Merged all multiphase developments in OpenFOAM-1.7.x

This commit is contained in:
Henry
2010-09-29 22:22:48 +01:00
parent fbf4d9ec10
commit 89ee9b3e0f
406 changed files with 32059 additions and 34733 deletions

View File

@ -0,0 +1,8 @@
#!/bin/sh
cd ${0%/*} || exit 1 # run from this directory
set -x
wclean
wclean compressibleInterDyMFoam
# ----------------------------------------------------------------- end-of-file

View File

@ -0,0 +1,8 @@
#!/bin/sh
cd ${0%/*} || exit 1 # run from this directory
set -x
wmake
wmake compressibleInterDyMFoam
# ----------------------------------------------------------------- end-of-file

View File

@ -6,7 +6,7 @@ EXE_INC = \
-I$(LIB_SRC)/finiteVolume/lnInclude
EXE_LIBS = \
-linterfaceProperties \
-ltwoPhaseInterfaceProperties \
-lincompressibleTransportModels \
-lincompressibleTurbulenceModel \
-lincompressibleRASModels \

View File

@ -24,10 +24,10 @@
==
fvc::reconstruct
(
fvc::interpolate(rho)*(g & mesh.Sf())
+ (
(
fvc::interpolate(interface.sigmaK())*fvc::snGrad(alpha1)
- fvc::snGrad(p)
- ghf*fvc::snGrad(rho)
- fvc::snGrad(p_rgh)
) * mesh.magSf()
)
);

View File

@ -0,0 +1,3 @@
compressibleInterDyMFoam.C
EXE = $(FOAM_APPBIN)/compressibleInterDyMFoam

View File

@ -0,0 +1,21 @@
EXE_INC = \
-I.. \
-I$(LIB_SRC)/transportModels \
-I$(LIB_SRC)/transportModels/incompressible/lnInclude \
-I$(LIB_SRC)/transportModels/interfaceProperties/lnInclude \
-I$(LIB_SRC)/turbulenceModels/incompressible/turbulenceModel \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/dynamicMesh/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/dynamicFvMesh/lnInclude
EXE_LIBS = \
-ltwoPhaseInterfaceProperties \
-lincompressibleTransportModels \
-lincompressibleTurbulenceModel \
-lincompressibleRASModels \
-lincompressibleLESModels \
-lfiniteVolume \
-ldynamicMesh \
-lmeshTools \
-ldynamicFvMesh

View File

@ -0,0 +1,45 @@
{
label nAlphaCorr
(
readLabel(piso.lookup("nAlphaCorr"))
);
label nAlphaSubCycles
(
readLabel(piso.lookup("nAlphaSubCycles"))
);
surfaceScalarField phic = mag(phi/mesh.magSf());
phic = min(interface.cAlpha()*phic, max(phic));
fvc::makeAbsolute(phi, U);
volScalarField divU = fvc::div(phi);
fvc::makeRelative(phi, U);
if (nAlphaSubCycles > 1)
{
dimensionedScalar totalDeltaT = runTime.deltaT();
surfaceScalarField rhoPhiSum = 0.0*rhoPhi;
for
(
subCycle<volScalarField> alphaSubCycle(alpha1, nAlphaSubCycles);
!(++alphaSubCycle).end();
)
{
#include "alphaEqns.H"
rhoPhiSum += (runTime.deltaT()/totalDeltaT)*rhoPhi;
}
rhoPhi = rhoPhiSum;
}
else
{
#include "alphaEqns.H"
}
if (oCorr == 0)
{
interface.correct();
}
}

View File

@ -0,0 +1,146 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 1991-2010 OpenCFD Ltd.
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
compressibleInterDyMFoam
Description
Solver for 2 compressible, isothermal immiscible fluids using a VOF
(volume of fluid) phase-fraction based interface capturing approach,
with optional mesh motion and mesh topology changes including adaptive
re-meshing.
The momentum and other fluid properties are of the "mixture" and a single
momentum equation is solved.
Turbulence modelling is generic, i.e. laminar, RAS or LES may be selected.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "dynamicFvMesh.H"
#include "MULES.H"
#include "subCycle.H"
#include "interfaceProperties.H"
#include "twoPhaseMixture.H"
#include "turbulenceModel.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
#include "setRootCase.H"
#include "createTime.H"
#include "createDynamicFvMesh.H"
#include "readGravitationalAcceleration.H"
#include "readControls.H"
#include "initContinuityErrs.H"
#include "createFields.H"
#include "createPcorrTypes.H"
#include "CourantNo.H"
#include "setInitialDeltaT.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
while (runTime.run())
{
#include "readControls.H"
#include "CourantNo.H"
// Make the fluxes absolute
fvc::makeAbsolute(phi, U);
#include "setDeltaT.H"
runTime++;
Info<< "Time = " << runTime.timeName() << nl << endl;
{
// Store divU from the previous mesh for the correctPhi
volScalarField divU = fvc::div(phi);
scalar timeBeforeMeshUpdate = runTime.elapsedCpuTime();
// Do any mesh changes
mesh.update();
if (mesh.changing())
{
Info<< "Execution time for mesh.update() = "
<< runTime.elapsedCpuTime() - timeBeforeMeshUpdate
<< " s" << endl;
gh = g & mesh.C();
ghf = g & mesh.Cf();
}
if (mesh.changing() && correctPhi)
{
#include "correctPhi.H"
}
}
// Make the fluxes relative to the mesh motion
fvc::makeRelative(phi, U);
if (mesh.changing() && checkMeshCourantNo)
{
#include "meshCourantNo.H"
}
turbulence->correct();
// --- Outer-corrector loop
for (int oCorr=0; oCorr<nOuterCorr; oCorr++)
{
#include "alphaEqnsSubCycle.H"
solve(fvm::ddt(rho) + fvc::div(rhoPhi));
#include "UEqn.H"
// --- PISO loop
for (int corr=0; corr<nCorr; corr++)
{
#include "pEqn.H"
}
}
rho = alpha1*rho1 + alpha2*rho2;
runTime.write();
Info<< "ExecutionTime = "
<< runTime.elapsedCpuTime()
<< " s\n\n" << endl;
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //

View File

@ -0,0 +1,61 @@
{
if (mesh.changing())
{
forAll(U.boundaryField(), patchi)
{
if (U.boundaryField()[patchi].fixesValue())
{
U.boundaryField()[patchi].initEvaluate();
}
}
forAll(U.boundaryField(), patchi)
{
if (U.boundaryField()[patchi].fixesValue())
{
U.boundaryField()[patchi].evaluate();
phi.boundaryField()[patchi] =
U.boundaryField()[patchi] & mesh.Sf().boundaryField()[patchi];
}
}
}
#include "continuityErrs.H"
volScalarField pcorr
(
IOobject
(
"pcorr",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh,
dimensionedScalar("pcorr", p.dimensions(), 0.0),
pcorrTypes
);
dimensionedScalar rAUf("(1|A(U))", dimTime/rho.dimensions(), 1.0);
adjustPhi(phi, U, pcorr);
for(int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
{
fvScalarMatrix pcorrEqn
(
fvm::laplacian(rAUf, pcorr) == fvc::div(phi) - divU
);
pcorrEqn.solve();
if (nonOrth == nNonOrthCorr)
{
phi -= pcorrEqn.flux();
}
}
#include "continuityErrs.H"
}

View File

@ -0,0 +1,13 @@
wordList pcorrTypes
(
p_rgh.boundaryField().size(),
zeroGradientFvPatchScalarField::typeName
);
for (label i=0; i<p_rgh.boundaryField().size(); i++)
{
if (p_rgh.boundaryField()[i].fixesValue())
{
pcorrTypes[i] = fixedValueFvPatchScalarField::typeName;
}
}

View File

@ -0,0 +1,96 @@
{
volScalarField rUA = 1.0/UEqn.A();
surfaceScalarField rUAf = fvc::interpolate(rUA);
tmp<fvScalarMatrix> p_rghEqnComp;
if (transonic)
{
p_rghEqnComp =
(
fvm::ddt(p_rgh)
+ fvm::div(phi, p_rgh)
- fvm::Sp(fvc::div(phi), p_rgh)
);
}
else
{
p_rghEqnComp =
(
fvm::ddt(p_rgh)
+ fvc::div(phi, p_rgh)
- fvc::Sp(fvc::div(phi), p_rgh)
);
}
U = rUA*UEqn.H();
surfaceScalarField phiU
(
"phiU",
(fvc::interpolate(U) & mesh.Sf())
+ fvc::ddtPhiCorr(rUA, rho, U, phi)
);
phi = phiU +
(
fvc::interpolate(interface.sigmaK())*fvc::snGrad(alpha1)
- ghf*fvc::snGrad(rho)
)*rUAf*mesh.magSf();
for(int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
{
fvScalarMatrix p_rghEqnIncomp
(
fvc::div(phi)
- fvm::laplacian(rUAf, p_rgh)
);
solve
(
(
max(alpha1, scalar(0))*(psi1/rho1)
+ max(alpha2, scalar(0))*(psi2/rho2)
)
*p_rghEqnComp()
+ p_rghEqnIncomp,
mesh.solver
(
p_rgh.select
(
oCorr == nOuterCorr-1
&& corr == nCorr-1
&& nonOrth == nNonOrthCorr
)
)
);
if (nonOrth == nNonOrthCorr)
{
dgdt =
(pos(alpha2)*(psi2/rho2) - pos(alpha1)*(psi1/rho1))
*(p_rghEqnComp & p_rgh);
phi += p_rghEqnIncomp.flux();
}
}
U += rUA*fvc::reconstruct((phi - phiU)/rUAf);
U.correctBoundaryConditions();
p = max
(
(p_rgh + gh*(alpha1*rho10 + alpha2*rho20))
/(1.0 - gh*(alpha1*psi1 + alpha2*psi2)),
pMin
);
rho1 = rho10 + psi1*p;
rho2 = rho20 + psi2*p;
Info<< "max(U) " << max(mag(U)).value() << endl;
Info<< "min(p_rgh) " << min(p_rgh).value() << endl;
// Make the fluxes relative to the mesh motion
fvc::makeRelative(phi, U);
}

View File

@ -0,0 +1,32 @@
#include "readPISOControls.H"
#include "readTimeControls.H"
label nAlphaCorr
(
readLabel(piso.lookup("nAlphaCorr"))
);
label nAlphaSubCycles
(
readLabel(piso.lookup("nAlphaSubCycles"))
);
if (nAlphaSubCycles > 1 && nOuterCorr != 1)
{
FatalErrorIn(args.executable())
<< "Sub-cycling alpha is only allowed for PISO, "
"i.e. when the number of outer-correctors = 1"
<< exit(FatalError);
}
bool correctPhi = true;
if (piso.found("correctPhi"))
{
correctPhi = Switch(piso.lookup("correctPhi"));
}
bool checkMeshCourantNo = false;
if (piso.found("checkMeshCourantNo"))
{
checkMeshCourantNo = Switch(piso.lookup("checkMeshCourantNo"));
}

View File

@ -1,9 +1,9 @@
Info<< "Reading field p\n" << endl;
volScalarField p
Info<< "Reading field p_rgh\n" << endl;
volScalarField p_rgh
(
IOobject
(
"p",
"p_rgh",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
@ -83,6 +83,28 @@
dimensionedScalar pMin(twoPhaseProperties.lookup("pMin"));
Info<< "Calculating field g.h\n" << endl;
volScalarField gh("gh", g & mesh.C());
surfaceScalarField ghf("ghf", g & mesh.Cf());
volScalarField p
(
IOobject
(
"p",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
max
(
(p_rgh + gh*(alpha1*rho10 + alpha2*rho20))
/(1.0 - gh*(alpha1*psi1 + alpha2*psi2)),
pMin
)
);
volScalarField rho1 = rho10 + psi1*p;
volScalarField rho2 = rho20 + psi2*p;

View File

@ -2,17 +2,25 @@
volScalarField rUA = 1.0/UEqn.A();
surfaceScalarField rUAf = fvc::interpolate(rUA);
tmp<fvScalarMatrix> pEqnComp;
tmp<fvScalarMatrix> p_rghEqnComp;
if (transonic)
{
pEqnComp =
(fvm::ddt(p) + fvm::div(phi, p) - fvm::Sp(fvc::div(phi), p));
p_rghEqnComp =
(
fvm::ddt(p_rgh)
+ fvm::div(phi, p_rgh)
- fvm::Sp(fvc::div(phi), p_rgh)
);
}
else
{
pEqnComp =
(fvm::ddt(p) + fvc::div(phi, p) - fvc::Sp(fvc::div(phi), p));
p_rghEqnComp =
(
fvm::ddt(p_rgh)
+ fvc::div(phi, p_rgh)
- fvc::Sp(fvc::div(phi), p_rgh)
);
}
@ -21,22 +29,22 @@
surfaceScalarField phiU
(
"phiU",
(fvc::interpolate(U) & mesh.Sf()) + fvc::ddtPhiCorr(rUA, rho, U, phi)
(fvc::interpolate(U) & mesh.Sf())
+ fvc::ddtPhiCorr(rUA, rho, U, phi)
);
phi = phiU +
(
fvc::interpolate(interface.sigmaK())
*fvc::snGrad(alpha1)*mesh.magSf()
+ fvc::interpolate(rho)*(g & mesh.Sf())
)*rUAf;
fvc::interpolate(interface.sigmaK())*fvc::snGrad(alpha1)
- ghf*fvc::snGrad(rho)
)*rUAf*mesh.magSf();
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
{
fvScalarMatrix pEqnIncomp
fvScalarMatrix p_rghEqnIncomp
(
fvc::div(phi)
- fvm::laplacian(rUAf, p)
- fvm::laplacian(rUAf, p_rgh)
);
solve
@ -45,27 +53,41 @@
max(alpha1, scalar(0))*(psi1/rho1)
+ max(alpha2, scalar(0))*(psi2/rho2)
)
*pEqnComp()
+ pEqnIncomp
*p_rghEqnComp()
+ p_rghEqnIncomp,
mesh.solver
(
p_rgh.select
(
oCorr == nOuterCorr-1
&& corr == nCorr-1
&& nonOrth == nNonOrthCorr
)
)
);
if (nonOrth == nNonOrthCorr)
{
dgdt =
(pos(alpha2)*(psi2/rho2) - pos(alpha1)*(psi1/rho1))
*(pEqnComp & p);
phi += pEqnIncomp.flux();
*(p_rghEqnComp & p_rgh);
phi += p_rghEqnIncomp.flux();
}
}
U += rUA*fvc::reconstruct((phi - phiU)/rUAf);
U.correctBoundaryConditions();
p.max(pMin);
p = max
(
(p_rgh + gh*(alpha1*rho10 + alpha2*rho20))
/(1.0 - gh*(alpha1*psi1 + alpha2*psi2)),
pMin
);
rho1 = rho10 + psi1*p;
rho2 = rho20 + psi2*p;
Info<< "max(U) " << max(mag(U)).value() << endl;
Info<< "min(p) " << min(p).value() << endl;
Info<< "min(p_rgh) " << min(p_rgh).value() << endl;
}