Merge remote branch 'OpenCFD/master' into olesenm

This commit is contained in:
Mark Olesen
2010-04-28 14:49:39 +02:00
73 changed files with 2943 additions and 54 deletions

View File

@ -31,19 +31,17 @@ Description
#include "fvCFD.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
#include "setRootCase.H"
# include "setRootCase.H"
#include "createTime.H"
#include "createMesh.H"
#include "createFields.H"
# include "createTime.H"
# include "createMesh.H"
# include "createFields.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nCalculating temperature distribution\n" << endl;
@ -51,7 +49,7 @@ int main(int argc, char *argv[])
{
Info<< "Time = " << runTime.timeName() << nl << endl;
# include "readSIMPLEControls.H"
#include "readSIMPLEControls.H"
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
{
@ -61,7 +59,7 @@ int main(int argc, char *argv[])
);
}
# include "write.H"
#include "write.H"
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"

View File

@ -39,13 +39,13 @@ int main(int argc, char *argv[])
{
argList::addBoolOption("writep", "write the final pressure field");
# include "setRootCase.H"
# include "createTime.H"
# include "createMesh.H"
# include "createFields.H"
# include "readSIMPLEControls.H"
#include "setRootCase.H"
#include "createTime.H"
#include "createMesh.H"
#include "createFields.H"
#include "readSIMPLEControls.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< nl << "Calculating potential flow" << endl;

View File

@ -4,5 +4,6 @@ set -x
wclean libso BCs
wclean
wclean rhoCentralDyMFoam
# ----------------------------------------------------------------- end-of-file

View File

@ -4,5 +4,6 @@ set -x
wmake libso BCs
wmake
wmake rhoCentralDyMFoam
# ----------------------------------------------------------------- end-of-file

View File

@ -0,0 +1,3 @@
rhoCentralDyMFoam.C
EXE = $(FOAM_APPBIN)/rhoCentralDyMFoam

View File

@ -0,0 +1,17 @@
EXE_INC = \
-I.. \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/basic/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/specie/lnInclude \
-I../BCs/lnInclude \
-I$(LIB_SRC)/sampling/lnInclude \
-I$(LIB_SRC)/dynamicMesh/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude
EXE_LIBS = \
-lfiniteVolume \
-lbasicThermophysicalModels \
-lspecie \
-lrhoCentralFoam \
-ldynamicMesh \
-lmeshTools

View File

@ -0,0 +1,245 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 1991-2009 OpenCFD Ltd.
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
rhoCentralFoam
Description
Density-based compressible flow solver based on central-upwind schemes of
Kurganov and Tadmor
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "basicPsiThermo.H"
#include "zeroGradientFvPatchFields.H"
#include "fixedRhoFvPatchScalarField.H"
#include "motionSolver.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
#include "setRootCase.H"
#include "createTime.H"
#include "createMesh.H"
#include "createFields.H"
#include "readThermophysicalProperties.H"
#include "readTimeControls.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#include "readFluxScheme.H"
dimensionedScalar v_zero("v_zero", dimVolume/dimTime, 0.0);
Info<< "\nStarting time loop\n" << endl;
autoPtr<Foam::motionSolver> motionPtr = motionSolver::New(mesh);
while (runTime.run())
{
// --- upwind interpolation of primitive fields on faces
surfaceScalarField rho_pos =
fvc::interpolate(rho, pos, "reconstruct(rho)");
surfaceScalarField rho_neg =
fvc::interpolate(rho, neg, "reconstruct(rho)");
surfaceVectorField rhoU_pos =
fvc::interpolate(rhoU, pos, "reconstruct(U)");
surfaceVectorField rhoU_neg =
fvc::interpolate(rhoU, neg, "reconstruct(U)");
volScalarField rPsi = 1.0/psi;
surfaceScalarField rPsi_pos =
fvc::interpolate(rPsi, pos, "reconstruct(T)");
surfaceScalarField rPsi_neg =
fvc::interpolate(rPsi, neg, "reconstruct(T)");
surfaceScalarField e_pos =
fvc::interpolate(e, pos, "reconstruct(T)");
surfaceScalarField e_neg =
fvc::interpolate(e, neg, "reconstruct(T)");
surfaceVectorField U_pos = rhoU_pos/rho_pos;
surfaceVectorField U_neg = rhoU_neg/rho_neg;
surfaceScalarField p_pos = rho_pos*rPsi_pos;
surfaceScalarField p_neg = rho_neg*rPsi_neg;
surfaceScalarField phiv_pos = U_pos & mesh.Sf();
surfaceScalarField phiv_neg = U_neg & mesh.Sf();
volScalarField c = sqrt(thermo.Cp()/thermo.Cv()*rPsi);
surfaceScalarField cSf_pos =
fvc::interpolate(c, pos, "reconstruct(T)")*mesh.magSf();
surfaceScalarField cSf_neg =
fvc::interpolate(c, neg, "reconstruct(T)")*mesh.magSf();
surfaceScalarField ap =
max(max(phiv_pos + cSf_pos, phiv_neg + cSf_neg), v_zero);
surfaceScalarField am =
min(min(phiv_pos - cSf_pos, phiv_neg - cSf_neg), v_zero);
surfaceScalarField a_pos = ap/(ap - am);
surfaceScalarField amaxSf("amaxSf", max(mag(am), mag(ap)));
surfaceScalarField aSf = am*a_pos;
if (fluxScheme == "Tadmor")
{
aSf = -0.5*amaxSf;
a_pos = 0.5;
}
surfaceScalarField a_neg = (1.0 - a_pos);
phiv_pos *= a_pos;
phiv_neg *= a_neg;
surfaceScalarField aphiv_pos = phiv_pos - aSf;
surfaceScalarField aphiv_neg = phiv_neg + aSf;
// Reuse amaxSf for the maximum positive and negative fluxes
// estimated by the central scheme
amaxSf = max(mag(aphiv_pos), mag(aphiv_neg));
#include "compressibleCourantNo.H"
#include "readTimeControls.H"
#include "setDeltaT.H"
runTime++;
Info<< "Time = " << runTime.timeName() << nl << endl;
mesh.movePoints(motionPtr->newPoints());
phiv_pos = U_pos & mesh.Sf();
phiv_neg = U_neg & mesh.Sf();
fvc::makeRelative(phiv_pos, U);
fvc::makeRelative(phiv_neg, U);
phiv_neg -= mesh.phi();
phiv_pos *= a_pos;
phiv_neg *= a_neg;
aphiv_pos = phiv_pos - aSf;
aphiv_neg = phiv_neg + aSf;
surfaceScalarField phi("phi", aphiv_pos*rho_pos + aphiv_neg*rho_neg);
surfaceVectorField phiUp =
(aphiv_pos*rhoU_pos + aphiv_neg*rhoU_neg)
+ (a_pos*p_pos + a_neg*p_neg)*mesh.Sf();
surfaceScalarField phiEp =
aphiv_pos*(rho_pos*(e_pos + 0.5*magSqr(U_pos)) + p_pos)
+ aphiv_neg*(rho_neg*(e_neg + 0.5*magSqr(U_neg)) + p_neg)
+ aSf*p_pos - aSf*p_neg;
volTensorField tauMC("tauMC", mu*dev2(fvc::grad(U)().T()));
// --- Solve density
Info<< max(rho) << " " << min(rho) << endl;
solve(fvm::ddt(rho) + fvc::div(phi));
Info<< max(rho) << " " << min(rho) << endl;
// --- Solve momentum
solve(fvm::ddt(rhoU) + fvc::div(phiUp));
U.dimensionedInternalField() =
rhoU.dimensionedInternalField()
/rho.dimensionedInternalField();
U.correctBoundaryConditions();
rhoU.boundaryField() = rho.boundaryField()*U.boundaryField();
if (!inviscid)
{
solve
(
fvm::ddt(rho, U) - fvc::ddt(rho, U)
- fvm::laplacian(mu, U)
- fvc::div(tauMC)
);
rhoU = rho*U;
}
// --- Solve energy
surfaceScalarField sigmaDotU =
(
(
fvc::interpolate(mu)*mesh.magSf()*fvc::snGrad(U)
+ (mesh.Sf() & fvc::interpolate(tauMC))
)
& (a_pos*U_pos + a_neg*U_neg)
);
solve
(
fvm::ddt(rhoE)
+ fvc::div(phiEp)
- fvc::div(sigmaDotU)
);
e = rhoE/rho - 0.5*magSqr(U);
e.correctBoundaryConditions();
thermo.correct();
rhoE.boundaryField() =
rho.boundaryField()*
(
e.boundaryField() + 0.5*magSqr(U.boundaryField())
);
if (!inviscid)
{
volScalarField k("k", thermo.Cp()*mu/Pr);
solve
(
fvm::ddt(rho, e) - fvc::ddt(rho, e)
- fvm::laplacian(thermo.alpha(), e)
+ fvc::laplacian(thermo.alpha(), e)
- fvc::laplacian(k, T)
);
thermo.correct();
rhoE = rho*(e + 0.5*magSqr(U));
}
p.dimensionedInternalField() =
rho.dimensionedInternalField()
/psi.dimensionedInternalField();
p.correctBoundaryConditions();
rho.boundaryField() = psi.boundaryField()*p.boundaryField();
runTime.write();
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //

View File

@ -0,0 +1,3 @@
magneticFoam.C
EXE = $(FOAM_APPBIN)/magneticFoam

View File

@ -0,0 +1,4 @@
EXE_INC = \
-I$(LIB_SRC)/finiteVolume/lnInclude
EXE_LIBS = -lfiniteVolume

View File

@ -0,0 +1,81 @@
Info<< "Reading field psi\n" << endl;
volScalarField psi
(
IOobject
(
"psi",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
Info<< "Reading transportProperties\n" << endl;
IOdictionary transportProperties
(
IOobject
(
"transportProperties",
runTime.constant(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
)
);
List<magnet> magnets(transportProperties.lookup("magnets"));
surfaceScalarField murf
(
IOobject
(
"murf",
runTime.timeName(),
mesh
),
mesh,
1
);
surfaceScalarField Mrf
(
IOobject
(
"Mrf",
runTime.timeName(),
mesh
),
mesh,
dimensionedScalar("Mr", dimensionSet(0, 1, 0, 0, 0, 1, 0), 0)
);
forAll(magnets, i)
{
label magnetZonei = mesh.faceZones().findZoneID(magnets[i].name());
if (magnetZonei == -1)
{
FatalIOErrorIn(args.executable().c_str(), transportProperties)
<< "Cannot find faceZone for magnet " << magnets[i].name()
<< exit(FatalIOError);
}
const labelList& faces =
mesh.faceZones()[magnetZonei];
const scalar muri = magnets[i].mur();
const scalar Mri = magnets[i].Mr().value();
const vector& orientationi = magnets[i].orientation();
const surfaceVectorField& Sf = mesh.Sf();
forAll(faces, i)
{
label facei = faces[i];
murf[facei] = muri;
Mrf[facei] = Mri*(orientationi & Sf[facei]);
}
}

View File

@ -0,0 +1,169 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2010-2010 OpenCFD Ltd.
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Class
Foam::magnet
Description
Class to hold the defining data for a permanent magnet, in particular
the name, relative permeability and remanence.
SourceFiles
\*---------------------------------------------------------------------------*/
#ifndef magnet_H
#define magnet_H
#include "dimensionedVector.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
// Forward declaration of classes
class Istream;
class Ostream;
// Forward declaration of friend functions and operators
class magnet;
Istream& operator>>(Istream&, magnet&);
Ostream& operator<<(Ostream&, const magnet&);
/*---------------------------------------------------------------------------*\
Class magnet Declaration
\*---------------------------------------------------------------------------*/
class magnet
{
// Private data
word name_;
scalar relativePermeability_;
dimensionedScalar remanence_;
vector orientation_;
public:
// Constructors
//- Null constructor for lists
inline magnet()
:
remanence_("Mr", dimensionSet(0, -1, 0, 0, 0, 1, 0), 0),
orientation_(vector::zero)
{}
//- Construct from components
inline magnet
(
const word& name,
const scalar mur,
const scalar Mr,
const vector& orientation
)
:
name_(name),
relativePermeability_(mur),
remanence_("Mr", dimensionSet(0, -1, 0, 0, 0, 1, 0), Mr),
orientation_(orientation)
{}
//- Construct from Istream
inline magnet(Istream& is)
:
remanence_("Mr", dimensionSet(0, -1, 0, 0, 0, 1, 0), 0),
orientation_(vector::zero)
{
is >> *this;
}
// Member Functions
//- Return name
inline const word& name() const
{
return name_;
}
//- Return relative permeability
inline scalar mur() const
{
return relativePermeability_;
}
//- Return remenance
inline const dimensionedScalar& Mr() const
{
return remanence_;
}
//- Return orientation
inline const vector& orientation() const
{
return orientation_;
}
// IOstream operators
inline friend Istream& operator>>(Istream& is, magnet& m)
{
is.readBegin("magnet");
is >> m.name_
>> m.relativePermeability_
>> m.remanence_.value()
>> m.orientation_;
is.readEnd("magnet");
// Check state of Istream
is.check("operator>>(Istream&, magnet&)");
return is;
}
inline friend Ostream& operator<<(Ostream& os, const magnet& m)
{
os << token::BEGIN_LIST
<< m.name_ << token::SPACE
<< m.relativePermeability_ << token::SPACE
<< m.remanence_.value()
<< m.orientation_
<< token::END_LIST;
return os;
}
};
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#endif
// ************************************************************************* //

View File

@ -0,0 +1,153 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2010-2010 OpenCFD Ltd.
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
magneticFoam
Description
Solver for the magnetic field generated by permanent magnets.
A Poisson's equation for the magnetic scalar potential psi is solved
from which the magnetic field intensity H and magnetic flux density B
are obtained. The paramagnetic particle force field (H dot grad(H))
is optionally available.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "OSspecific.H"
#include "magnet.H"
#include "electromagneticConstants.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
argList::addBoolOption
(
"noH",
"do not write the magnetic field intensity field"
);
argList::addBoolOption
(
"noB",
"do not write the magnetic flux density field"
);
argList::addBoolOption
(
"HdotGradH",
"write the paramagnetic particle force field"
);
#include "setRootCase.H"
#include "createTime.H"
#include "createMesh.H"
#include "createFields.H"
#include "readSIMPLEControls.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "Calculating the magnetic field potential" << endl;
runTime++;
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
{
solve(fvm::laplacian(murf, psi) + fvc::div(murf*Mrf));
}
psi.write();
if (!args.optionFound("noH") || args.optionFound("HdotGradH"))
{
volVectorField H
(
IOobject
(
"H",
runTime.timeName(),
mesh
),
fvc::reconstruct(fvc::snGrad(psi)*mesh.magSf())
);
if (!args.optionFound("noH"))
{
Info<< nl
<< "Creating field H for time "
<< runTime.timeName() << endl;
H.write();
}
if (args.optionFound("HdotGradH"))
{
Info<< nl
<< "Creating field HdotGradH for time "
<< runTime.timeName() << endl;
volVectorField HdotGradH
(
IOobject
(
"HdotGradH",
runTime.timeName(),
mesh
),
H & fvc::grad(H)
);
HdotGradH.write();
}
}
if (!args.optionFound("noB"))
{
Info<< nl
<< "Creating field B for time "
<< runTime.timeName() << endl;
volVectorField B
(
IOobject
(
"B",
runTime.timeName(),
mesh
),
constant::electromagnetic::mu0
*fvc::reconstruct(murf*fvc::snGrad(psi)*mesh.magSf() + murf*Mrf)
);
B.write();
}
Info<< "\nEnd\n" << endl;
return 0;
}
// ************************************************************************* //