||||
|
||||
@ -1,20 +1,20 @@
|
||||
{
|
||||
volScalarField rUA("rUA", 1.0/UEqn.A());
|
||||
surfaceScalarField rUAf("(1|A(U))", fvc::interpolate(rUA));
|
||||
volScalarField rAU("rAU", 1.0/UEqn.A());
|
||||
surfaceScalarField rAUf("(1|A(U))", fvc::interpolate(rAU));
|
||||
|
||||
U = rUA*UEqn.H();
|
||||
U = rAU*UEqn.H();
|
||||
|
||||
phi = (fvc::interpolate(U) & mesh.Sf())
|
||||
+ fvc::ddtPhiCorr(rUA, U, phi);
|
||||
+ fvc::ddtPhiCorr(rAU, U, phi);
|
||||
|
||||
surfaceScalarField buoyancyPhi = rUAf*ghf*fvc::snGrad(rhok)*mesh.magSf();
|
||||
surfaceScalarField buoyancyPhi = rAUf*ghf*fvc::snGrad(rhok)*mesh.magSf();
|
||||
phi -= buoyancyPhi;
|
||||
|
||||
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
|
||||
{
|
||||
fvScalarMatrix p_rghEqn
|
||||
(
|
||||
fvm::laplacian(rUAf, p_rgh) == fvc::div(phi)
|
||||
fvm::laplacian(rAUf, p_rgh) == fvc::div(phi)
|
||||
);
|
||||
|
||||
p_rghEqn.setReference(pRefCell, getRefCellValue(p_rgh, pRefCell));
|
||||
@ -44,7 +44,7 @@
|
||||
|
||||
// Correct the momentum source with the pressure gradient flux
|
||||
// calculated from the relaxed pressure
|
||||
U -= rUA*fvc::reconstruct((buoyancyPhi + p_rghEqn.flux())/rUAf);
|
||||
U -= rAU*fvc::reconstruct((buoyancyPhi + p_rghEqn.flux())/rAUf);
|
||||
U.correctBoundaryConditions();
|
||||
}
|
||||
}
|
||||
|
||||
@ -1,21 +1,21 @@
|
||||
{
|
||||
volScalarField rUA("rUA", 1.0/UEqn().A());
|
||||
surfaceScalarField rUAf("(1|A(U))", fvc::interpolate(rUA));
|
||||
volScalarField rAU("rAU", 1.0/UEqn().A());
|
||||
surfaceScalarField rAUf("(1|A(U))", fvc::interpolate(rAU));
|
||||
|
||||
U = rUA*UEqn().H();
|
||||
U = rAU*UEqn().H();
|
||||
UEqn.clear();
|
||||
|
||||
phi = fvc::interpolate(U) & mesh.Sf();
|
||||
adjustPhi(phi, U, p_rgh);
|
||||
|
||||
surfaceScalarField buoyancyPhi = rUAf*ghf*fvc::snGrad(rhok)*mesh.magSf();
|
||||
surfaceScalarField buoyancyPhi = rAUf*ghf*fvc::snGrad(rhok)*mesh.magSf();
|
||||
phi -= buoyancyPhi;
|
||||
|
||||
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
|
||||
{
|
||||
fvScalarMatrix p_rghEqn
|
||||
(
|
||||
fvm::laplacian(rUAf, p_rgh) == fvc::div(phi)
|
||||
fvm::laplacian(rAUf, p_rgh) == fvc::div(phi)
|
||||
);
|
||||
|
||||
p_rghEqn.setReference(pRefCell, getRefCellValue(p_rgh, pRefCell));
|
||||
@ -32,7 +32,7 @@
|
||||
|
||||
// Correct the momentum source with the pressure gradient flux
|
||||
// calculated from the relaxed pressure
|
||||
U -= rUA*fvc::reconstruct((buoyancyPhi + p_rghEqn.flux())/rUAf);
|
||||
U -= rAU*fvc::reconstruct((buoyancyPhi + p_rghEqn.flux())/rAUf);
|
||||
U.correctBoundaryConditions();
|
||||
}
|
||||
}
|
||||
|
||||
@ -5,18 +5,18 @@
|
||||
// pressure solution - done in 2 parts. Part 1:
|
||||
thermo.rho() -= psi*p_rgh;
|
||||
|
||||
volScalarField rUA = 1.0/UEqn.A();
|
||||
surfaceScalarField rhorUAf("(rho*(1|A(U)))", fvc::interpolate(rho*rUA));
|
||||
volScalarField rAU = 1.0/UEqn.A();
|
||||
surfaceScalarField rhorAUf("(rho*(1|A(U)))", fvc::interpolate(rho*rAU));
|
||||
|
||||
U = rUA*UEqn.H();
|
||||
U = rAU*UEqn.H();
|
||||
|
||||
phi = fvc::interpolate(rho)*
|
||||
(
|
||||
(fvc::interpolate(U) & mesh.Sf())
|
||||
+ fvc::ddtPhiCorr(rUA, rho, U, phi)
|
||||
+ fvc::ddtPhiCorr(rAU, rho, U, phi)
|
||||
);
|
||||
|
||||
surfaceScalarField buoyancyPhi = -rhorUAf*ghf*fvc::snGrad(rho)*mesh.magSf();
|
||||
surfaceScalarField buoyancyPhi = -rhorAUf*ghf*fvc::snGrad(rho)*mesh.magSf();
|
||||
phi += buoyancyPhi;
|
||||
|
||||
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
|
||||
@ -25,7 +25,7 @@
|
||||
(
|
||||
fvc::ddt(rho) + psi*correction(fvm::ddt(p_rgh))
|
||||
+ fvc::div(phi)
|
||||
- fvm::laplacian(rhorUAf, p_rgh)
|
||||
- fvm::laplacian(rhorAUf, p_rgh)
|
||||
);
|
||||
|
||||
p_rghEqn.solve
|
||||
@ -53,7 +53,7 @@
|
||||
|
||||
// Correct the momentum source with the pressure gradient flux
|
||||
// calculated from the relaxed pressure
|
||||
U += rUA*fvc::reconstruct((buoyancyPhi + p_rghEqn.flux())/rhorUAf);
|
||||
U += rAU*fvc::reconstruct((buoyancyPhi + p_rghEqn.flux())/rhorAUf);
|
||||
U.correctBoundaryConditions();
|
||||
}
|
||||
}
|
||||
|
||||
@ -2,23 +2,23 @@
|
||||
rho = thermo.rho();
|
||||
rho.relax();
|
||||
|
||||
volScalarField rUA = 1.0/UEqn().A();
|
||||
surfaceScalarField rhorUAf("(rho*(1|A(U)))", fvc::interpolate(rho*rUA));
|
||||
volScalarField rAU = 1.0/UEqn().A();
|
||||
surfaceScalarField rhorAUf("(rho*(1|A(U)))", fvc::interpolate(rho*rAU));
|
||||
|
||||
U = rUA*UEqn().H();
|
||||
U = rAU*UEqn().H();
|
||||
UEqn.clear();
|
||||
|
||||
phi = fvc::interpolate(rho)*(fvc::interpolate(U) & mesh.Sf());
|
||||
bool closedVolume = adjustPhi(phi, U, p_rgh);
|
||||
|
||||
surfaceScalarField buoyancyPhi = rhorUAf*ghf*fvc::snGrad(rho)*mesh.magSf();
|
||||
surfaceScalarField buoyancyPhi = rhorAUf*ghf*fvc::snGrad(rho)*mesh.magSf();
|
||||
phi -= buoyancyPhi;
|
||||
|
||||
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
|
||||
{
|
||||
fvScalarMatrix p_rghEqn
|
||||
(
|
||||
fvm::laplacian(rhorUAf, p_rgh) == fvc::div(phi)
|
||||
fvm::laplacian(rhorAUf, p_rgh) == fvc::div(phi)
|
||||
);
|
||||
|
||||
p_rghEqn.setReference(pRefCell, getRefCellValue(p_rgh, pRefCell));
|
||||
@ -34,7 +34,7 @@
|
||||
|
||||
// Correct the momentum source with the pressure gradient flux
|
||||
// calculated from the relaxed pressure
|
||||
U -= rUA*fvc::reconstruct((buoyancyPhi + p_rghEqn.flux())/rhorUAf);
|
||||
U -= rAU*fvc::reconstruct((buoyancyPhi + p_rghEqn.flux())/rhorAUf);
|
||||
U.correctBoundaryConditions();
|
||||
}
|
||||
}
|
||||
|
||||
@ -1,24 +1,24 @@
|
||||
{
|
||||
rho = thermo.rho();
|
||||
|
||||
volScalarField rUA = 1.0/UEqn().A();
|
||||
surfaceScalarField rhorUAf("(rho*(1|A(U)))", fvc::interpolate(rho*rUA));
|
||||
volScalarField rAU = 1.0/UEqn().A();
|
||||
surfaceScalarField rhorAUf("(rho*(1|A(U)))", fvc::interpolate(rho*rAU));
|
||||
|
||||
U = rUA*UEqn().H();
|
||||
U = rAU*UEqn().H();
|
||||
UEqn.clear();
|
||||
|
||||
phi = fvc::interpolate(rho)*(fvc::interpolate(U) & mesh.Sf());
|
||||
bool closedVolume = adjustPhi(phi, U, p);
|
||||
|
||||
surfaceScalarField buoyancyPhi =
|
||||
rhorUAf*fvc::interpolate(rho)*(g & mesh.Sf());
|
||||
rhorAUf*fvc::interpolate(rho)*(g & mesh.Sf());
|
||||
phi += buoyancyPhi;
|
||||
|
||||
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
|
||||
{
|
||||
fvScalarMatrix pEqn
|
||||
(
|
||||
fvm::laplacian(rhorUAf, p) == fvc::div(phi)
|
||||
fvm::laplacian(rhorAUf, p) == fvc::div(phi)
|
||||
);
|
||||
|
||||
pEqn.setReference(pRefCell, pRefValue);
|
||||
@ -42,8 +42,8 @@
|
||||
|
||||
// Correct the momentum source with the pressure gradient flux
|
||||
// calculated from the relaxed pressure
|
||||
U += rUA*(rho*g - fvc::grad(p));
|
||||
//U += rUA*fvc::reconstruct((buoyancyPhi - pEqn.flux())/rhorUAf);
|
||||
U += rAU*(rho*g - fvc::grad(p));
|
||||
//U += rAU*fvc::reconstruct((buoyancyPhi - pEqn.flux())/rhorAUf);
|
||||
U.correctBoundaryConditions();
|
||||
}
|
||||
}
|
||||
|
||||
@ -5,16 +5,16 @@
|
||||
rho = min(rho, rhoMax[i]);
|
||||
rho.relax();
|
||||
|
||||
volScalarField rUA = 1.0/UEqn().A();
|
||||
surfaceScalarField rhorUAf("(rho*(1|A(U)))", fvc::interpolate(rho*rUA));
|
||||
volScalarField rAU = 1.0/UEqn().A();
|
||||
surfaceScalarField rhorAUf("(rho*(1|A(U)))", fvc::interpolate(rho*rAU));
|
||||
|
||||
U = rUA*UEqn().H();
|
||||
U = rAU*UEqn().H();
|
||||
UEqn.clear();
|
||||
|
||||
phi = fvc::interpolate(rho)*(fvc::interpolate(U) & mesh.Sf());
|
||||
bool closedVolume = adjustPhi(phi, U, p_rgh);
|
||||
|
||||
surfaceScalarField buoyancyPhi = rhorUAf*ghf*fvc::snGrad(rho)*mesh.magSf();
|
||||
surfaceScalarField buoyancyPhi = rhorAUf*ghf*fvc::snGrad(rho)*mesh.magSf();
|
||||
phi -= buoyancyPhi;
|
||||
|
||||
// Solve pressure
|
||||
@ -22,7 +22,7 @@
|
||||
{
|
||||
fvScalarMatrix p_rghEqn
|
||||
(
|
||||
fvm::laplacian(rhorUAf, p_rgh) == fvc::div(phi)
|
||||
fvm::laplacian(rhorAUf, p_rgh) == fvc::div(phi)
|
||||
);
|
||||
|
||||
p_rghEqn.setReference(pRefCell, getRefCellValue(p_rgh, pRefCell));
|
||||
@ -39,7 +39,7 @@
|
||||
|
||||
// Correct the momentum source with the pressure gradient flux
|
||||
// calculated from the relaxed pressure
|
||||
U -= rUA*fvc::reconstruct((buoyancyPhi + p_rghEqn.flux())/rhorUAf);
|
||||
U -= rAU*fvc::reconstruct((buoyancyPhi + p_rghEqn.flux())/rhorAUf);
|
||||
U.correctBoundaryConditions();
|
||||
}
|
||||
}
|
||||
|
||||
@ -3,21 +3,21 @@
|
||||
|
||||
rho = thermo.rho();
|
||||
|
||||
volScalarField rUA = 1.0/UEqn().A();
|
||||
surfaceScalarField rhorUAf("(rho*(1|A(U)))", fvc::interpolate(rho*rUA));
|
||||
volScalarField rAU = 1.0/UEqn().A();
|
||||
surfaceScalarField rhorAUf("(rho*(1|A(U)))", fvc::interpolate(rho*rAU));
|
||||
|
||||
U = rUA*UEqn().H();
|
||||
U = rAU*UEqn().H();
|
||||
|
||||
surfaceScalarField phiU
|
||||
(
|
||||
fvc::interpolate(rho)
|
||||
*(
|
||||
(fvc::interpolate(U) & mesh.Sf())
|
||||
+ fvc::ddtPhiCorr(rUA, rho, U, phi)
|
||||
+ fvc::ddtPhiCorr(rAU, rho, U, phi)
|
||||
)
|
||||
);
|
||||
|
||||
phi = phiU - rhorUAf*ghf*fvc::snGrad(rho)*mesh.magSf();
|
||||
phi = phiU - rhorAUf*ghf*fvc::snGrad(rho)*mesh.magSf();
|
||||
|
||||
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
|
||||
{
|
||||
@ -25,7 +25,7 @@
|
||||
(
|
||||
fvm::ddt(psi, p_rgh) + fvc::ddt(psi, rho)*gh
|
||||
+ fvc::div(phi)
|
||||
- fvm::laplacian(rhorUAf, p_rgh)
|
||||
- fvm::laplacian(rhorAUf, p_rgh)
|
||||
);
|
||||
|
||||
p_rghEqn.solve
|
||||
@ -50,7 +50,7 @@
|
||||
}
|
||||
|
||||
// Correct velocity field
|
||||
U += rUA*fvc::reconstruct((phi - phiU)/rhorUAf);
|
||||
U += rAU*fvc::reconstruct((phi - phiU)/rhorAUf);
|
||||
U.correctBoundaryConditions();
|
||||
|
||||
p = p_rgh + rho*gh;
|
||||
|
||||
@ -77,13 +77,13 @@ int main(int argc, char *argv[])
|
||||
|
||||
// --- PISO loop
|
||||
|
||||
volScalarField rUA = 1.0/UEqn.A();
|
||||
volScalarField rAU = 1.0/UEqn.A();
|
||||
|
||||
for (int corr=0; corr<nCorr; corr++)
|
||||
{
|
||||
U = rUA*UEqn.H();
|
||||
U = rAU*UEqn.H();
|
||||
phi = (fvc::interpolate(U) & mesh.Sf())
|
||||
+ fvc::ddtPhiCorr(rUA, U, phi);
|
||||
+ fvc::ddtPhiCorr(rAU, U, phi);
|
||||
|
||||
adjustPhi(phi, U, p);
|
||||
|
||||
@ -91,7 +91,7 @@ int main(int argc, char *argv[])
|
||||
{
|
||||
fvScalarMatrix pEqn
|
||||
(
|
||||
fvm::laplacian(rUA, p) == fvc::div(phi)
|
||||
fvm::laplacian(rAU, p) == fvc::div(phi)
|
||||
);
|
||||
|
||||
pEqn.setReference(pRefCell, pRefValue);
|
||||
@ -113,7 +113,7 @@ int main(int argc, char *argv[])
|
||||
|
||||
#include "continuityErrs.H"
|
||||
|
||||
U -= rUA*fvc::grad(p);
|
||||
U -= rAU*fvc::grad(p);
|
||||
U.correctBoundaryConditions();
|
||||
}
|
||||
|
||||
@ -127,9 +127,9 @@ int main(int argc, char *argv[])
|
||||
// Calculate the pressure gradient increment needed to
|
||||
// adjust the average flow-rate to the correct value
|
||||
dimensionedScalar gragPplus =
|
||||
(magUbar - magUbarStar)/rUA.weightedAverage(mesh.V());
|
||||
(magUbar - magUbarStar)/rAU.weightedAverage(mesh.V());
|
||||
|
||||
U += flowDirection*rUA*gragPplus;
|
||||
U += flowDirection*rAU*gragPplus;
|
||||
|
||||
gradP += gragPplus;
|
||||
|
||||
|
||||
@ -66,11 +66,11 @@ int main(int argc, char *argv[])
|
||||
|
||||
for (int corr=0; corr<nCorr; corr++)
|
||||
{
|
||||
volScalarField rUA = 1.0/UEqn.A();
|
||||
volScalarField rAU = 1.0/UEqn.A();
|
||||
|
||||
U = rUA*UEqn.H();
|
||||
U = rAU*UEqn.H();
|
||||
phi = (fvc::interpolate(U) & mesh.Sf())
|
||||
+ fvc::ddtPhiCorr(rUA, U, phi);
|
||||
+ fvc::ddtPhiCorr(rAU, U, phi);
|
||||
|
||||
adjustPhi(phi, U, p);
|
||||
|
||||
@ -78,7 +78,7 @@ int main(int argc, char *argv[])
|
||||
{
|
||||
fvScalarMatrix pEqn
|
||||
(
|
||||
fvm::laplacian(rUA, p) == fvc::div(phi)
|
||||
fvm::laplacian(rAU, p) == fvc::div(phi)
|
||||
);
|
||||
|
||||
pEqn.setReference(pRefCell, pRefValue);
|
||||
@ -92,7 +92,7 @@ int main(int argc, char *argv[])
|
||||
|
||||
#include "continuityErrs.H"
|
||||
|
||||
U -= rUA*fvc::grad(p);
|
||||
U -= rAU*fvc::grad(p);
|
||||
U.correctBoundaryConditions();
|
||||
}
|
||||
|
||||
|
||||
@ -69,11 +69,11 @@ int main(int argc, char *argv[])
|
||||
|
||||
for (int corr=0; corr<nCorr; corr++)
|
||||
{
|
||||
volScalarField rUA = 1.0/UEqn.A();
|
||||
volScalarField rAU = 1.0/UEqn.A();
|
||||
|
||||
U = rUA*UEqn.H();
|
||||
U = rAU*UEqn.H();
|
||||
phi = (fvc::interpolate(U) & mesh.Sf())
|
||||
+ fvc::ddtPhiCorr(rUA, U, phi);
|
||||
+ fvc::ddtPhiCorr(rAU, U, phi);
|
||||
|
||||
adjustPhi(phi, U, p);
|
||||
|
||||
@ -81,7 +81,7 @@ int main(int argc, char *argv[])
|
||||
{
|
||||
fvScalarMatrix pEqn
|
||||
(
|
||||
fvm::laplacian(rUA, p) == fvc::div(phi)
|
||||
fvm::laplacian(rAU, p) == fvc::div(phi)
|
||||
);
|
||||
|
||||
pEqn.setReference(pRefCell, pRefValue);
|
||||
@ -95,7 +95,7 @@ int main(int argc, char *argv[])
|
||||
|
||||
#include "continuityErrs.H"
|
||||
|
||||
U -= rUA*fvc::grad(p);
|
||||
U -= rAU*fvc::grad(p);
|
||||
U.correctBoundaryConditions();
|
||||
}
|
||||
|
||||
|
||||
@ -0,0 +1,22 @@
|
||||
// Solve the Momentum equation
|
||||
|
||||
tmp<fvVectorMatrix> UEqn
|
||||
(
|
||||
fvm::ddt(U)
|
||||
+ fvm::div(phi, U)
|
||||
+ turbulence->divDevReff(U)
|
||||
);
|
||||
|
||||
UEqn().relax();
|
||||
|
||||
rAU = 1.0/UEqn().A();
|
||||
|
||||
if (momentumPredictor)
|
||||
{
|
||||
solve(UEqn() == -fvc::grad(p));
|
||||
}
|
||||
else
|
||||
{
|
||||
U = rAU*(UEqn().H() - fvc::grad(p));
|
||||
U.correctBoundaryConditions();
|
||||
}
|
||||
@ -79,11 +79,11 @@ int main(int argc, char *argv[])
|
||||
|
||||
for (int corr=0; corr<nCorr; corr++)
|
||||
{
|
||||
volScalarField rUA = 1.0/UEqn.A();
|
||||
volScalarField rAU = 1.0/UEqn.A();
|
||||
|
||||
U = rUA*UEqn.H();
|
||||
U = rAU*UEqn.H();
|
||||
phi = (fvc::interpolate(U) & mesh.Sf())
|
||||
+ fvc::ddtPhiCorr(rUA, U, phi);
|
||||
+ fvc::ddtPhiCorr(rAU, U, phi);
|
||||
|
||||
adjustPhi(phi, U, p);
|
||||
|
||||
@ -94,7 +94,7 @@ int main(int argc, char *argv[])
|
||||
|
||||
fvScalarMatrix pEqn
|
||||
(
|
||||
fvm::laplacian(rUA, p) == fvc::div(phi)
|
||||
fvm::laplacian(rAU, p) == fvc::div(phi)
|
||||
);
|
||||
|
||||
pEqn.setReference(pRefCell, pRefValue);
|
||||
@ -120,7 +120,7 @@ int main(int argc, char *argv[])
|
||||
|
||||
#include "continuityErrs.H"
|
||||
|
||||
U -= rUA*fvc::grad(p);
|
||||
U -= rAU*fvc::grad(p);
|
||||
U.correctBoundaryConditions();
|
||||
}
|
||||
}
|
||||
|
||||
@ -89,22 +89,22 @@ int main(int argc, char *argv[])
|
||||
// --- PISO loop
|
||||
for (int corr=0; corr<nCorr; corr++)
|
||||
{
|
||||
volScalarField rUA = 1.0/hUEqn.A();
|
||||
surfaceScalarField ghrUAf = magg*fvc::interpolate(h*rUA);
|
||||
volScalarField rAU = 1.0/hUEqn.A();
|
||||
surfaceScalarField ghrAUf = magg*fvc::interpolate(h*rAU);
|
||||
|
||||
surfaceScalarField phih0 = ghrUAf*mesh.magSf()*fvc::snGrad(h0);
|
||||
surfaceScalarField phih0 = ghrAUf*mesh.magSf()*fvc::snGrad(h0);
|
||||
|
||||
if (rotating)
|
||||
{
|
||||
hU = rUA*(hUEqn.H() - (F ^ hU));
|
||||
hU = rAU*(hUEqn.H() - (F ^ hU));
|
||||
}
|
||||
else
|
||||
{
|
||||
hU = rUA*hUEqn.H();
|
||||
hU = rAU*hUEqn.H();
|
||||
}
|
||||
|
||||
phi = (fvc::interpolate(hU) & mesh.Sf())
|
||||
+ fvc::ddtPhiCorr(rUA, h, hU, phi)
|
||||
+ fvc::ddtPhiCorr(rAU, h, hU, phi)
|
||||
- phih0;
|
||||
|
||||
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
|
||||
@ -113,7 +113,7 @@ int main(int argc, char *argv[])
|
||||
(
|
||||
fvm::ddt(h)
|
||||
+ fvc::div(phi)
|
||||
- fvm::laplacian(ghrUAf, h)
|
||||
- fvm::laplacian(ghrAUf, h)
|
||||
);
|
||||
|
||||
if (ucorr < nOuterCorr-1 || corr < nCorr-1)
|
||||
@ -131,7 +131,7 @@ int main(int argc, char *argv[])
|
||||
}
|
||||
}
|
||||
|
||||
hU -= rUA*h*magg*fvc::grad(h + h0);
|
||||
hU -= rAU*h*magg*fvc::grad(h + h0);
|
||||
|
||||
// Constrain the momentum to be in the geometry if 3D geometry
|
||||
if (mesh.nGeometricD() == 3)
|
||||
|
||||
@ -1,7 +1,7 @@
|
||||
rho = thermo.rho();
|
||||
|
||||
volScalarField rUA = 1.0/UEqn.A();
|
||||
U = rUA*UEqn.H();
|
||||
volScalarField rAU = 1.0/UEqn.A();
|
||||
U = rAU*UEqn.H();
|
||||
|
||||
if (transonic)
|
||||
{
|
||||
@ -11,7 +11,7 @@ if (transonic)
|
||||
fvc::interpolate(psi)
|
||||
*(
|
||||
(fvc::interpolate(U) & mesh.Sf())
|
||||
+ fvc::ddtPhiCorr(rUA, rho, U, phi)
|
||||
+ fvc::ddtPhiCorr(rAU, rho, U, phi)
|
||||
)
|
||||
);
|
||||
|
||||
@ -21,7 +21,7 @@ if (transonic)
|
||||
(
|
||||
fvm::ddt(psi, p)
|
||||
+ fvm::div(phid, p)
|
||||
- fvm::laplacian(rho*rUA, p)
|
||||
- fvm::laplacian(rho*rAU, p)
|
||||
==
|
||||
coalParcels.Srho()
|
||||
);
|
||||
@ -53,7 +53,7 @@ else
|
||||
fvc::interpolate(rho)*
|
||||
(
|
||||
(fvc::interpolate(U) & mesh.Sf())
|
||||
+ fvc::ddtPhiCorr(rUA, rho, U, phi)
|
||||
+ fvc::ddtPhiCorr(rAU, rho, U, phi)
|
||||
);
|
||||
|
||||
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
|
||||
@ -62,7 +62,7 @@ else
|
||||
(
|
||||
fvm::ddt(psi, p)
|
||||
+ fvc::div(phi)
|
||||
- fvm::laplacian(rho*rUA, p)
|
||||
- fvm::laplacian(rho*rAU, p)
|
||||
==
|
||||
coalParcels.Srho()
|
||||
);
|
||||
@ -92,7 +92,7 @@ else
|
||||
#include "rhoEqn.H"
|
||||
#include "compressibleContinuityErrs.H"
|
||||
|
||||
U -= rUA*fvc::grad(p);
|
||||
U -= rAU*fvc::grad(p);
|
||||
U.correctBoundaryConditions();
|
||||
|
||||
DpDt = fvc::DDt(surfaceScalarField("phiU", phi/fvc::interpolate(rho)), p);
|
||||
|
||||
@ -1,7 +1,7 @@
|
||||
rho = thermo.rho();
|
||||
|
||||
volScalarField rUA = 1.0/UEqn.A();
|
||||
U = rUA*UEqn.H();
|
||||
volScalarField rAU = 1.0/UEqn.A();
|
||||
U = rAU*UEqn.H();
|
||||
|
||||
if (transonic)
|
||||
{
|
||||
@ -11,7 +11,7 @@ if (transonic)
|
||||
fvc::interpolate(psi)
|
||||
*(
|
||||
(fvc::interpolate(U) & mesh.Sf())
|
||||
+ fvc::ddtPhiCorr(rUA, rho, U, phi)
|
||||
+ fvc::ddtPhiCorr(rAU, rho, U, phi)
|
||||
)
|
||||
);
|
||||
|
||||
@ -21,7 +21,7 @@ if (transonic)
|
||||
(
|
||||
fvm::ddt(psi, p)
|
||||
+ fvm::div(phid, p)
|
||||
- fvm::laplacian(rho*rUA, p)
|
||||
- fvm::laplacian(rho*rAU, p)
|
||||
==
|
||||
parcels.Srho()
|
||||
+ surfaceFilm.Srho()
|
||||
@ -41,7 +41,7 @@ else
|
||||
fvc::interpolate(rho)
|
||||
*(
|
||||
(fvc::interpolate(U) & mesh.Sf())
|
||||
+ fvc::ddtPhiCorr(rUA, rho, U, phi)
|
||||
+ fvc::ddtPhiCorr(rAU, rho, U, phi)
|
||||
);
|
||||
|
||||
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
|
||||
@ -50,7 +50,7 @@ else
|
||||
(
|
||||
fvm::ddt(psi, p)
|
||||
+ fvc::div(phi)
|
||||
- fvm::laplacian(rho*rUA, p)
|
||||
- fvm::laplacian(rho*rAU, p)
|
||||
==
|
||||
parcels.Srho()
|
||||
+ surfaceFilm.Srho()
|
||||
@ -68,7 +68,7 @@ else
|
||||
#include "rhoEqn.H"
|
||||
#include "compressibleContinuityErrs.H"
|
||||
|
||||
U -= rUA*fvc::grad(p);
|
||||
U -= rAU*fvc::grad(p);
|
||||
U.correctBoundaryConditions();
|
||||
|
||||
DpDt = fvc::DDt(surfaceScalarField("phiU", phi/fvc::interpolate(rho)), p);
|
||||
|
||||
@ -1,7 +1,7 @@
|
||||
rho = thermo.rho();
|
||||
|
||||
volScalarField rUA = 1.0/UEqn.A();
|
||||
U = rUA*UEqn.H();
|
||||
volScalarField rAU = 1.0/UEqn.A();
|
||||
U = rAU*UEqn.H();
|
||||
|
||||
if (transonic)
|
||||
{
|
||||
@ -11,7 +11,7 @@ if (transonic)
|
||||
fvc::interpolate(psi)
|
||||
*(
|
||||
(fvc::interpolate(U) & mesh.Sf())
|
||||
+ fvc::ddtPhiCorr(rUA, rho, U, phi)
|
||||
+ fvc::ddtPhiCorr(rAU, rho, U, phi)
|
||||
)
|
||||
);
|
||||
|
||||
@ -21,7 +21,7 @@ if (transonic)
|
||||
(
|
||||
fvm::ddt(psi, p)
|
||||
+ fvm::div(phid, p)
|
||||
- fvm::laplacian(rho*rUA, p)
|
||||
- fvm::laplacian(rho*rAU, p)
|
||||
==
|
||||
parcels.Srho()
|
||||
);
|
||||
@ -40,7 +40,7 @@ else
|
||||
fvc::interpolate(rho)
|
||||
*(
|
||||
(fvc::interpolate(U) & mesh.Sf())
|
||||
+ fvc::ddtPhiCorr(rUA, rho, U, phi)
|
||||
+ fvc::ddtPhiCorr(rAU, rho, U, phi)
|
||||
);
|
||||
|
||||
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
|
||||
@ -49,7 +49,7 @@ else
|
||||
(
|
||||
fvm::ddt(psi, p)
|
||||
+ fvc::div(phi)
|
||||
- fvm::laplacian(rho*rUA, p)
|
||||
- fvm::laplacian(rho*rAU, p)
|
||||
==
|
||||
parcels.Srho()
|
||||
);
|
||||
@ -66,7 +66,7 @@ else
|
||||
#include "rhoEqn.H"
|
||||
#include "compressibleContinuityErrs.H"
|
||||
|
||||
U -= rUA*fvc::grad(p);
|
||||
U -= rAU*fvc::grad(p);
|
||||
U.correctBoundaryConditions();
|
||||
|
||||
DpDt = fvc::DDt(surfaceScalarField("phiU", phi/fvc::interpolate(rho)), p);
|
||||
|
||||
@ -11,16 +11,16 @@
|
||||
|
||||
surfaceScalarField rhof = fvc::interpolate(rho, "rhof");
|
||||
|
||||
volScalarField rUA = 1.0/UEqn.A();
|
||||
surfaceScalarField rUAf("rUAf", rhof*fvc::interpolate(rUA));
|
||||
volVectorField HbyA = rUA*UEqn.H();
|
||||
volScalarField rAU = 1.0/UEqn.A();
|
||||
surfaceScalarField rAUf("rAUf", rhof*fvc::interpolate(rAU));
|
||||
volVectorField HbyA = rAU*UEqn.H();
|
||||
|
||||
phiv = (fvc::interpolate(HbyA) & mesh.Sf())
|
||||
+ fvc::ddtPhiCorr(rUA, rho, U, phiv);
|
||||
+ fvc::ddtPhiCorr(rAU, rho, U, phiv);
|
||||
|
||||
p.boundaryField().updateCoeffs();
|
||||
|
||||
surfaceScalarField phiGradp = rUAf*mesh.magSf()*fvc::snGrad(p);
|
||||
surfaceScalarField phiGradp = rAUf*mesh.magSf()*fvc::snGrad(p);
|
||||
|
||||
phiv -= phiGradp/rhof;
|
||||
|
||||
@ -34,7 +34,7 @@
|
||||
- (rhol0 + (psil - psiv)*pSat)*fvc::ddt(gamma) - pSat*fvc::ddt(psi)
|
||||
+ fvc::div(phiv, rho)
|
||||
+ fvc::div(phiGradp)
|
||||
- fvm::laplacian(rUAf, p)
|
||||
- fvm::laplacian(rAUf, p)
|
||||
);
|
||||
|
||||
if (corr == nCorr-1 && nonOrth == nNonOrthCorr)
|
||||
@ -79,7 +79,7 @@
|
||||
|
||||
// Correct velocity
|
||||
|
||||
U = HbyA - rUA*fvc::grad(p);
|
||||
U = HbyA - rAU*fvc::grad(p);
|
||||
|
||||
// Remove the swirl component of velocity for "wedge" cases
|
||||
if (piso.found("removeSwirl"))
|
||||
|
||||
@ -1,6 +1,6 @@
|
||||
{
|
||||
volScalarField rUA = 1.0/UEqn.A();
|
||||
surfaceScalarField rUAf = fvc::interpolate(rUA);
|
||||
volScalarField rAU = 1.0/UEqn.A();
|
||||
surfaceScalarField rAUf = fvc::interpolate(rAU);
|
||||
|
||||
tmp<fvScalarMatrix> p_rghEqnComp;
|
||||
|
||||
@ -24,27 +24,27 @@
|
||||
}
|
||||
|
||||
|
||||
U = rUA*UEqn.H();
|
||||
U = rAU*UEqn.H();
|
||||
|
||||
surfaceScalarField phiU
|
||||
(
|
||||
"phiU",
|
||||
(fvc::interpolate(U) & mesh.Sf())
|
||||
+ fvc::ddtPhiCorr(rUA, rho, U, phi)
|
||||
+ fvc::ddtPhiCorr(rAU, rho, U, phi)
|
||||
);
|
||||
|
||||
phi = phiU +
|
||||
(
|
||||
fvc::interpolate(interface.sigmaK())*fvc::snGrad(alpha1)
|
||||
- ghf*fvc::snGrad(rho)
|
||||
)*rUAf*mesh.magSf();
|
||||
)*rAUf*mesh.magSf();
|
||||
|
||||
for(int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
|
||||
{
|
||||
fvScalarMatrix p_rghEqnIncomp
|
||||
(
|
||||
fvc::div(phi)
|
||||
- fvm::laplacian(rUAf, p_rgh)
|
||||
- fvm::laplacian(rAUf, p_rgh)
|
||||
);
|
||||
|
||||
solve
|
||||
@ -75,7 +75,7 @@
|
||||
}
|
||||
}
|
||||
|
||||
U += rUA*fvc::reconstruct((phi - phiU)/rUAf);
|
||||
U += rAU*fvc::reconstruct((phi - phiU)/rAUf);
|
||||
U.correctBoundaryConditions();
|
||||
|
||||
p = max
|
||||
|
||||
@ -1,6 +1,6 @@
|
||||
{
|
||||
volScalarField rUA = 1.0/UEqn.A();
|
||||
surfaceScalarField rUAf = fvc::interpolate(rUA);
|
||||
volScalarField rAU = 1.0/UEqn.A();
|
||||
surfaceScalarField rAUf = fvc::interpolate(rAU);
|
||||
|
||||
tmp<fvScalarMatrix> p_rghEqnComp;
|
||||
|
||||
@ -24,27 +24,27 @@
|
||||
}
|
||||
|
||||
|
||||
U = rUA*UEqn.H();
|
||||
U = rAU*UEqn.H();
|
||||
|
||||
surfaceScalarField phiU
|
||||
(
|
||||
"phiU",
|
||||
(fvc::interpolate(U) & mesh.Sf())
|
||||
+ fvc::ddtPhiCorr(rUA, rho, U, phi)
|
||||
+ fvc::ddtPhiCorr(rAU, rho, U, phi)
|
||||
);
|
||||
|
||||
phi = phiU +
|
||||
(
|
||||
fvc::interpolate(interface.sigmaK())*fvc::snGrad(alpha1)
|
||||
- ghf*fvc::snGrad(rho)
|
||||
)*rUAf*mesh.magSf();
|
||||
)*rAUf*mesh.magSf();
|
||||
|
||||
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
|
||||
{
|
||||
fvScalarMatrix p_rghEqnIncomp
|
||||
(
|
||||
fvc::div(phi)
|
||||
- fvm::laplacian(rUAf, p_rgh)
|
||||
- fvm::laplacian(rAUf, p_rgh)
|
||||
);
|
||||
|
||||
solve
|
||||
@ -75,7 +75,7 @@
|
||||
}
|
||||
}
|
||||
|
||||
U += rUA*fvc::reconstruct((phi - phiU)/rUAf);
|
||||
U += rAU*fvc::reconstruct((phi - phiU)/rAUf);
|
||||
U.correctBoundaryConditions();
|
||||
|
||||
p = max
|
||||
|
||||
@ -1,14 +1,14 @@
|
||||
{
|
||||
volScalarField rUA = 1.0/UEqn.A();
|
||||
surfaceScalarField rUAf = fvc::interpolate(rUA);
|
||||
volScalarField rAU = 1.0/UEqn.A();
|
||||
surfaceScalarField rAUf = fvc::interpolate(rAU);
|
||||
|
||||
U = rUA*UEqn.H();
|
||||
U = rAU*UEqn.H();
|
||||
|
||||
surfaceScalarField phiU
|
||||
(
|
||||
"phiU",
|
||||
(fvc::interpolate(U) & mesh.Sf())
|
||||
+ fvc::ddtPhiCorr(rUA, rho, U, phi)
|
||||
+ fvc::ddtPhiCorr(rAU, rho, U, phi)
|
||||
);
|
||||
|
||||
adjustPhi(phiU, U, p_rgh);
|
||||
@ -17,7 +17,7 @@
|
||||
(
|
||||
fvc::interpolate(interface.sigmaK())*fvc::snGrad(alpha1)
|
||||
- ghf*fvc::snGrad(rho)
|
||||
)*rUAf*mesh.magSf();
|
||||
)*rAUf*mesh.magSf();
|
||||
|
||||
Pair<tmp<volScalarField> > vDotP = twoPhaseProperties->vDotP();
|
||||
const volScalarField& vDotcP = vDotP[0]();
|
||||
@ -27,7 +27,7 @@
|
||||
{
|
||||
fvScalarMatrix p_rghEqn
|
||||
(
|
||||
fvc::div(phi) - fvm::laplacian(rUAf, p_rgh)
|
||||
fvc::div(phi) - fvm::laplacian(rAUf, p_rgh)
|
||||
- (vDotvP - vDotcP)*(pSat - rho*gh) + fvm::Sp(vDotvP - vDotcP, p_rgh)
|
||||
);
|
||||
|
||||
@ -52,7 +52,7 @@
|
||||
}
|
||||
}
|
||||
|
||||
U += rUA*fvc::reconstruct((phi - phiU)/rUAf);
|
||||
U += rAU*fvc::reconstruct((phi - phiU)/rAUf);
|
||||
U.correctBoundaryConditions();
|
||||
|
||||
#include "continuityErrs.H"
|
||||
|
||||
@ -1,27 +1,27 @@
|
||||
volScalarField rUA = 1.0/UEqn.A();
|
||||
volScalarField rAU = 1.0/UEqn.A();
|
||||
|
||||
surfaceScalarField rUAf
|
||||
surfaceScalarField rAUf
|
||||
(
|
||||
"(rho*(1|A(U)))",
|
||||
fvc::interpolate(rho)*fvc::interpolate(rUA)
|
||||
fvc::interpolate(rho)*fvc::interpolate(rAU)
|
||||
);
|
||||
|
||||
U = rUA*UEqn.H();
|
||||
U = rAU*UEqn.H();
|
||||
phi =
|
||||
fvc::interpolate(rho)
|
||||
*(
|
||||
(fvc::interpolate(U) & mesh.Sf())
|
||||
+ fvc::ddtPhiCorr(rUA, rho, U, phi)
|
||||
+ fvc::ddtPhiCorr(rAU, rho, U, phi)
|
||||
);
|
||||
|
||||
surfaceScalarField phiU("phiU", phi);
|
||||
phi -= ghf*fvc::snGrad(rho)*rUAf*mesh.magSf();
|
||||
phi -= ghf*fvc::snGrad(rho)*rAUf*mesh.magSf();
|
||||
|
||||
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
|
||||
{
|
||||
fvScalarMatrix p_rghEqn
|
||||
(
|
||||
fvm::laplacian(rUAf, p_rgh) == fvc::ddt(rho) + fvc::div(phi)
|
||||
fvm::laplacian(rAUf, p_rgh) == fvc::ddt(rho) + fvc::div(phi)
|
||||
);
|
||||
|
||||
p_rghEqn.setReference(pRefCell, getRefCellValue(p_rgh, pRefCell));
|
||||
@ -49,5 +49,5 @@ if (p_rgh.needReference())
|
||||
#include "rhoEqn.H"
|
||||
#include "compressibleContinuityErrs.H"
|
||||
|
||||
U += rUA*fvc::reconstruct((phi - phiU)/rUAf);
|
||||
U += rAU*fvc::reconstruct((phi - phiU)/rAUf);
|
||||
U.correctBoundaryConditions();
|
||||
|
||||
@ -102,11 +102,11 @@ int main(int argc, char *argv[])
|
||||
|
||||
for (int corr=0; corr<nCorr; corr++)
|
||||
{
|
||||
volScalarField rUA = 1.0/UEqn.A();
|
||||
volScalarField rAU = 1.0/UEqn.A();
|
||||
|
||||
U = rUA*UEqn.H();
|
||||
U = rAU*UEqn.H();
|
||||
phi = (fvc::interpolate(U) & mesh.Sf())
|
||||
+ fvc::ddtPhiCorr(rUA, U, phi);
|
||||
+ fvc::ddtPhiCorr(rAU, U, phi);
|
||||
|
||||
adjustPhi(phi, U, p);
|
||||
|
||||
@ -114,7 +114,7 @@ int main(int argc, char *argv[])
|
||||
{
|
||||
fvScalarMatrix pEqn
|
||||
(
|
||||
fvm::laplacian(rUA, p) == fvc::div(phi)
|
||||
fvm::laplacian(rAU, p) == fvc::div(phi)
|
||||
);
|
||||
|
||||
pEqn.setReference(pRefCell, pRefValue);
|
||||
@ -128,7 +128,7 @@ int main(int argc, char *argv[])
|
||||
|
||||
# include "continuityErrs.H"
|
||||
|
||||
U -= rUA*fvc::grad(p);
|
||||
U -= rAU*fvc::grad(p);
|
||||
U.correctBoundaryConditions();
|
||||
}
|
||||
|
||||
|
||||
@ -153,6 +153,12 @@ int main(int argc, char *argv[])
|
||||
"internalFacesOnly",
|
||||
"do not convert boundary faces"
|
||||
);
|
||||
argList::addBoolOption
|
||||
(
|
||||
"updateFields",
|
||||
"update fields to include new patches:"
|
||||
" NOTE: updated field values may need to be edited"
|
||||
);
|
||||
|
||||
#include "setRootCase.H"
|
||||
#include "createTime.H"
|
||||
@ -235,39 +241,45 @@ int main(int argc, char *argv[])
|
||||
IOobjectList objects(mesh, runTime.timeName());
|
||||
|
||||
// Read vol fields.
|
||||
if (args.optionFound("updateFields"))
|
||||
{
|
||||
Info<< "Reading geometric fields" << nl << endl;
|
||||
PtrList<volScalarField> vsFlds;
|
||||
ReadFields(mesh, objects, vsFlds);
|
||||
|
||||
PtrList<volScalarField> vsFlds;
|
||||
ReadFields(mesh, objects, vsFlds);
|
||||
PtrList<volVectorField> vvFlds;
|
||||
ReadFields(mesh, objects, vvFlds);
|
||||
|
||||
PtrList<volVectorField> vvFlds;
|
||||
ReadFields(mesh, objects, vvFlds);
|
||||
PtrList<volSphericalTensorField> vstFlds;
|
||||
ReadFields(mesh, objects, vstFlds);
|
||||
|
||||
PtrList<volSphericalTensorField> vstFlds;
|
||||
ReadFields(mesh, objects, vstFlds);
|
||||
PtrList<volSymmTensorField> vsymtFlds;
|
||||
ReadFields(mesh, objects, vsymtFlds);
|
||||
|
||||
PtrList<volSymmTensorField> vsymtFlds;
|
||||
ReadFields(mesh, objects, vsymtFlds);
|
||||
PtrList<volTensorField> vtFlds;
|
||||
ReadFields(mesh, objects, vtFlds);
|
||||
|
||||
PtrList<volTensorField> vtFlds;
|
||||
ReadFields(mesh, objects, vtFlds);
|
||||
// Read surface fields.
|
||||
|
||||
// Read surface fields.
|
||||
PtrList<surfaceScalarField> ssFlds;
|
||||
ReadFields(mesh, objects, ssFlds);
|
||||
|
||||
PtrList<surfaceScalarField> ssFlds;
|
||||
ReadFields(mesh, objects, ssFlds);
|
||||
PtrList<surfaceVectorField> svFlds;
|
||||
ReadFields(mesh, objects, svFlds);
|
||||
|
||||
PtrList<surfaceVectorField> svFlds;
|
||||
ReadFields(mesh, objects, svFlds);
|
||||
PtrList<surfaceSphericalTensorField> sstFlds;
|
||||
ReadFields(mesh, objects, sstFlds);
|
||||
|
||||
PtrList<surfaceSphericalTensorField> sstFlds;
|
||||
ReadFields(mesh, objects, sstFlds);
|
||||
|
||||
PtrList<surfaceSymmTensorField> ssymtFlds;
|
||||
ReadFields(mesh, objects, ssymtFlds);
|
||||
|
||||
PtrList<surfaceTensorField> stFlds;
|
||||
ReadFields(mesh, objects, stFlds);
|
||||
PtrList<surfaceSymmTensorField> ssymtFlds;
|
||||
ReadFields(mesh, objects, ssymtFlds);
|
||||
|
||||
PtrList<surfaceTensorField> stFlds;
|
||||
ReadFields(mesh, objects, stFlds);
|
||||
}
|
||||
else
|
||||
{
|
||||
Info<< "Not updating geometric fields" << nl << endl;
|
||||
}
|
||||
|
||||
// Mesh change container
|
||||
polyTopoChange meshMod(mesh);
|
||||
|
||||
@ -161,13 +161,13 @@ Foam::pressureGradientExplicitSource::Su() const
|
||||
|
||||
void Foam::pressureGradientExplicitSource::update()
|
||||
{
|
||||
const volScalarField& rUA =
|
||||
const volScalarField& rAU =
|
||||
mesh_.lookupObject<volScalarField>("(1|A(" + U_.name() + "))");
|
||||
|
||||
// Integrate flow variables over cell set
|
||||
scalar volTot = 0.0;
|
||||
scalar magUbarAve = 0.0;
|
||||
scalar rUAave = 0.0;
|
||||
scalar rAUave = 0.0;
|
||||
forAllConstIter(cellSet, selectedCellSet_, iter)
|
||||
{
|
||||
label cellI = iter.key();
|
||||
@ -176,27 +176,27 @@ void Foam::pressureGradientExplicitSource::update()
|
||||
volTot += volCell;
|
||||
|
||||
magUbarAve += (flowDir_ & U_[cellI])*volCell;
|
||||
rUAave += rUA[cellI]*volCell;
|
||||
rAUave += rAU[cellI]*volCell;
|
||||
}
|
||||
|
||||
// Collect across all processors
|
||||
reduce(volTot, sumOp<scalar>());
|
||||
reduce(magUbarAve, sumOp<scalar>());
|
||||
reduce(rUAave, sumOp<scalar>());
|
||||
reduce(rAUave, sumOp<scalar>());
|
||||
|
||||
// Volume averages
|
||||
magUbarAve /= volTot;
|
||||
rUAave /= volTot;
|
||||
rAUave /= volTot;
|
||||
|
||||
// Calculate the pressure gradient increment needed to adjust the average
|
||||
// flow-rate to the desired value
|
||||
scalar gradPplus = (mag(Ubar_) - magUbarAve)/rUAave;
|
||||
scalar gradPplus = (mag(Ubar_) - magUbarAve)/rAUave;
|
||||
|
||||
// Apply correction to velocity field
|
||||
forAllConstIter(cellSet, selectedCellSet_, iter)
|
||||
{
|
||||
label cellI = iter.key();
|
||||
U_[cellI] += flowDir_*rUA[cellI]*gradPplus;
|
||||
U_[cellI] += flowDir_*rAU[cellI]*gradPplus;
|
||||
}
|
||||
|
||||
// Update pressure gradient
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@ -1,7 +1,7 @@
|
||||
rho = thermo.rho();
|
||||
|
||||
volScalarField rUA = 1.0/UEqn.A();
|
||||
U = rUA*UEqn.H();
|
||||
volScalarField rAU = 1.0/UEqn.A();
|
||||
U = rAU*UEqn.H();
|
||||
|
||||
if (transonic)
|
||||
{
|
||||
@ -11,7 +11,7 @@ if (transonic)
|
||||
fvc::interpolate(psi)
|
||||
*(
|
||||
(fvc::interpolate(U) & mesh.Sf())
|
||||
+ fvc::ddtPhiCorr(rUA, rho, U, phi)
|
||||
+ fvc::ddtPhiCorr(rAU, rho, U, phi)
|
||||
)
|
||||
);
|
||||
|
||||
@ -21,7 +21,7 @@ if (transonic)
|
||||
(
|
||||
fvm::ddt(psi, p)
|
||||
+ fvm::div(phid, p)
|
||||
- fvm::laplacian(rho*rUA, p)
|
||||
- fvm::laplacian(rho*rAU, p)
|
||||
);
|
||||
|
||||
pEqn.solve();
|
||||
@ -38,7 +38,7 @@ else
|
||||
fvc::interpolate(rho)
|
||||
*(
|
||||
(fvc::interpolate(U) & mesh.Sf())
|
||||
+ fvc::ddtPhiCorr(rUA, rho, U, phi)
|
||||
+ fvc::ddtPhiCorr(rAU, rho, U, phi)
|
||||
);
|
||||
|
||||
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
|
||||
@ -47,7 +47,7 @@ else
|
||||
(
|
||||
fvm::ddt(psi, p)
|
||||
+ fvc::div(phi)
|
||||
- fvm::laplacian(rho*rUA, p)
|
||||
- fvm::laplacian(rho*rAU, p)
|
||||
);
|
||||
|
||||
pEqn.solve();
|
||||
@ -62,7 +62,7 @@ else
|
||||
#include "rhoEqn.H"
|
||||
#include "compressibleContinuityErrs.H"
|
||||
|
||||
U -= rUA*fvc::grad(p);
|
||||
U -= rAU*fvc::grad(p);
|
||||
U.correctBoundaryConditions();
|
||||
|
||||
DpDt = fvc::DDt(surfaceScalarField("phiU", phi/fvc::interpolate(rho)), p);
|
||||
|
||||
@ -44,7 +44,7 @@ laplacianSchemes
|
||||
laplacian(nuf,rhoU) Gauss linear corrected;
|
||||
laplacian(muEff,U) Gauss linear corrected;
|
||||
laplacian(rrhoUAf,p) Gauss linear corrected;
|
||||
laplacian(rUAf,p) Gauss linear corrected;
|
||||
laplacian(rAUf,p) Gauss linear corrected;
|
||||
laplacian(DkEff,k) Gauss linear corrected;
|
||||
laplacian(1,p) Gauss linear corrected;
|
||||
}
|
||||
|
||||
@ -44,7 +44,7 @@ laplacianSchemes
|
||||
laplacian(nuf,rhoU) Gauss linear corrected;
|
||||
laplacian(muEff,U) Gauss linear corrected;
|
||||
laplacian(rrhoUAf,p) Gauss linear corrected;
|
||||
laplacian(rUAf,p) Gauss linear corrected;
|
||||
laplacian(rAUf,p) Gauss linear corrected;
|
||||
laplacian(DkEff,k) Gauss linear corrected;
|
||||
laplacian(1,p) Gauss linear corrected;
|
||||
}
|
||||
|
||||
@ -45,7 +45,7 @@ laplacianSchemes
|
||||
laplacian(nuf,rhoU) Gauss linear corrected;
|
||||
laplacian(muEff,U) Gauss linear corrected;
|
||||
laplacian(rrhoUAf,p) Gauss linear corrected;
|
||||
laplacian(rUAf,p) Gauss linear corrected;
|
||||
laplacian(rAUf,p) Gauss linear corrected;
|
||||
laplacian(DomegaEff,omega) Gauss linear corrected;
|
||||
laplacian(DkEff,k) Gauss linear corrected;
|
||||
laplacian(1,p) Gauss linear corrected;
|
||||
|
||||
Reference in New Issue
Block a user