mirror of
https://develop.openfoam.com/Development/openfoam.git
synced 2025-11-28 03:28:01 +00:00
Merged all multiphase developments in OpenFOAM-1.7.x
This commit is contained in:
@ -0,0 +1,3 @@
|
||||
buoyantSimpleFoam.C
|
||||
|
||||
EXE = $(FOAM_APPBIN)/buoyantSimpleFoam
|
||||
@ -0,0 +1,13 @@
|
||||
EXE_INC = \
|
||||
-I$(LIB_SRC)/thermophysicalModels/basic/lnInclude \
|
||||
-I$(LIB_SRC)/turbulenceModels \
|
||||
-I$(LIB_SRC)/turbulenceModels/compressible/RAS/lnInclude \
|
||||
-I$(LIB_SRC)/finiteVolume/cfdTools \
|
||||
-I$(LIB_SRC)/finiteVolume/lnInclude
|
||||
|
||||
EXE_LIBS = \
|
||||
-lmeshTools \
|
||||
-lbasicThermophysicalModels \
|
||||
-lspecie \
|
||||
-lcompressibleRASModels \
|
||||
-lfiniteVolume
|
||||
@ -0,0 +1,24 @@
|
||||
// Solve the Momentum equation
|
||||
|
||||
tmp<fvVectorMatrix> UEqn
|
||||
(
|
||||
fvm::div(phi, U)
|
||||
+ turbulence->divDevRhoReff(U)
|
||||
);
|
||||
|
||||
UEqn().relax();
|
||||
|
||||
solve
|
||||
(
|
||||
UEqn()
|
||||
==
|
||||
rho*g
|
||||
- fvc::grad(p)
|
||||
/*
|
||||
fvc::reconstruct
|
||||
(
|
||||
fvc::interpolate(rho)*(g & mesh.Sf())
|
||||
- fvc::snGrad(p)*mesh.magSf()
|
||||
)
|
||||
*/
|
||||
);
|
||||
@ -0,0 +1,83 @@
|
||||
/*---------------------------------------------------------------------------*\
|
||||
========= |
|
||||
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
||||
\\ / O peration |
|
||||
\\ / A nd | Copyright (C) 1991-2010 OpenCFD Ltd.
|
||||
\\/ M anipulation |
|
||||
-------------------------------------------------------------------------------
|
||||
License
|
||||
This file is part of OpenFOAM.
|
||||
|
||||
OpenFOAM is free software: you can redistribute it and/or modify it
|
||||
under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
||||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
Application
|
||||
buoyantSimpleFoam
|
||||
|
||||
Description
|
||||
Steady-state solver for buoyant, turbulent flow of compressible fluids
|
||||
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
#include "fvCFD.H"
|
||||
#include "basicPsiThermo.H"
|
||||
#include "RASModel.H"
|
||||
#include "fixedGradientFvPatchFields.H"
|
||||
|
||||
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
#include "setRootCase.H"
|
||||
#include "createTime.H"
|
||||
#include "createMesh.H"
|
||||
#include "readGravitationalAcceleration.H"
|
||||
#include "createFields.H"
|
||||
#include "initContinuityErrs.H"
|
||||
|
||||
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
||||
|
||||
Info<< "\nStarting time loop\n" << endl;
|
||||
|
||||
while (runTime.loop())
|
||||
{
|
||||
Info<< "Time = " << runTime.timeName() << nl << endl;
|
||||
|
||||
#include "readSIMPLEControls.H"
|
||||
|
||||
p.storePrevIter();
|
||||
rho.storePrevIter();
|
||||
|
||||
// Pressure-velocity SIMPLE corrector
|
||||
{
|
||||
#include "UEqn.H"
|
||||
#include "hEqn.H"
|
||||
#include "pEqn.H"
|
||||
}
|
||||
|
||||
turbulence->correct();
|
||||
|
||||
runTime.write();
|
||||
|
||||
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
|
||||
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
|
||||
<< nl << endl;
|
||||
}
|
||||
|
||||
Info<< "End\n" << endl;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
// ************************************************************************* //
|
||||
@ -0,0 +1,69 @@
|
||||
Info<< "Reading thermophysical properties\n" << endl;
|
||||
|
||||
autoPtr<basicPsiThermo> pThermo
|
||||
(
|
||||
basicPsiThermo::New(mesh)
|
||||
);
|
||||
basicPsiThermo& thermo = pThermo();
|
||||
|
||||
volScalarField rho
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"rho",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::NO_READ,
|
||||
IOobject::NO_WRITE
|
||||
),
|
||||
thermo.rho()
|
||||
);
|
||||
|
||||
volScalarField& p = thermo.p();
|
||||
volScalarField& h = thermo.h();
|
||||
const volScalarField& psi = thermo.psi();
|
||||
|
||||
|
||||
Info<< "Reading field U\n" << endl;
|
||||
volVectorField U
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"U",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::MUST_READ,
|
||||
IOobject::AUTO_WRITE
|
||||
),
|
||||
mesh
|
||||
);
|
||||
|
||||
#include "compressibleCreatePhi.H"
|
||||
|
||||
|
||||
Info<< "Creating turbulence model\n" << endl;
|
||||
autoPtr<compressible::RASModel> turbulence
|
||||
(
|
||||
compressible::RASModel::New
|
||||
(
|
||||
rho,
|
||||
U,
|
||||
phi,
|
||||
thermo
|
||||
)
|
||||
);
|
||||
|
||||
thermo.correct();
|
||||
|
||||
label pRefCell = 0;
|
||||
scalar pRefValue = 0.0;
|
||||
setRefCell
|
||||
(
|
||||
p,
|
||||
mesh.solutionDict().subDict("SIMPLE"),
|
||||
pRefCell,
|
||||
pRefValue
|
||||
);
|
||||
|
||||
|
||||
dimensionedScalar initialMass = fvc::domainIntegrate(rho);
|
||||
@ -0,0 +1,17 @@
|
||||
{
|
||||
fvScalarMatrix hEqn
|
||||
(
|
||||
fvm::div(phi, h)
|
||||
- fvm::Sp(fvc::div(phi), h)
|
||||
- fvm::laplacian(turbulence->alphaEff(), h)
|
||||
==
|
||||
fvc::div(phi/fvc::interpolate(rho)*fvc::interpolate(p))
|
||||
- p*fvc::div(phi/fvc::interpolate(rho))
|
||||
);
|
||||
|
||||
hEqn.relax();
|
||||
|
||||
hEqn.solve();
|
||||
|
||||
thermo.correct();
|
||||
}
|
||||
@ -0,0 +1,57 @@
|
||||
{
|
||||
rho = thermo.rho();
|
||||
|
||||
volScalarField rUA = 1.0/UEqn().A();
|
||||
surfaceScalarField rhorUAf("(rho*(1|A(U)))", fvc::interpolate(rho*rUA));
|
||||
|
||||
U = rUA*UEqn().H();
|
||||
UEqn.clear();
|
||||
|
||||
phi = fvc::interpolate(rho)*(fvc::interpolate(U) & mesh.Sf());
|
||||
bool closedVolume = adjustPhi(phi, U, p);
|
||||
|
||||
surfaceScalarField buoyancyPhi =
|
||||
rhorUAf*fvc::interpolate(rho)*(g & mesh.Sf());
|
||||
phi += buoyancyPhi;
|
||||
|
||||
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
|
||||
{
|
||||
fvScalarMatrix pEqn
|
||||
(
|
||||
fvm::laplacian(rhorUAf, p) == fvc::div(phi)
|
||||
);
|
||||
|
||||
pEqn.setReference(pRefCell, pRefValue);
|
||||
pEqn.solve();
|
||||
|
||||
if (nonOrth == nNonOrthCorr)
|
||||
{
|
||||
// For closed-volume cases adjust the pressure and density levels
|
||||
// to obey overall mass continuity
|
||||
if (closedVolume)
|
||||
{
|
||||
p += (initialMass - fvc::domainIntegrate(psi*p))
|
||||
/fvc::domainIntegrate(psi);
|
||||
}
|
||||
|
||||
// Calculate the conservative fluxes
|
||||
phi -= pEqn.flux();
|
||||
|
||||
// Explicitly relax pressure for momentum corrector
|
||||
p.relax();
|
||||
|
||||
// Correct the momentum source with the pressure gradient flux
|
||||
// calculated from the relaxed pressure
|
||||
U += rUA*(rho*g - fvc::grad(p));
|
||||
//U += rUA*fvc::reconstruct((buoyancyPhi - pEqn.flux())/rhorUAf);
|
||||
U.correctBoundaryConditions();
|
||||
}
|
||||
}
|
||||
|
||||
#include "continuityErrs.H"
|
||||
|
||||
rho = thermo.rho();
|
||||
rho.relax();
|
||||
Info<< "rho max/min : " << max(rho).value() << " " << min(rho).value()
|
||||
<< endl;
|
||||
}
|
||||
@ -7,8 +7,8 @@ EXE_INC = \
|
||||
-I$(LIB_SRC)/thermophysicalModels/barotropicCompressibilityModel/lnInclude
|
||||
|
||||
EXE_LIBS = \
|
||||
-lincompressibleTurbulenceModel \
|
||||
-lincompressibleTransportModels \
|
||||
-lincompressibleTurbulenceModel \
|
||||
-lincompressibleRASModels \
|
||||
-lincompressibleLESModels \
|
||||
-lfiniteVolume \
|
||||
|
||||
@ -20,3 +20,5 @@
|
||||
{
|
||||
solve(UEqn == -fvc::grad(p));
|
||||
}
|
||||
|
||||
Info<< "max(U) " << max(mag(U)).value() << endl;
|
||||
|
||||
@ -25,7 +25,8 @@ Application
|
||||
cavitatingFoam
|
||||
|
||||
Description
|
||||
Transient cavitation code based on the barotropic equation of state.
|
||||
Transient cavitation code based on the homogeneous equilibrium model
|
||||
from which the compressibility of the liquid/vapour "mixture" is obtained.
|
||||
|
||||
Turbulence modelling is generic, i.e. laminar, RAS or LES may be selected.
|
||||
|
||||
|
||||
@ -52,9 +52,32 @@
|
||||
}
|
||||
}
|
||||
|
||||
Info<< "max-min p: " << max(p).value()
|
||||
Info<< "Predicted p max-min : " << max(p).value()
|
||||
<< " " << min(p).value() << endl;
|
||||
|
||||
rho == max
|
||||
(
|
||||
psi*p
|
||||
+ (1.0 - gamma)*rhol0
|
||||
+ ((gamma*psiv + (1.0 - gamma)*psil) - psi)*pSat,
|
||||
rhoMin
|
||||
);
|
||||
|
||||
#include "gammaPsi.H"
|
||||
|
||||
p =
|
||||
(
|
||||
rho
|
||||
- (1.0 - gamma)*rhol0
|
||||
- ((gamma*psiv + (1.0 - gamma)*psil) - psi)*pSat
|
||||
)/psi;
|
||||
|
||||
p.correctBoundaryConditions();
|
||||
|
||||
Info<< "Phase-change corrected p max-min : " << max(p).value()
|
||||
<< " " << min(p).value() << endl;
|
||||
|
||||
// Correct velocity
|
||||
|
||||
U = HbyA - rUA*fvc::grad(p);
|
||||
|
||||
@ -70,17 +93,4 @@
|
||||
U.correctBoundaryConditions();
|
||||
|
||||
Info<< "max(U) " << max(mag(U)).value() << endl;
|
||||
|
||||
rho == max
|
||||
(
|
||||
psi*p
|
||||
+ (1.0 - gamma)*rhol0
|
||||
+ ((gamma*psiv + (1.0 - gamma)*psil) - psi)*pSat,
|
||||
rhoMin
|
||||
);
|
||||
|
||||
Info<< "max-min rho: " << max(rho).value()
|
||||
<< " " << min(rho).value() << endl;
|
||||
|
||||
#include "gammaPsi.H"
|
||||
}
|
||||
|
||||
@ -1,86 +0,0 @@
|
||||
{
|
||||
word alphaScheme("div(phi,alpha)");
|
||||
word alpharScheme("div(phirb,alpha)");
|
||||
|
||||
surfaceScalarField phir = phic*interface.nHatf();
|
||||
|
||||
for (int gCorr=0; gCorr<nAlphaCorr; gCorr++)
|
||||
{
|
||||
volScalarField::DimensionedInternalField Sp
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"Sp",
|
||||
runTime.timeName(),
|
||||
mesh
|
||||
),
|
||||
mesh,
|
||||
dimensionedScalar("Sp", dgdt.dimensions(), 0.0)
|
||||
);
|
||||
|
||||
volScalarField::DimensionedInternalField Su
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"Su",
|
||||
runTime.timeName(),
|
||||
mesh
|
||||
),
|
||||
// Divergence term is handled explicitly to be
|
||||
// consistent with the explicit transport solution
|
||||
divU*min(alpha1, scalar(1))
|
||||
);
|
||||
|
||||
forAll(dgdt, celli)
|
||||
{
|
||||
if (dgdt[celli] > 0.0 && alpha1[celli] > 0.0)
|
||||
{
|
||||
Sp[celli] -= dgdt[celli]*alpha1[celli];
|
||||
Su[celli] += dgdt[celli]*alpha1[celli];
|
||||
}
|
||||
else if (dgdt[celli] < 0.0 && alpha1[celli] < 1.0)
|
||||
{
|
||||
Sp[celli] += dgdt[celli]*(1.0 - alpha1[celli]);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
surfaceScalarField phiAlpha1 =
|
||||
fvc::flux
|
||||
(
|
||||
phi,
|
||||
alpha1,
|
||||
alphaScheme
|
||||
)
|
||||
+ fvc::flux
|
||||
(
|
||||
-fvc::flux(-phir, alpha2, alpharScheme),
|
||||
alpha1,
|
||||
alpharScheme
|
||||
);
|
||||
|
||||
MULES::explicitSolve
|
||||
(
|
||||
geometricOneField(),
|
||||
alpha1,
|
||||
phi,
|
||||
phiAlpha1,
|
||||
Sp,
|
||||
Su,
|
||||
1,
|
||||
0
|
||||
);
|
||||
|
||||
surfaceScalarField rho1f = fvc::interpolate(rho1);
|
||||
surfaceScalarField rho2f = fvc::interpolate(rho2);
|
||||
rhoPhi = phiAlpha1*(rho1f - rho2f) + phi*rho2f;
|
||||
|
||||
alpha2 = scalar(1) - alpha1;
|
||||
}
|
||||
|
||||
Info<< "Liquid phase volume fraction = "
|
||||
<< alpha1.weightedAverage(mesh.V()).value()
|
||||
<< " Min(alpha1) = " << min(alpha1).value()
|
||||
<< " Min(alpha2) = " << min(alpha2).value()
|
||||
<< endl;
|
||||
}
|
||||
@ -1,144 +0,0 @@
|
||||
Info<< "Reading field p\n" << endl;
|
||||
volScalarField p
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"p",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::MUST_READ,
|
||||
IOobject::AUTO_WRITE
|
||||
),
|
||||
mesh
|
||||
);
|
||||
|
||||
Info<< "Reading field alpha1\n" << endl;
|
||||
volScalarField alpha1
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"alpha1",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::MUST_READ,
|
||||
IOobject::AUTO_WRITE
|
||||
),
|
||||
mesh
|
||||
);
|
||||
|
||||
Info<< "Calculating field alpha1\n" << endl;
|
||||
volScalarField alpha2("alpha2", scalar(1) - alpha1);
|
||||
|
||||
Info<< "Reading field U\n" << endl;
|
||||
volVectorField U
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"U",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::MUST_READ,
|
||||
IOobject::AUTO_WRITE
|
||||
),
|
||||
mesh
|
||||
);
|
||||
|
||||
#include "createPhi.H"
|
||||
|
||||
|
||||
Info<< "Reading transportProperties\n" << endl;
|
||||
twoPhaseMixture twoPhaseProperties(U, phi);
|
||||
|
||||
dimensionedScalar rho10
|
||||
(
|
||||
twoPhaseProperties.subDict
|
||||
(
|
||||
twoPhaseProperties.phase1Name()
|
||||
).lookup("rho0")
|
||||
);
|
||||
|
||||
dimensionedScalar rho20
|
||||
(
|
||||
twoPhaseProperties.subDict
|
||||
(
|
||||
twoPhaseProperties.phase2Name()
|
||||
).lookup("rho0")
|
||||
);
|
||||
|
||||
dimensionedScalar psi1
|
||||
(
|
||||
twoPhaseProperties.subDict
|
||||
(
|
||||
twoPhaseProperties.phase1Name()
|
||||
).lookup("psi")
|
||||
);
|
||||
|
||||
dimensionedScalar psi2
|
||||
(
|
||||
twoPhaseProperties.subDict
|
||||
(
|
||||
twoPhaseProperties.phase2Name()
|
||||
).lookup("psi")
|
||||
);
|
||||
|
||||
dimensionedScalar pMin(twoPhaseProperties.lookup("pMin"));
|
||||
|
||||
volScalarField rho1 = rho10 + psi1*p;
|
||||
volScalarField rho2 = rho20 + psi2*p;
|
||||
|
||||
volScalarField rho
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"rho",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::READ_IF_PRESENT,
|
||||
IOobject::AUTO_WRITE
|
||||
),
|
||||
alpha1*rho1 + alpha2*rho2
|
||||
);
|
||||
|
||||
|
||||
// Mass flux
|
||||
// Initialisation does not matter because rhoPhi is reset after the
|
||||
// alpha1 solution before it is used in the U equation.
|
||||
surfaceScalarField rhoPhi
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"rho*phi",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::NO_READ,
|
||||
IOobject::NO_WRITE
|
||||
),
|
||||
fvc::interpolate(rho)*phi
|
||||
);
|
||||
|
||||
volScalarField dgdt =
|
||||
pos(alpha2)*fvc::div(phi)/max(alpha2, scalar(0.0001));
|
||||
|
||||
// Construct interface from alpha1 distribution
|
||||
interfaceProperties interface(alpha1, U, twoPhaseProperties);
|
||||
|
||||
// Construct incompressible turbulence model
|
||||
autoPtr<incompressible::turbulenceModel> turbulence
|
||||
(
|
||||
incompressible::turbulenceModel::New(U, phi, twoPhaseProperties)
|
||||
);
|
||||
|
||||
|
||||
wordList pcorrTypes
|
||||
(
|
||||
p.boundaryField().size(),
|
||||
zeroGradientFvPatchScalarField::typeName
|
||||
);
|
||||
|
||||
forAll(p.boundaryField(), i)
|
||||
{
|
||||
if (p.boundaryField()[i].fixesValue())
|
||||
{
|
||||
pcorrTypes[i] = fixedValueFvPatchScalarField::typeName;
|
||||
}
|
||||
}
|
||||
@ -1,95 +0,0 @@
|
||||
{
|
||||
volScalarField rUA = 1.0/UEqn.A();
|
||||
surfaceScalarField rUAf = fvc::interpolate(rUA);
|
||||
|
||||
tmp<fvScalarMatrix> pEqnComp;
|
||||
|
||||
if (transonic)
|
||||
{
|
||||
pEqnComp =
|
||||
(fvm::ddt(p) + fvm::div(phi, p) - fvm::Sp(fvc::div(phi), p));
|
||||
}
|
||||
else
|
||||
{
|
||||
pEqnComp =
|
||||
(fvm::ddt(p) + fvc::div(phi, p) - fvc::Sp(fvc::div(phi), p));
|
||||
}
|
||||
|
||||
|
||||
U = rUA*UEqn.H();
|
||||
|
||||
surfaceScalarField phiU
|
||||
(
|
||||
"phiU",
|
||||
(fvc::interpolate(U) & mesh.Sf())
|
||||
);
|
||||
|
||||
phi = phiU +
|
||||
(
|
||||
fvc::interpolate(interface.sigmaK())
|
||||
*fvc::snGrad(alpha1)*mesh.magSf()
|
||||
+ fvc::interpolate(rho)*(g & mesh.Sf())
|
||||
)*rUAf;
|
||||
|
||||
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
|
||||
{
|
||||
fvScalarMatrix pEqnIncomp
|
||||
(
|
||||
fvc::div(phi)
|
||||
- fvm::laplacian(rUAf, p)
|
||||
);
|
||||
|
||||
if
|
||||
(
|
||||
oCorr == nOuterCorr-1
|
||||
&& corr == nCorr-1
|
||||
&& nonOrth == nNonOrthCorr
|
||||
)
|
||||
{
|
||||
solve
|
||||
(
|
||||
(
|
||||
max(alpha1, scalar(0))*(psi1/rho1)
|
||||
+ max(alpha2, scalar(0))*(psi2/rho2)
|
||||
)
|
||||
*pEqnComp()
|
||||
+ pEqnIncomp,
|
||||
mesh.solver(p.name() + "Final")
|
||||
);
|
||||
}
|
||||
else
|
||||
{
|
||||
solve
|
||||
(
|
||||
(
|
||||
max(alpha1, scalar(0))*(psi1/rho1)
|
||||
+ max(alpha2, scalar(0))*(psi2/rho2)
|
||||
)
|
||||
*pEqnComp()
|
||||
+ pEqnIncomp
|
||||
);
|
||||
}
|
||||
|
||||
if (nonOrth == nNonOrthCorr)
|
||||
{
|
||||
dgdt =
|
||||
(pos(alpha2)*(psi2/rho2) - pos(alpha1)*(psi1/rho1))
|
||||
*(pEqnComp & p);
|
||||
phi += pEqnIncomp.flux();
|
||||
}
|
||||
}
|
||||
|
||||
U += rUA*fvc::reconstruct((phi - phiU)/rUAf);
|
||||
U.correctBoundaryConditions();
|
||||
|
||||
p.max(pMin);
|
||||
|
||||
rho1 = rho10 + psi1*p;
|
||||
rho2 = rho20 + psi2*p;
|
||||
|
||||
Info<< "max(U) " << max(mag(U)).value() << endl;
|
||||
Info<< "min(p) " << min(p).value() << endl;
|
||||
|
||||
// Make the fluxes relative to the mesh motion
|
||||
fvc::makeRelative(phi, U);
|
||||
}
|
||||
8
applications/solvers/multiphase/compressibleInterFoam/Allwclean
Executable file
8
applications/solvers/multiphase/compressibleInterFoam/Allwclean
Executable file
@ -0,0 +1,8 @@
|
||||
#!/bin/sh
|
||||
cd ${0%/*} || exit 1 # run from this directory
|
||||
set -x
|
||||
|
||||
wclean
|
||||
wclean compressibleInterDyMFoam
|
||||
|
||||
# ----------------------------------------------------------------- end-of-file
|
||||
8
applications/solvers/multiphase/compressibleInterFoam/Allwmake
Executable file
8
applications/solvers/multiphase/compressibleInterFoam/Allwmake
Executable file
@ -0,0 +1,8 @@
|
||||
#!/bin/sh
|
||||
cd ${0%/*} || exit 1 # run from this directory
|
||||
set -x
|
||||
|
||||
wmake
|
||||
wmake compressibleInterDyMFoam
|
||||
|
||||
# ----------------------------------------------------------------- end-of-file
|
||||
@ -6,7 +6,7 @@ EXE_INC = \
|
||||
-I$(LIB_SRC)/finiteVolume/lnInclude
|
||||
|
||||
EXE_LIBS = \
|
||||
-linterfaceProperties \
|
||||
-ltwoPhaseInterfaceProperties \
|
||||
-lincompressibleTransportModels \
|
||||
-lincompressibleTurbulenceModel \
|
||||
-lincompressibleRASModels \
|
||||
|
||||
@ -24,10 +24,10 @@
|
||||
==
|
||||
fvc::reconstruct
|
||||
(
|
||||
fvc::interpolate(rho)*(g & mesh.Sf())
|
||||
+ (
|
||||
(
|
||||
fvc::interpolate(interface.sigmaK())*fvc::snGrad(alpha1)
|
||||
- fvc::snGrad(p)
|
||||
- ghf*fvc::snGrad(rho)
|
||||
- fvc::snGrad(p_rgh)
|
||||
) * mesh.magSf()
|
||||
)
|
||||
);
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
EXE_INC = \
|
||||
-I../interFoam \
|
||||
-I.. \
|
||||
-I$(LIB_SRC)/transportModels \
|
||||
-I$(LIB_SRC)/transportModels/incompressible/lnInclude \
|
||||
-I$(LIB_SRC)/transportModels/interfaceProperties/lnInclude \
|
||||
@ -10,7 +10,7 @@ EXE_INC = \
|
||||
-I$(LIB_SRC)/dynamicFvMesh/lnInclude
|
||||
|
||||
EXE_LIBS = \
|
||||
-linterfaceProperties \
|
||||
-ltwoPhaseInterfaceProperties \
|
||||
-lincompressibleTransportModels \
|
||||
-lincompressibleTurbulenceModel \
|
||||
-lincompressibleRASModels \
|
||||
@ -18,5 +18,4 @@ EXE_LIBS = \
|
||||
-lfiniteVolume \
|
||||
-ldynamicMesh \
|
||||
-lmeshTools \
|
||||
-ldynamicFvMesh \
|
||||
-ltopoChangerFvMesh
|
||||
-ldynamicFvMesh
|
||||
@ -27,7 +27,7 @@
|
||||
!(++alphaSubCycle).end();
|
||||
)
|
||||
{
|
||||
# include "alphaEqns.H"
|
||||
#include "alphaEqns.H"
|
||||
rhoPhiSum += (runTime.deltaT()/totalDeltaT)*rhoPhi;
|
||||
}
|
||||
|
||||
@ -35,7 +35,7 @@
|
||||
}
|
||||
else
|
||||
{
|
||||
# include "alphaEqns.H"
|
||||
#include "alphaEqns.H"
|
||||
}
|
||||
|
||||
if (oCorr == 0)
|
||||
@ -22,7 +22,7 @@ License
|
||||
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
Application
|
||||
compressibleLesInterFoam
|
||||
compressibleInterDyMFoam
|
||||
|
||||
Description
|
||||
Solver for 2 compressible, isothermal immiscible fluids using a VOF
|
||||
@ -30,9 +30,10 @@ Description
|
||||
with optional mesh motion and mesh topology changes including adaptive
|
||||
re-meshing.
|
||||
|
||||
The momentum and other fluid properties are of the "mixture" and a
|
||||
single momentum equation is solved. Turbulence modelling is generic,
|
||||
i.e. laminar, RAS or LES may be selected.
|
||||
The momentum and other fluid properties are of the "mixture" and a single
|
||||
momentum equation is solved.
|
||||
|
||||
Turbulence modelling is generic, i.e. laminar, RAS or LES may be selected.
|
||||
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
@ -55,6 +56,7 @@ int main(int argc, char *argv[])
|
||||
#include "readControls.H"
|
||||
#include "initContinuityErrs.H"
|
||||
#include "createFields.H"
|
||||
#include "createPcorrTypes.H"
|
||||
#include "CourantNo.H"
|
||||
#include "setInitialDeltaT.H"
|
||||
|
||||
@ -89,6 +91,9 @@ int main(int argc, char *argv[])
|
||||
Info<< "Execution time for mesh.update() = "
|
||||
<< runTime.elapsedCpuTime() - timeBeforeMeshUpdate
|
||||
<< " s" << endl;
|
||||
|
||||
gh = g & mesh.C();
|
||||
ghf = g & mesh.Cf();
|
||||
}
|
||||
|
||||
if (mesh.changing() && correctPhi)
|
||||
@ -42,7 +42,7 @@
|
||||
|
||||
adjustPhi(phi, U, pcorr);
|
||||
|
||||
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
|
||||
for(int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
|
||||
{
|
||||
fvScalarMatrix pcorrEqn
|
||||
(
|
||||
@ -0,0 +1,13 @@
|
||||
wordList pcorrTypes
|
||||
(
|
||||
p_rgh.boundaryField().size(),
|
||||
zeroGradientFvPatchScalarField::typeName
|
||||
);
|
||||
|
||||
for (label i=0; i<p_rgh.boundaryField().size(); i++)
|
||||
{
|
||||
if (p_rgh.boundaryField()[i].fixesValue())
|
||||
{
|
||||
pcorrTypes[i] = fixedValueFvPatchScalarField::typeName;
|
||||
}
|
||||
}
|
||||
@ -0,0 +1,96 @@
|
||||
{
|
||||
volScalarField rUA = 1.0/UEqn.A();
|
||||
surfaceScalarField rUAf = fvc::interpolate(rUA);
|
||||
|
||||
tmp<fvScalarMatrix> p_rghEqnComp;
|
||||
|
||||
if (transonic)
|
||||
{
|
||||
p_rghEqnComp =
|
||||
(
|
||||
fvm::ddt(p_rgh)
|
||||
+ fvm::div(phi, p_rgh)
|
||||
- fvm::Sp(fvc::div(phi), p_rgh)
|
||||
);
|
||||
}
|
||||
else
|
||||
{
|
||||
p_rghEqnComp =
|
||||
(
|
||||
fvm::ddt(p_rgh)
|
||||
+ fvc::div(phi, p_rgh)
|
||||
- fvc::Sp(fvc::div(phi), p_rgh)
|
||||
);
|
||||
}
|
||||
|
||||
|
||||
U = rUA*UEqn.H();
|
||||
|
||||
surfaceScalarField phiU
|
||||
(
|
||||
"phiU",
|
||||
(fvc::interpolate(U) & mesh.Sf())
|
||||
+ fvc::ddtPhiCorr(rUA, rho, U, phi)
|
||||
);
|
||||
|
||||
phi = phiU +
|
||||
(
|
||||
fvc::interpolate(interface.sigmaK())*fvc::snGrad(alpha1)
|
||||
- ghf*fvc::snGrad(rho)
|
||||
)*rUAf*mesh.magSf();
|
||||
|
||||
for(int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
|
||||
{
|
||||
fvScalarMatrix p_rghEqnIncomp
|
||||
(
|
||||
fvc::div(phi)
|
||||
- fvm::laplacian(rUAf, p_rgh)
|
||||
);
|
||||
|
||||
solve
|
||||
(
|
||||
(
|
||||
max(alpha1, scalar(0))*(psi1/rho1)
|
||||
+ max(alpha2, scalar(0))*(psi2/rho2)
|
||||
)
|
||||
*p_rghEqnComp()
|
||||
+ p_rghEqnIncomp,
|
||||
mesh.solver
|
||||
(
|
||||
p_rgh.select
|
||||
(
|
||||
oCorr == nOuterCorr-1
|
||||
&& corr == nCorr-1
|
||||
&& nonOrth == nNonOrthCorr
|
||||
)
|
||||
)
|
||||
);
|
||||
|
||||
if (nonOrth == nNonOrthCorr)
|
||||
{
|
||||
dgdt =
|
||||
(pos(alpha2)*(psi2/rho2) - pos(alpha1)*(psi1/rho1))
|
||||
*(p_rghEqnComp & p_rgh);
|
||||
phi += p_rghEqnIncomp.flux();
|
||||
}
|
||||
}
|
||||
|
||||
U += rUA*fvc::reconstruct((phi - phiU)/rUAf);
|
||||
U.correctBoundaryConditions();
|
||||
|
||||
p = max
|
||||
(
|
||||
(p_rgh + gh*(alpha1*rho10 + alpha2*rho20))
|
||||
/(1.0 - gh*(alpha1*psi1 + alpha2*psi2)),
|
||||
pMin
|
||||
);
|
||||
|
||||
rho1 = rho10 + psi1*p;
|
||||
rho2 = rho20 + psi2*p;
|
||||
|
||||
Info<< "max(U) " << max(mag(U)).value() << endl;
|
||||
Info<< "min(p_rgh) " << min(p_rgh).value() << endl;
|
||||
|
||||
// Make the fluxes relative to the mesh motion
|
||||
fvc::makeRelative(phi, U);
|
||||
}
|
||||
@ -1,5 +1,5 @@
|
||||
#include "readPISOControls.H"
|
||||
#include "readTimeControls.H"
|
||||
#include "readPISOControls.H"
|
||||
#include "readTimeControls.H"
|
||||
|
||||
label nAlphaCorr
|
||||
(
|
||||
@ -19,9 +19,14 @@
|
||||
<< exit(FatalError);
|
||||
}
|
||||
|
||||
const bool correctPhi =
|
||||
piso.lookupOrDefault("correctPhi", true);
|
||||
|
||||
const bool checkMeshCourantNo =
|
||||
piso.lookupOrDefault("checkMeshCourantNo", false);
|
||||
bool correctPhi = true;
|
||||
if (piso.found("correctPhi"))
|
||||
{
|
||||
correctPhi = Switch(piso.lookup("correctPhi"));
|
||||
}
|
||||
|
||||
bool checkMeshCourantNo = false;
|
||||
if (piso.found("checkMeshCourantNo"))
|
||||
{
|
||||
checkMeshCourantNo = Switch(piso.lookup("checkMeshCourantNo"));
|
||||
}
|
||||
@ -1,9 +1,9 @@
|
||||
Info<< "Reading field p\n" << endl;
|
||||
volScalarField p
|
||||
Info<< "Reading field p_rgh\n" << endl;
|
||||
volScalarField p_rgh
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"p",
|
||||
"p_rgh",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::MUST_READ,
|
||||
@ -83,6 +83,28 @@
|
||||
|
||||
dimensionedScalar pMin(twoPhaseProperties.lookup("pMin"));
|
||||
|
||||
Info<< "Calculating field g.h\n" << endl;
|
||||
volScalarField gh("gh", g & mesh.C());
|
||||
surfaceScalarField ghf("ghf", g & mesh.Cf());
|
||||
|
||||
volScalarField p
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"p",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::NO_READ,
|
||||
IOobject::AUTO_WRITE
|
||||
),
|
||||
max
|
||||
(
|
||||
(p_rgh + gh*(alpha1*rho10 + alpha2*rho20))
|
||||
/(1.0 - gh*(alpha1*psi1 + alpha2*psi2)),
|
||||
pMin
|
||||
)
|
||||
);
|
||||
|
||||
volScalarField rho1 = rho10 + psi1*p;
|
||||
volScalarField rho2 = rho20 + psi2*p;
|
||||
|
||||
|
||||
@ -2,17 +2,25 @@
|
||||
volScalarField rUA = 1.0/UEqn.A();
|
||||
surfaceScalarField rUAf = fvc::interpolate(rUA);
|
||||
|
||||
tmp<fvScalarMatrix> pEqnComp;
|
||||
tmp<fvScalarMatrix> p_rghEqnComp;
|
||||
|
||||
if (transonic)
|
||||
{
|
||||
pEqnComp =
|
||||
(fvm::ddt(p) + fvm::div(phi, p) - fvm::Sp(fvc::div(phi), p));
|
||||
p_rghEqnComp =
|
||||
(
|
||||
fvm::ddt(p_rgh)
|
||||
+ fvm::div(phi, p_rgh)
|
||||
- fvm::Sp(fvc::div(phi), p_rgh)
|
||||
);
|
||||
}
|
||||
else
|
||||
{
|
||||
pEqnComp =
|
||||
(fvm::ddt(p) + fvc::div(phi, p) - fvc::Sp(fvc::div(phi), p));
|
||||
p_rghEqnComp =
|
||||
(
|
||||
fvm::ddt(p_rgh)
|
||||
+ fvc::div(phi, p_rgh)
|
||||
- fvc::Sp(fvc::div(phi), p_rgh)
|
||||
);
|
||||
}
|
||||
|
||||
|
||||
@ -21,22 +29,22 @@
|
||||
surfaceScalarField phiU
|
||||
(
|
||||
"phiU",
|
||||
(fvc::interpolate(U) & mesh.Sf()) + fvc::ddtPhiCorr(rUA, rho, U, phi)
|
||||
(fvc::interpolate(U) & mesh.Sf())
|
||||
+ fvc::ddtPhiCorr(rUA, rho, U, phi)
|
||||
);
|
||||
|
||||
phi = phiU +
|
||||
(
|
||||
fvc::interpolate(interface.sigmaK())
|
||||
*fvc::snGrad(alpha1)*mesh.magSf()
|
||||
+ fvc::interpolate(rho)*(g & mesh.Sf())
|
||||
)*rUAf;
|
||||
fvc::interpolate(interface.sigmaK())*fvc::snGrad(alpha1)
|
||||
- ghf*fvc::snGrad(rho)
|
||||
)*rUAf*mesh.magSf();
|
||||
|
||||
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
|
||||
{
|
||||
fvScalarMatrix pEqnIncomp
|
||||
fvScalarMatrix p_rghEqnIncomp
|
||||
(
|
||||
fvc::div(phi)
|
||||
- fvm::laplacian(rUAf, p)
|
||||
- fvm::laplacian(rUAf, p_rgh)
|
||||
);
|
||||
|
||||
solve
|
||||
@ -45,27 +53,41 @@
|
||||
max(alpha1, scalar(0))*(psi1/rho1)
|
||||
+ max(alpha2, scalar(0))*(psi2/rho2)
|
||||
)
|
||||
*pEqnComp()
|
||||
+ pEqnIncomp
|
||||
*p_rghEqnComp()
|
||||
+ p_rghEqnIncomp,
|
||||
mesh.solver
|
||||
(
|
||||
p_rgh.select
|
||||
(
|
||||
oCorr == nOuterCorr-1
|
||||
&& corr == nCorr-1
|
||||
&& nonOrth == nNonOrthCorr
|
||||
)
|
||||
)
|
||||
);
|
||||
|
||||
if (nonOrth == nNonOrthCorr)
|
||||
{
|
||||
dgdt =
|
||||
(pos(alpha2)*(psi2/rho2) - pos(alpha1)*(psi1/rho1))
|
||||
*(pEqnComp & p);
|
||||
phi += pEqnIncomp.flux();
|
||||
*(p_rghEqnComp & p_rgh);
|
||||
phi += p_rghEqnIncomp.flux();
|
||||
}
|
||||
}
|
||||
|
||||
U += rUA*fvc::reconstruct((phi - phiU)/rUAf);
|
||||
U.correctBoundaryConditions();
|
||||
|
||||
p.max(pMin);
|
||||
p = max
|
||||
(
|
||||
(p_rgh + gh*(alpha1*rho10 + alpha2*rho20))
|
||||
/(1.0 - gh*(alpha1*psi1 + alpha2*psi2)),
|
||||
pMin
|
||||
);
|
||||
|
||||
rho1 = rho10 + psi1*p;
|
||||
rho2 = rho20 + psi2*p;
|
||||
|
||||
Info<< "max(U) " << max(mag(U)).value() << endl;
|
||||
Info<< "min(p) " << min(p).value() << endl;
|
||||
Info<< "min(p_rgh) " << min(p_rgh).value() << endl;
|
||||
}
|
||||
|
||||
@ -1,62 +0,0 @@
|
||||
{
|
||||
if (mesh.changing())
|
||||
{
|
||||
forAll(U.boundaryField(), patchi)
|
||||
{
|
||||
if (U.boundaryField()[patchi].fixesValue())
|
||||
{
|
||||
U.boundaryField()[patchi].initEvaluate();
|
||||
}
|
||||
}
|
||||
|
||||
forAll(U.boundaryField(), patchi)
|
||||
{
|
||||
if (U.boundaryField()[patchi].fixesValue())
|
||||
{
|
||||
U.boundaryField()[patchi].evaluate();
|
||||
|
||||
phi.boundaryField()[patchi] =
|
||||
U.boundaryField()[patchi] & mesh.Sf().boundaryField()[patchi];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#include "continuityErrs.H"
|
||||
|
||||
volScalarField pcorr
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"pcorr",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::NO_READ,
|
||||
IOobject::NO_WRITE
|
||||
),
|
||||
mesh,
|
||||
dimensionedScalar("pcorr", p.dimensions(), 0.0),
|
||||
pcorrTypes
|
||||
);
|
||||
|
||||
dimensionedScalar rAUf("(1|A(U))", dimTime/rho.dimensions(), 1.0);
|
||||
|
||||
adjustPhi(phi, U, pcorr);
|
||||
|
||||
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
|
||||
{
|
||||
fvScalarMatrix pcorrEqn
|
||||
(
|
||||
fvm::laplacian(rAUf, pcorr) == fvc::div(phi)
|
||||
);
|
||||
|
||||
pcorrEqn.setReference(pRefCell, pRefValue);
|
||||
pcorrEqn.solve();
|
||||
|
||||
if (nonOrth == nNonOrthCorr)
|
||||
{
|
||||
phi -= pcorrEqn.flux();
|
||||
}
|
||||
}
|
||||
|
||||
#include "continuityErrs.H"
|
||||
}
|
||||
@ -1,112 +0,0 @@
|
||||
Info<< "Reading field p\n" << endl;
|
||||
volScalarField p
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"p",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::MUST_READ,
|
||||
IOobject::AUTO_WRITE
|
||||
),
|
||||
mesh
|
||||
);
|
||||
|
||||
Info<< "Reading field alpha1\n" << endl;
|
||||
volScalarField alpha1
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"alpha1",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::MUST_READ,
|
||||
IOobject::AUTO_WRITE
|
||||
),
|
||||
mesh
|
||||
);
|
||||
|
||||
Info<< "Reading field U\n" << endl;
|
||||
volVectorField U
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"U",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::MUST_READ,
|
||||
IOobject::AUTO_WRITE
|
||||
),
|
||||
mesh
|
||||
);
|
||||
|
||||
# include "createPhi.H"
|
||||
|
||||
|
||||
Info<< "Reading transportProperties\n" << endl;
|
||||
twoPhaseMixture twoPhaseProperties(U, phi);
|
||||
|
||||
const dimensionedScalar& rho1 = twoPhaseProperties.rho1();
|
||||
const dimensionedScalar& rho2 = twoPhaseProperties.rho2();
|
||||
|
||||
|
||||
// Need to store rho for ddt(rho, U)
|
||||
volScalarField rho
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"rho",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::READ_IF_PRESENT
|
||||
),
|
||||
alpha1*rho1 + (scalar(1) - alpha1)*rho2,
|
||||
alpha1.boundaryField().types()
|
||||
);
|
||||
rho.oldTime();
|
||||
|
||||
|
||||
// Mass flux
|
||||
// Initialisation does not matter because rhoPhi is reset after the
|
||||
// alpha1 solution before it is used in the U equation.
|
||||
surfaceScalarField rhoPhi
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"rho*phi",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::NO_READ,
|
||||
IOobject::NO_WRITE
|
||||
),
|
||||
rho1*phi
|
||||
);
|
||||
|
||||
|
||||
// Construct interface from alpha1 distribution
|
||||
interfaceProperties interface(alpha1, U, twoPhaseProperties);
|
||||
|
||||
// Construct incompressible turbulence model
|
||||
autoPtr<incompressible::turbulenceModel> turbulence
|
||||
(
|
||||
incompressible::turbulenceModel::New(U, phi, twoPhaseProperties)
|
||||
);
|
||||
|
||||
wordList pcorrTypes
|
||||
(
|
||||
p.boundaryField().size(),
|
||||
zeroGradientFvPatchScalarField::typeName
|
||||
);
|
||||
|
||||
forAll(p.boundaryField(), i)
|
||||
{
|
||||
if (p.boundaryField()[i].fixesValue())
|
||||
{
|
||||
pcorrTypes[i] = fixedValueFvPatchScalarField::typeName;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
label pRefCell = 0;
|
||||
scalar pRefValue = 0.0;
|
||||
setRefCell(p, mesh.solutionDict().subDict("PISO"), pRefCell, pRefValue);
|
||||
@ -1,52 +0,0 @@
|
||||
{
|
||||
volScalarField rAU = 1.0/UEqn.A();
|
||||
surfaceScalarField rAUf = fvc::interpolate(rAU);
|
||||
|
||||
U = rAU*UEqn.H();
|
||||
surfaceScalarField phiU("phiU", (fvc::interpolate(U) & mesh.Sf()));
|
||||
|
||||
if (p.needReference())
|
||||
{
|
||||
fvc::makeRelative(phiU, U);
|
||||
adjustPhi(phiU, U, p);
|
||||
fvc::makeAbsolute(phiU, U);
|
||||
}
|
||||
|
||||
phi = phiU +
|
||||
(
|
||||
fvc::interpolate(interface.sigmaK())*fvc::snGrad(alpha1)*mesh.magSf()
|
||||
+ fvc::interpolate(rho)*(g & mesh.Sf())
|
||||
)*rAUf;
|
||||
|
||||
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
|
||||
{
|
||||
fvScalarMatrix pEqn
|
||||
(
|
||||
fvm::laplacian(rAUf, p) == fvc::div(phi)
|
||||
);
|
||||
|
||||
pEqn.setReference(pRefCell, pRefValue);
|
||||
|
||||
if (corr == nCorr-1 && nonOrth == nNonOrthCorr)
|
||||
{
|
||||
pEqn.solve(mesh.solver(p.name() + "Final"));
|
||||
}
|
||||
else
|
||||
{
|
||||
pEqn.solve(mesh.solver(p.name()));
|
||||
}
|
||||
|
||||
if (nonOrth == nNonOrthCorr)
|
||||
{
|
||||
phi -= pEqn.flux();
|
||||
}
|
||||
}
|
||||
|
||||
U += rAU*fvc::reconstruct((phi - phiU)/rAUf);
|
||||
U.correctBoundaryConditions();
|
||||
|
||||
#include "continuityErrs.H"
|
||||
|
||||
// Make the fluxes relative to the mesh motion
|
||||
fvc::makeRelative(phi, U);
|
||||
}
|
||||
@ -1,9 +0,0 @@
|
||||
# include "readTimeControls.H"
|
||||
# include "readPISOControls.H"
|
||||
|
||||
const bool correctPhi =
|
||||
piso.lookupOrDefault("correctPhi", true);
|
||||
|
||||
const bool checkMeshCourantNo =
|
||||
piso.lookupOrDefault("checkMeshCourantNo", false);
|
||||
|
||||
10
applications/solvers/multiphase/interFoam/Allwclean
Executable file
10
applications/solvers/multiphase/interFoam/Allwclean
Executable file
@ -0,0 +1,10 @@
|
||||
#!/bin/sh
|
||||
cd ${0%/*} || exit 1 # run from this directory
|
||||
set -x
|
||||
|
||||
wclean
|
||||
wclean interDyMFoam
|
||||
wclean MRFInterFoam
|
||||
wclean porousInterFoam
|
||||
|
||||
# ----------------------------------------------------------------- end-of-file
|
||||
10
applications/solvers/multiphase/interFoam/Allwmake
Executable file
10
applications/solvers/multiphase/interFoam/Allwmake
Executable file
@ -0,0 +1,10 @@
|
||||
#!/bin/sh
|
||||
cd ${0%/*} || exit 1 # run from this directory
|
||||
set -x
|
||||
|
||||
wmake
|
||||
wmake interDyMFoam
|
||||
wmake MRFInterFoam
|
||||
wmake porousInterFoam
|
||||
|
||||
# ----------------------------------------------------------------- end-of-file
|
||||
@ -51,7 +51,6 @@ int main(int argc, char *argv[])
|
||||
#include "setRootCase.H"
|
||||
#include "createTime.H"
|
||||
#include "createMesh.H"
|
||||
#include "readGravitationalAcceleration.H"
|
||||
#include "readPISOControls.H"
|
||||
#include "initContinuityErrs.H"
|
||||
#include "createFields.H"
|
||||
@ -70,6 +69,7 @@ int main(int argc, char *argv[])
|
||||
#include "readPISOControls.H"
|
||||
#include "readTimeControls.H"
|
||||
#include "CourantNo.H"
|
||||
#include "alphaCourantNo.H"
|
||||
#include "setDeltaT.H"
|
||||
|
||||
runTime++;
|
||||
@ -79,6 +79,7 @@ int main(int argc, char *argv[])
|
||||
twoPhaseProperties.correct();
|
||||
|
||||
#include "alphaEqnSubCycle.H"
|
||||
#include "zonePhaseVolumes.H"
|
||||
|
||||
#include "UEqn.H"
|
||||
|
||||
@ -88,8 +89,6 @@ int main(int argc, char *argv[])
|
||||
#include "pEqn.H"
|
||||
}
|
||||
|
||||
#include "continuityErrs.H"
|
||||
|
||||
turbulence->correct();
|
||||
|
||||
runTime.write();
|
||||
@ -0,0 +1,3 @@
|
||||
MRFInterFoam.C
|
||||
|
||||
EXE = $(FOAM_APPBIN)/MRFInterFoam
|
||||
@ -1,5 +1,5 @@
|
||||
EXE_INC = \
|
||||
-I$(FOAM_SOLVERS)/multiphase/interFoam \
|
||||
-I.. \
|
||||
-I$(LIB_SRC)/transportModels \
|
||||
-I$(LIB_SRC)/transportModels/incompressible/lnInclude \
|
||||
-I$(LIB_SRC)/transportModels/interfaceProperties/lnInclude \
|
||||
@ -7,8 +7,9 @@ EXE_INC = \
|
||||
-I$(LIB_SRC)/finiteVolume/lnInclude
|
||||
|
||||
EXE_LIBS = \
|
||||
-linterfaceProperties \
|
||||
-ltwoPhaseInterfaceProperties \
|
||||
-lincompressibleTransportModels \
|
||||
-lincompressibleTurbulenceModel \
|
||||
-lincompressibleRASModels \
|
||||
-lincompressibleLESModels \
|
||||
-lfiniteVolume
|
||||
@ -25,10 +25,10 @@
|
||||
==
|
||||
fvc::reconstruct
|
||||
(
|
||||
fvc::interpolate(rho)*(g & mesh.Sf())
|
||||
+ (
|
||||
(
|
||||
fvc::interpolate(interface.sigmaK())*fvc::snGrad(alpha1)
|
||||
- fvc::snGrad(p)
|
||||
- ghf*fvc::snGrad(rho)
|
||||
- fvc::snGrad(p_rgh)
|
||||
) * mesh.magSf()
|
||||
)
|
||||
);
|
||||
@ -0,0 +1,62 @@
|
||||
{
|
||||
volScalarField rAU = 1.0/UEqn.A();
|
||||
surfaceScalarField rAUf = fvc::interpolate(rAU);
|
||||
|
||||
U = rAU*UEqn.H();
|
||||
surfaceScalarField phiU
|
||||
(
|
||||
"phiU",
|
||||
(fvc::interpolate(U) & mesh.Sf())
|
||||
+ fvc::ddtPhiCorr(rAU, rho, U, phi)
|
||||
);
|
||||
mrfZones.relativeFlux(phiU);
|
||||
|
||||
adjustPhi(phiU, U, p_rgh);
|
||||
|
||||
phi = phiU +
|
||||
(
|
||||
fvc::interpolate(interface.sigmaK())*fvc::snGrad(alpha1)
|
||||
- ghf*fvc::snGrad(rho)
|
||||
)*rAUf*mesh.magSf();
|
||||
|
||||
for(int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
|
||||
{
|
||||
fvScalarMatrix p_rghEqn
|
||||
(
|
||||
fvm::laplacian(rAUf, p_rgh) == fvc::div(phi)
|
||||
);
|
||||
|
||||
p_rghEqn.setReference(pRefCell, getRefCellValue(p_rgh, pRefCell));
|
||||
|
||||
p_rghEqn.solve
|
||||
(
|
||||
mesh.solver
|
||||
(
|
||||
p_rgh.select(corr == nCorr-1 && nonOrth == nNonOrthCorr)
|
||||
)
|
||||
);
|
||||
|
||||
if (nonOrth == nNonOrthCorr)
|
||||
{
|
||||
phi -= p_rghEqn.flux();
|
||||
}
|
||||
}
|
||||
|
||||
U += rAU*fvc::reconstruct((phi - phiU)/rAUf);
|
||||
U.correctBoundaryConditions();
|
||||
|
||||
#include "continuityErrs.H"
|
||||
|
||||
p == p_rgh + rho*gh;
|
||||
|
||||
if (p_rgh.needReference())
|
||||
{
|
||||
p += dimensionedScalar
|
||||
(
|
||||
"p",
|
||||
p.dimensions(),
|
||||
pRefValue - getRefCellValue(p, pRefCell)
|
||||
);
|
||||
p_rgh = p - rho*gh;
|
||||
}
|
||||
}
|
||||
@ -0,0 +1,21 @@
|
||||
{
|
||||
const scalarField& V = mesh.V();
|
||||
|
||||
forAll(mesh.cellZones(), czi)
|
||||
{
|
||||
const labelList& cellLabels = mesh.cellZones()[czi];
|
||||
|
||||
scalar phaseVolume = 0;
|
||||
|
||||
forAll(cellLabels, cli)
|
||||
{
|
||||
label celli = cellLabels[cli];
|
||||
phaseVolume += alpha1[celli]*V[celli];
|
||||
}
|
||||
|
||||
reduce(phaseVolume, sumOp<scalar>());
|
||||
|
||||
Info<< "Phase volume in zone " << mesh.cellZones()[czi].name()
|
||||
<< " = " << phaseVolume*1e6 << " ml " << endl;
|
||||
}
|
||||
}
|
||||
@ -6,7 +6,7 @@ EXE_INC = \
|
||||
-I$(LIB_SRC)/finiteVolume/lnInclude
|
||||
|
||||
EXE_LIBS = \
|
||||
-linterfaceProperties \
|
||||
-ltwoPhaseInterfaceProperties \
|
||||
-lincompressibleTransportModels \
|
||||
-lincompressibleTurbulenceModel \
|
||||
-lincompressibleRASModels \
|
||||
|
||||
@ -1,6 +0,0 @@
|
||||
surfaceScalarField alpha1f = fvc::interpolate(alpha1);
|
||||
surfaceScalarField UBlendingFactor
|
||||
(
|
||||
"UBlendingFactor",
|
||||
sqrt(max(min(4*alpha1f*(1.0 - alpha1f), 1.0), 0.0))
|
||||
);
|
||||
@ -24,10 +24,10 @@
|
||||
==
|
||||
fvc::reconstruct
|
||||
(
|
||||
fvc::interpolate(rho)*(g & mesh.Sf())
|
||||
+ (
|
||||
(
|
||||
fvc::interpolate(interface.sigmaK())*fvc::snGrad(alpha1)
|
||||
- fvc::snGrad(p)
|
||||
- ghf*fvc::snGrad(rho)
|
||||
- fvc::snGrad(p_rgh)
|
||||
) * mesh.magSf()
|
||||
)
|
||||
);
|
||||
|
||||
58
applications/solvers/multiphase/interFoam/alphaCourantNo.H
Normal file
58
applications/solvers/multiphase/interFoam/alphaCourantNo.H
Normal file
@ -0,0 +1,58 @@
|
||||
/*---------------------------------------------------------------------------*\
|
||||
========= |
|
||||
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
||||
\\ / O peration |
|
||||
\\ / A nd | Copyright (C) 1991-2010 OpenCFD Ltd.
|
||||
\\/ M anipulation |
|
||||
-------------------------------------------------------------------------------
|
||||
License
|
||||
This file is part of OpenFOAM.
|
||||
|
||||
OpenFOAM is free software: you can redistribute it and/or modify it
|
||||
under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
||||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
Global
|
||||
CourantNo
|
||||
|
||||
Description
|
||||
Calculates and outputs the mean and maximum Courant Numbers.
|
||||
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
scalar maxAlphaCo
|
||||
(
|
||||
readScalar(runTime.controlDict().lookup("maxAlphaCo"))
|
||||
);
|
||||
|
||||
scalar alphaCoNum = 0.0;
|
||||
scalar meanAlphaCoNum = 0.0;
|
||||
|
||||
if (mesh.nInternalFaces())
|
||||
{
|
||||
surfaceScalarField alphaf = fvc::interpolate(alpha1);
|
||||
|
||||
surfaceScalarField SfUfbyDelta =
|
||||
pos(alphaf - 0.01)*pos(0.99 - alphaf)
|
||||
*mesh.surfaceInterpolation::deltaCoeffs()*mag(phi);
|
||||
|
||||
alphaCoNum = max(SfUfbyDelta/mesh.magSf())
|
||||
.value()*runTime.deltaT().value();
|
||||
|
||||
meanAlphaCoNum = (sum(SfUfbyDelta)/sum(mesh.magSf()))
|
||||
.value()*runTime.deltaT().value();
|
||||
}
|
||||
|
||||
Info<< "Interface Courant Number mean: " << meanAlphaCoNum
|
||||
<< " max: " << alphaCoNum << endl;
|
||||
|
||||
// ************************************************************************* //
|
||||
@ -3,13 +3,13 @@
|
||||
|
||||
wordList pcorrTypes
|
||||
(
|
||||
p.boundaryField().size(),
|
||||
p_rgh.boundaryField().size(),
|
||||
zeroGradientFvPatchScalarField::typeName
|
||||
);
|
||||
|
||||
forAll(p.boundaryField(), i)
|
||||
forAll (p_rgh.boundaryField(), i)
|
||||
{
|
||||
if (p.boundaryField()[i].fixesValue())
|
||||
if (p_rgh.boundaryField()[i].fixesValue())
|
||||
{
|
||||
pcorrTypes[i] = fixedValueFvPatchScalarField::typeName;
|
||||
}
|
||||
@ -26,11 +26,11 @@
|
||||
IOobject::NO_WRITE
|
||||
),
|
||||
mesh,
|
||||
dimensionedScalar("pcorr", p.dimensions(), 0.0),
|
||||
dimensionedScalar("pcorr", p_rgh.dimensions(), 0.0),
|
||||
pcorrTypes
|
||||
);
|
||||
|
||||
dimensionedScalar rUAf("(1|A(U))", dimTime/rho.dimensions(), 1.0);
|
||||
dimensionedScalar rAUf("(1|A(U))", dimTime/rho.dimensions(), 1.0);
|
||||
|
||||
adjustPhi(phi, U, pcorr);
|
||||
|
||||
@ -38,7 +38,7 @@
|
||||
{
|
||||
fvScalarMatrix pcorrEqn
|
||||
(
|
||||
fvm::laplacian(rUAf, pcorr) == fvc::div(phi)
|
||||
fvm::laplacian(rAUf, pcorr) == fvc::div(phi)
|
||||
);
|
||||
|
||||
pcorrEqn.setReference(pRefCell, pRefValue);
|
||||
|
||||
@ -1,9 +1,9 @@
|
||||
Info<< "Reading field p\n" << endl;
|
||||
volScalarField p
|
||||
Info<< "Reading field p_rgh\n" << endl;
|
||||
volScalarField p_rgh
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"p",
|
||||
"p_rgh",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::MUST_READ,
|
||||
@ -40,7 +40,7 @@
|
||||
mesh
|
||||
);
|
||||
|
||||
# include "createPhi.H"
|
||||
#include "createPhi.H"
|
||||
|
||||
|
||||
Info<< "Reading transportProperties\n" << endl;
|
||||
@ -83,11 +83,6 @@
|
||||
);
|
||||
|
||||
|
||||
label pRefCell = 0;
|
||||
scalar pRefValue = 0.0;
|
||||
setRefCell(p, mesh.solutionDict().subDict("PISO"), pRefCell, pRefValue);
|
||||
|
||||
|
||||
// Construct interface from alpha1 distribution
|
||||
interfaceProperties interface(alpha1, U, twoPhaseProperties);
|
||||
|
||||
@ -97,3 +92,54 @@
|
||||
(
|
||||
incompressible::turbulenceModel::New(U, phi, twoPhaseProperties)
|
||||
);
|
||||
|
||||
#include "readGravitationalAcceleration.H"
|
||||
|
||||
/*
|
||||
dimensionedVector g0(g);
|
||||
|
||||
// Read the data file and initialise the interpolation table
|
||||
interpolationTable<vector> timeSeriesAcceleration
|
||||
(
|
||||
runTime.path()/runTime.caseConstant()/"acceleration.dat"
|
||||
);
|
||||
*/
|
||||
|
||||
Info<< "Calculating field g.h\n" << endl;
|
||||
volScalarField gh("gh", g & mesh.C());
|
||||
surfaceScalarField ghf("ghf", g & mesh.Cf());
|
||||
|
||||
volScalarField p
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"p",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::NO_READ,
|
||||
IOobject::AUTO_WRITE
|
||||
),
|
||||
p_rgh + rho*gh
|
||||
);
|
||||
|
||||
label pRefCell = 0;
|
||||
scalar pRefValue = 0.0;
|
||||
setRefCell
|
||||
(
|
||||
p,
|
||||
p_rgh,
|
||||
mesh.solutionDict().subDict("PISO"),
|
||||
pRefCell,
|
||||
pRefValue
|
||||
);
|
||||
|
||||
if (p_rgh.needReference())
|
||||
{
|
||||
p += dimensionedScalar
|
||||
(
|
||||
"p",
|
||||
p.dimensions(),
|
||||
pRefValue - getRefCellValue(p, pRefCell)
|
||||
);
|
||||
p_rgh = p - rho*gh;
|
||||
}
|
||||
|
||||
@ -1,4 +1,5 @@
|
||||
EXE_INC = \
|
||||
-I.. \
|
||||
-I$(LIB_SRC)/transportModels \
|
||||
-I$(LIB_SRC)/transportModels/incompressible/lnInclude \
|
||||
-I$(LIB_SRC)/transportModels/interfaceProperties/lnInclude \
|
||||
@ -9,7 +10,7 @@ EXE_INC = \
|
||||
-I$(LIB_SRC)/dynamicFvMesh/lnInclude
|
||||
|
||||
EXE_LIBS = \
|
||||
-linterfaceProperties \
|
||||
-ltwoPhaseInterfaceProperties \
|
||||
-lincompressibleTransportModels \
|
||||
-lincompressibleTurbulenceModel \
|
||||
-lincompressibleRASModels \
|
||||
@ -19,4 +20,3 @@ EXE_LIBS = \
|
||||
-lmeshTools \
|
||||
-ldynamicFvMesh \
|
||||
-ltopoChangerFvMesh
|
||||
|
||||
@ -47,7 +47,6 @@ int main(int argc, char *argv[])
|
||||
#include "setRootCase.H"
|
||||
#include "createTime.H"
|
||||
#include "createDynamicFvMesh.H"
|
||||
#include "readGravitationalAcceleration.H"
|
||||
#include "readPISOControls.H"
|
||||
#include "initContinuityErrs.H"
|
||||
#include "createFields.H"
|
||||
@ -62,6 +61,7 @@ int main(int argc, char *argv[])
|
||||
while (runTime.run())
|
||||
{
|
||||
#include "readControls.H"
|
||||
#include "alphaCourantNo.H"
|
||||
#include "CourantNo.H"
|
||||
|
||||
// Make the fluxes absolute
|
||||
@ -83,6 +83,9 @@ int main(int argc, char *argv[])
|
||||
Info<< "Execution time for mesh.update() = "
|
||||
<< runTime.elapsedCpuTime() - timeBeforeMeshUpdate
|
||||
<< " s" << endl;
|
||||
|
||||
gh = g & mesh.C();
|
||||
ghf = g & mesh.Cf();
|
||||
}
|
||||
|
||||
if (mesh.changing() && correctPhi)
|
||||
@ -0,0 +1,64 @@
|
||||
{
|
||||
volScalarField rAU = 1.0/UEqn.A();
|
||||
surfaceScalarField rAUf = fvc::interpolate(rAU);
|
||||
|
||||
U = rAU*UEqn.H();
|
||||
surfaceScalarField phiU("phiU", (fvc::interpolate(U) & mesh.Sf()));
|
||||
|
||||
if (p_rgh.needReference())
|
||||
{
|
||||
fvc::makeRelative(phiU, U);
|
||||
adjustPhi(phiU, U, p_rgh);
|
||||
fvc::makeAbsolute(phiU, U);
|
||||
}
|
||||
|
||||
phi = phiU +
|
||||
(
|
||||
fvc::interpolate(interface.sigmaK())*fvc::snGrad(alpha1)
|
||||
- ghf*fvc::snGrad(rho)
|
||||
)*rAUf*mesh.magSf();
|
||||
|
||||
for(int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
|
||||
{
|
||||
fvScalarMatrix p_rghEqn
|
||||
(
|
||||
fvm::laplacian(rAUf, p_rgh) == fvc::div(phi)
|
||||
);
|
||||
|
||||
p_rghEqn.setReference(pRefCell, getRefCellValue(p_rgh, pRefCell));
|
||||
|
||||
p_rghEqn.solve
|
||||
(
|
||||
mesh.solver
|
||||
(
|
||||
p_rgh.select(corr == nCorr-1 && nonOrth == nNonOrthCorr)
|
||||
)
|
||||
);
|
||||
|
||||
if (nonOrth == nNonOrthCorr)
|
||||
{
|
||||
phi -= p_rghEqn.flux();
|
||||
}
|
||||
}
|
||||
|
||||
U += rAU*fvc::reconstruct((phi - phiU)/rAUf);
|
||||
U.correctBoundaryConditions();
|
||||
|
||||
#include "continuityErrs.H"
|
||||
|
||||
// Make the fluxes relative to the mesh motion
|
||||
fvc::makeRelative(phi, U);
|
||||
|
||||
p == p_rgh + rho*gh;
|
||||
|
||||
if (p_rgh.needReference())
|
||||
{
|
||||
p += dimensionedScalar
|
||||
(
|
||||
"p",
|
||||
p.dimensions(),
|
||||
pRefValue - getRefCellValue(p, pRefCell)
|
||||
);
|
||||
p_rgh = p - rho*gh;
|
||||
}
|
||||
}
|
||||
@ -0,0 +1,14 @@
|
||||
# include "readTimeControls.H"
|
||||
# include "readPISOControls.H"
|
||||
|
||||
bool correctPhi = true;
|
||||
if (piso.found("correctPhi"))
|
||||
{
|
||||
correctPhi = Switch(piso.lookup("correctPhi"));
|
||||
}
|
||||
|
||||
bool checkMeshCourantNo = false;
|
||||
if (piso.found("checkMeshCourantNo"))
|
||||
{
|
||||
checkMeshCourantNo = Switch(piso.lookup("checkMeshCourantNo"));
|
||||
}
|
||||
@ -43,6 +43,7 @@ Description
|
||||
#include "interfaceProperties.H"
|
||||
#include "twoPhaseMixture.H"
|
||||
#include "turbulenceModel.H"
|
||||
#include "interpolationTable.H"
|
||||
|
||||
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
||||
|
||||
@ -51,7 +52,6 @@ int main(int argc, char *argv[])
|
||||
#include "setRootCase.H"
|
||||
#include "createTime.H"
|
||||
#include "createMesh.H"
|
||||
#include "readGravitationalAcceleration.H"
|
||||
#include "readPISOControls.H"
|
||||
#include "initContinuityErrs.H"
|
||||
#include "createFields.H"
|
||||
@ -69,6 +69,7 @@ int main(int argc, char *argv[])
|
||||
#include "readPISOControls.H"
|
||||
#include "readTimeControls.H"
|
||||
#include "CourantNo.H"
|
||||
#include "alphaCourantNo.H"
|
||||
#include "setDeltaT.H"
|
||||
|
||||
runTime++;
|
||||
@ -87,8 +88,6 @@ int main(int argc, char *argv[])
|
||||
#include "pEqn.H"
|
||||
}
|
||||
|
||||
#include "continuityErrs.H"
|
||||
|
||||
turbulence->correct();
|
||||
|
||||
runTime.write();
|
||||
|
||||
@ -1,49 +1,61 @@
|
||||
{
|
||||
volScalarField rUA = 1.0/UEqn.A();
|
||||
surfaceScalarField rUAf = fvc::interpolate(rUA);
|
||||
|
||||
U = rUA*UEqn.H();
|
||||
volScalarField rAU = 1.0/UEqn.A();
|
||||
surfaceScalarField rAUf = fvc::interpolate(rAU);
|
||||
|
||||
U = rAU*UEqn.H();
|
||||
surfaceScalarField phiU
|
||||
(
|
||||
"phiU",
|
||||
(fvc::interpolate(U) & mesh.Sf())
|
||||
+ fvc::ddtPhiCorr(rUA, rho, U, phi)
|
||||
+ fvc::ddtPhiCorr(rAU, rho, U, phi)
|
||||
);
|
||||
|
||||
adjustPhi(phiU, U, p);
|
||||
adjustPhi(phiU, U, p_rgh);
|
||||
|
||||
phi = phiU +
|
||||
(
|
||||
fvc::interpolate(interface.sigmaK())
|
||||
*fvc::snGrad(alpha1)*mesh.magSf()
|
||||
+ fvc::interpolate(rho)*(g & mesh.Sf())
|
||||
)*rUAf;
|
||||
(
|
||||
fvc::interpolate(interface.sigmaK())*fvc::snGrad(alpha1)
|
||||
- ghf*fvc::snGrad(rho)
|
||||
)*rAUf*mesh.magSf();
|
||||
|
||||
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
|
||||
{
|
||||
fvScalarMatrix pEqn
|
||||
fvScalarMatrix p_rghEqn
|
||||
(
|
||||
fvm::laplacian(rUAf, p) == fvc::div(phi)
|
||||
fvm::laplacian(rAUf, p_rgh) == fvc::div(phi)
|
||||
);
|
||||
|
||||
pEqn.setReference(pRefCell, pRefValue);
|
||||
p_rghEqn.setReference(pRefCell, getRefCellValue(p_rgh, pRefCell));
|
||||
|
||||
if (corr == nCorr-1 && nonOrth == nNonOrthCorr)
|
||||
{
|
||||
pEqn.solve(mesh.solver(p.name() + "Final"));
|
||||
}
|
||||
else
|
||||
{
|
||||
pEqn.solve(mesh.solver(p.name()));
|
||||
}
|
||||
p_rghEqn.solve
|
||||
(
|
||||
mesh.solver
|
||||
(
|
||||
p_rgh.select(corr == nCorr-1 && nonOrth == nNonOrthCorr)
|
||||
)
|
||||
);
|
||||
|
||||
if (nonOrth == nNonOrthCorr)
|
||||
{
|
||||
phi -= pEqn.flux();
|
||||
phi -= p_rghEqn.flux();
|
||||
}
|
||||
}
|
||||
|
||||
U += rUA*fvc::reconstruct((phi - phiU)/rUAf);
|
||||
U += rAU*fvc::reconstruct((phi - phiU)/rAUf);
|
||||
U.correctBoundaryConditions();
|
||||
|
||||
#include "continuityErrs.H"
|
||||
|
||||
p == p_rgh + rho*gh;
|
||||
|
||||
if (p_rgh.needReference())
|
||||
{
|
||||
p += dimensionedScalar
|
||||
(
|
||||
"p",
|
||||
p.dimensions(),
|
||||
pRefValue - getRefCellValue(p, pRefCell)
|
||||
);
|
||||
p_rgh = p - rho*gh;
|
||||
}
|
||||
}
|
||||
|
||||
@ -0,0 +1,3 @@
|
||||
porousInterFoam.C
|
||||
|
||||
EXE = $(FOAM_APPBIN)/porousInterFoam
|
||||
@ -0,0 +1,17 @@
|
||||
EXE_INC = \
|
||||
-I.. \
|
||||
-I$(LIB_SRC)/transportModels \
|
||||
-I$(LIB_SRC)/transportModels/incompressible/lnInclude \
|
||||
-I$(LIB_SRC)/transportModels/interfaceProperties/lnInclude \
|
||||
-I$(LIB_SRC)/turbulenceModels/incompressible/turbulenceModel \
|
||||
-I$(LIB_SRC)/finiteVolume/lnInclude \
|
||||
-I$(LIB_SRC)/meshTools/lnInclude
|
||||
|
||||
EXE_LIBS = \
|
||||
-ltwoPhaseInterfaceProperties \
|
||||
-lincompressibleTransportModels \
|
||||
-lincompressibleTurbulenceModel \
|
||||
-lincompressibleRASModels \
|
||||
-lincompressibleLESModels \
|
||||
-lfiniteVolume \
|
||||
-lmeshTools
|
||||
@ -5,17 +5,22 @@
|
||||
+ fvc::interpolate(rho*turbulence->nut())
|
||||
);
|
||||
|
||||
// Calculate and cache mu for the porous media
|
||||
volScalarField mu(twoPhaseProperties.mu());
|
||||
|
||||
fvVectorMatrix UEqn
|
||||
(
|
||||
fvm::ddt(rho, U)
|
||||
pZones.ddt(rho, U)
|
||||
+ fvm::div(rhoPhi, U)
|
||||
- fvm::laplacian(muEff, U)
|
||||
- (fvc::grad(U) & fvc::grad(muEff))
|
||||
//- fvc::div(muf*(mesh.Sf() & fvc::interpolate(fvc::grad(U)().T())))
|
||||
//- fvc::div(muEff*(fvc::interpolate(dev(fvc::grad(U))) & mesh.Sf()))
|
||||
);
|
||||
|
||||
UEqn.relax();
|
||||
|
||||
pZones.addResistance(UEqn);
|
||||
|
||||
if (momentumPredictor)
|
||||
{
|
||||
solve
|
||||
@ -24,10 +29,10 @@
|
||||
==
|
||||
fvc::reconstruct
|
||||
(
|
||||
fvc::interpolate(rho)*(g & mesh.Sf())
|
||||
+ (
|
||||
(
|
||||
fvc::interpolate(interface.sigmaK())*fvc::snGrad(alpha1)
|
||||
- fvc::snGrad(p)
|
||||
- ghf*fvc::snGrad(rho)
|
||||
- fvc::snGrad(p_rgh)
|
||||
) * mesh.magSf()
|
||||
)
|
||||
);
|
||||
@ -0,0 +1 @@
|
||||
porousZones pZones(mesh);
|
||||
@ -0,0 +1,108 @@
|
||||
/*---------------------------------------------------------------------------*\
|
||||
========= |
|
||||
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
||||
\\ / O peration |
|
||||
\\ / A nd | Copyright (C) 1991-2010 OpenCFD Ltd.
|
||||
\\/ M anipulation |
|
||||
-------------------------------------------------------------------------------
|
||||
License
|
||||
This file is part of OpenFOAM.
|
||||
|
||||
OpenFOAM is free software: you can redistribute it and/or modify it
|
||||
under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
||||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
Application
|
||||
porousInterFoam
|
||||
|
||||
Description
|
||||
Solver for 2 incompressible, isothermal immiscible fluids using a VOF
|
||||
(volume of fluid) phase-fraction based interface capturing approach.
|
||||
The momentum and other fluid properties are of the "mixture" and a single
|
||||
momentum equation is solved.
|
||||
|
||||
Turbulence modelling is generic, i.e. laminar, RAS or LES may be selected.
|
||||
|
||||
For a two-fluid approach see twoPhaseEulerFoam.
|
||||
|
||||
Explicit handling of porous zones is included.
|
||||
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
#include "fvCFD.H"
|
||||
#include "MULES.H"
|
||||
#include "subCycle.H"
|
||||
#include "interfaceProperties.H"
|
||||
#include "twoPhaseMixture.H"
|
||||
#include "turbulenceModel.H"
|
||||
#include "porousZones.H"
|
||||
|
||||
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
#include "setRootCase.H"
|
||||
#include "createTime.H"
|
||||
#include "createMesh.H"
|
||||
#include "readPISOControls.H"
|
||||
#include "initContinuityErrs.H"
|
||||
#include "createFields.H"
|
||||
#include "createPorousZones.H"
|
||||
#include "readTimeControls.H"
|
||||
#include "correctPhi.H"
|
||||
#include "CourantNo.H"
|
||||
#include "setInitialDeltaT.H"
|
||||
|
||||
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
||||
|
||||
Info<< "\nStarting time loop\n" << endl;
|
||||
|
||||
while (runTime.run())
|
||||
{
|
||||
#include "readPISOControls.H"
|
||||
#include "readTimeControls.H"
|
||||
#include "CourantNo.H"
|
||||
#include "alphaCourantNo.H"
|
||||
#include "setDeltaT.H"
|
||||
|
||||
runTime++;
|
||||
|
||||
Info<< "Time = " << runTime.timeName() << nl << endl;
|
||||
|
||||
twoPhaseProperties.correct();
|
||||
|
||||
#include "alphaEqnSubCycle.H"
|
||||
|
||||
#include "UEqn.H"
|
||||
|
||||
// --- PISO loop
|
||||
for (int corr=0; corr<nCorr; corr++)
|
||||
{
|
||||
#include "pEqn.H"
|
||||
}
|
||||
|
||||
turbulence->correct();
|
||||
|
||||
runTime.write();
|
||||
|
||||
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
|
||||
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
|
||||
<< nl << endl;
|
||||
}
|
||||
|
||||
Info<< "End\n" << endl;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
// ************************************************************************* //
|
||||
53
applications/solvers/multiphase/interFoam/setDeltaT.H
Normal file
53
applications/solvers/multiphase/interFoam/setDeltaT.H
Normal file
@ -0,0 +1,53 @@
|
||||
/*---------------------------------------------------------------------------*\
|
||||
========= |
|
||||
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
||||
\\ / O peration |
|
||||
\\ / A nd | Copyright (C) 1991-2010 OpenCFD Ltd.
|
||||
\\/ M anipulation |
|
||||
-------------------------------------------------------------------------------
|
||||
License
|
||||
This file is part of OpenFOAM.
|
||||
|
||||
OpenFOAM is free software: you can redistribute it and/or modify it
|
||||
under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
||||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
Global
|
||||
setDeltaT
|
||||
|
||||
Description
|
||||
Reset the timestep to maintain a constant maximum courant Number.
|
||||
Reduction of time-step is immediate, but increase is damped to avoid
|
||||
unstable oscillations.
|
||||
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
if (adjustTimeStep)
|
||||
{
|
||||
scalar maxDeltaTFact =
|
||||
min(maxCo/(CoNum + SMALL), maxAlphaCo/(alphaCoNum + SMALL));
|
||||
|
||||
scalar deltaTFact = min(min(maxDeltaTFact, 1.0 + 0.1*maxDeltaTFact), 1.2);
|
||||
|
||||
runTime.setDeltaT
|
||||
(
|
||||
min
|
||||
(
|
||||
deltaTFact*runTime.deltaT().value(),
|
||||
maxDeltaT
|
||||
)
|
||||
);
|
||||
|
||||
Info<< "deltaT = " << runTime.deltaT().value() << endl;
|
||||
}
|
||||
|
||||
// ************************************************************************* //
|
||||
@ -5,12 +5,13 @@ EXE_INC = \
|
||||
-IincompressibleThreePhaseMixture \
|
||||
-IthreePhaseInterfaceProperties \
|
||||
-I$(LIB_SRC)/transportModels/interfaceProperties/lnInclude \
|
||||
-I$(LIB_SRC)/transportModels/twoPhaseInterfaceProperties/alphaContactAngle/alphaContactAngle \
|
||||
-I$(LIB_SRC)/turbulenceModels/incompressible/turbulenceModel \
|
||||
-I$(LIB_SRC)/finiteVolume/lnInclude \
|
||||
-I$(LIB_SRC)/transportModels
|
||||
|
||||
EXE_LIBS = \
|
||||
-linterfaceProperties \
|
||||
-ltwoPhaseInterfaceProperties \
|
||||
-lincompressibleTransportModels \
|
||||
-lincompressibleTurbulenceModel \
|
||||
-lincompressibleRASModels \
|
||||
|
||||
@ -0,0 +1,61 @@
|
||||
/*---------------------------------------------------------------------------*\
|
||||
========= |
|
||||
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
||||
\\ / O peration |
|
||||
\\ / A nd | Copyright (C) 1991-2010 OpenCFD Ltd.
|
||||
\\/ M anipulation |
|
||||
-------------------------------------------------------------------------------
|
||||
License
|
||||
This file is part of OpenFOAM.
|
||||
|
||||
OpenFOAM is free software: you can redistribute it and/or modify it
|
||||
under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
||||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
Global
|
||||
CourantNo
|
||||
|
||||
Description
|
||||
Calculates and outputs the mean and maximum Courant Numbers.
|
||||
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
scalar maxAlphaCo
|
||||
(
|
||||
readScalar(runTime.controlDict().lookup("maxAlphaCo"))
|
||||
);
|
||||
|
||||
scalar alphaCoNum = 0.0;
|
||||
scalar meanAlphaCoNum = 0.0;
|
||||
|
||||
if (mesh.nInternalFaces())
|
||||
{
|
||||
surfaceScalarField alpha1f = fvc::interpolate(alpha1);
|
||||
surfaceScalarField alpha2f = fvc::interpolate(alpha2);
|
||||
|
||||
surfaceScalarField SfUfbyDelta = max
|
||||
(
|
||||
pos(alpha1f - 0.01)*pos(0.99 - alpha1f),
|
||||
pos(alpha2f - 0.01)*pos(0.99 - alpha2f)
|
||||
)*mesh.surfaceInterpolation::deltaCoeffs()*mag(phi);
|
||||
|
||||
alphaCoNum = max(SfUfbyDelta/mesh.magSf())
|
||||
.value()*runTime.deltaT().value();
|
||||
|
||||
meanAlphaCoNum = (sum(SfUfbyDelta)/sum(mesh.magSf()))
|
||||
.value()*runTime.deltaT().value();
|
||||
}
|
||||
|
||||
Info<< "Interface Courant Number mean: " << meanAlphaCoNum
|
||||
<< " max: " << alphaCoNum << endl;
|
||||
|
||||
// ************************************************************************* //
|
||||
@ -1,9 +1,9 @@
|
||||
Info<< "Reading field p\n" << endl;
|
||||
volScalarField p
|
||||
Info<< "Reading field p_rgh\n" << endl;
|
||||
volScalarField p_rgh
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"p",
|
||||
"p_rgh",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::MUST_READ,
|
||||
@ -73,7 +73,7 @@
|
||||
mesh
|
||||
);
|
||||
|
||||
# include "createPhi.H"
|
||||
#include "createPhi.H"
|
||||
|
||||
threePhaseMixture threePhaseProperties(U, phi);
|
||||
|
||||
@ -116,11 +116,6 @@
|
||||
);
|
||||
|
||||
|
||||
label pRefCell = 0;
|
||||
scalar pRefValue = 0.0;
|
||||
setRefCell(p, mesh.solutionDict().subDict("PISO"), pRefCell, pRefValue);
|
||||
|
||||
|
||||
// Construct interface from alpha distribution
|
||||
threePhaseInterfaceProperties interface(threePhaseProperties);
|
||||
|
||||
@ -130,3 +125,43 @@
|
||||
(
|
||||
incompressible::turbulenceModel::New(U, phi, threePhaseProperties)
|
||||
);
|
||||
|
||||
|
||||
Info<< "Calculating field g.h\n" << endl;
|
||||
volScalarField gh("gh", g & mesh.C());
|
||||
surfaceScalarField ghf("ghf", g & mesh.Cf());
|
||||
|
||||
volScalarField p
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"p",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::NO_READ,
|
||||
IOobject::AUTO_WRITE
|
||||
),
|
||||
p_rgh + rho*gh
|
||||
);
|
||||
|
||||
label pRefCell = 0;
|
||||
scalar pRefValue = 0.0;
|
||||
setRefCell
|
||||
(
|
||||
p,
|
||||
p_rgh,
|
||||
mesh.solutionDict().subDict("PISO"),
|
||||
pRefCell,
|
||||
pRefValue
|
||||
);
|
||||
|
||||
if (p_rgh.needReference())
|
||||
{
|
||||
p += dimensionedScalar
|
||||
(
|
||||
"p",
|
||||
p.dimensions(),
|
||||
pRefValue - getRefCellValue(p, pRefCell)
|
||||
);
|
||||
p_rgh = p - rho*gh;
|
||||
}
|
||||
|
||||
@ -62,6 +62,7 @@ int main(int argc, char *argv[])
|
||||
#include "readPISOControls.H"
|
||||
#include "readTimeControls.H"
|
||||
#include "CourantNo.H"
|
||||
#include "alphaCourantNo.H"
|
||||
#include "setDeltaT.H"
|
||||
|
||||
runTime++;
|
||||
|
||||
@ -1,6 +1,6 @@
|
||||
interPhaseChangeFoam.C
|
||||
phaseChangeTwoPhaseMixtures/phaseChangeTwoPhaseMixture/phaseChangeTwoPhaseMixture.C
|
||||
phaseChangeTwoPhaseMixtures/phaseChangeTwoPhaseMixture/phaseChangeTwoPhaseMixtureNew.C
|
||||
phaseChangeTwoPhaseMixtures/phaseChangeTwoPhaseMixture/newPhaseChangeTwoPhaseMixture.C
|
||||
phaseChangeTwoPhaseMixtures/Kunz/Kunz.C
|
||||
phaseChangeTwoPhaseMixtures/Merkle/Merkle.C
|
||||
phaseChangeTwoPhaseMixtures/SchnerrSauer/SchnerrSauer.C
|
||||
|
||||
@ -7,7 +7,7 @@ EXE_INC = \
|
||||
-I$(LIB_SRC)/finiteVolume/lnInclude
|
||||
|
||||
EXE_LIBS = \
|
||||
-linterfaceProperties \
|
||||
-ltwoPhaseInterfaceProperties \
|
||||
-lincompressibleTransportModels \
|
||||
-lincompressibleTurbulenceModel \
|
||||
-lincompressibleRASModels \
|
||||
|
||||
@ -25,10 +25,10 @@
|
||||
==
|
||||
fvc::reconstruct
|
||||
(
|
||||
fvc::interpolate(rho)*(g & mesh.Sf())
|
||||
+ (
|
||||
(
|
||||
fvc::interpolate(interface.sigmaK())*fvc::snGrad(alpha1)
|
||||
- fvc::snGrad(p)
|
||||
- ghf*fvc::snGrad(rho)
|
||||
- fvc::snGrad(p_rgh)
|
||||
) * mesh.magSf()
|
||||
)
|
||||
);
|
||||
|
||||
@ -50,18 +50,18 @@
|
||||
+ vDotcAlphal
|
||||
);
|
||||
|
||||
// MULES::explicitSolve(alpha1, phi, phiAlpha, 1, 0);
|
||||
// MULES::explicitSolve
|
||||
// (
|
||||
// geometricOneField(),
|
||||
// alpha1,
|
||||
// phi,
|
||||
// phiAlpha,
|
||||
// Sp,
|
||||
// Su,
|
||||
// 1,
|
||||
// 0
|
||||
// );
|
||||
//MULES::explicitSolve
|
||||
//(
|
||||
// geometricOneField(),
|
||||
// alpha1,
|
||||
// phi,
|
||||
// phiAlpha,
|
||||
// Sp,
|
||||
// Su,
|
||||
// 1,
|
||||
// 0
|
||||
//);
|
||||
|
||||
MULES::implicitSolve
|
||||
(
|
||||
geometricOneField(),
|
||||
|
||||
@ -36,12 +36,12 @@ surfaceScalarField rhoPhi
|
||||
!(++alphaSubCycle).end();
|
||||
)
|
||||
{
|
||||
# include "alphaEqn.H"
|
||||
#include "alphaEqn.H"
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
# include "alphaEqn.H"
|
||||
#include "alphaEqn.H"
|
||||
}
|
||||
|
||||
if (nOuterCorr == 1)
|
||||
|
||||
@ -1,54 +0,0 @@
|
||||
{
|
||||
#include "continuityErrs.H"
|
||||
|
||||
wordList pcorrTypes
|
||||
(
|
||||
p.boundaryField().size(),
|
||||
zeroGradientFvPatchScalarField::typeName
|
||||
);
|
||||
|
||||
forAll(p.boundaryField(), i)
|
||||
{
|
||||
if (p.boundaryField()[i].fixesValue())
|
||||
{
|
||||
pcorrTypes[i] = fixedValueFvPatchScalarField::typeName;
|
||||
}
|
||||
}
|
||||
|
||||
volScalarField pcorr
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"pcorr",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::NO_READ,
|
||||
IOobject::NO_WRITE
|
||||
),
|
||||
mesh,
|
||||
dimensionedScalar("pcorr", p.dimensions(), 0.0),
|
||||
pcorrTypes
|
||||
);
|
||||
|
||||
dimensionedScalar rUAf("(1|A(U))", dimTime/rho.dimensions(), 1.0);
|
||||
|
||||
adjustPhi(phi, U, pcorr);
|
||||
|
||||
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
|
||||
{
|
||||
fvScalarMatrix pcorrEqn
|
||||
(
|
||||
fvm::laplacian(rUAf, pcorr) == fvc::div(phi)
|
||||
);
|
||||
|
||||
pcorrEqn.setReference(pRefCell, pRefValue);
|
||||
pcorrEqn.solve();
|
||||
|
||||
if (nonOrth == nNonOrthCorr)
|
||||
{
|
||||
phi -= pcorrEqn.flux();
|
||||
}
|
||||
}
|
||||
|
||||
# include "continuityErrs.H"
|
||||
}
|
||||
@ -1,9 +1,9 @@
|
||||
Info<< "Reading field p\n" << endl;
|
||||
volScalarField p
|
||||
Info<< "Reading field p_rgh\n" << endl;
|
||||
volScalarField p_rgh
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"p",
|
||||
"p_rgh",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::MUST_READ,
|
||||
@ -40,7 +40,7 @@
|
||||
mesh
|
||||
);
|
||||
|
||||
# include "createPhi.H"
|
||||
#include "createPhi.H"
|
||||
|
||||
Info<< "Creating phaseChangeTwoPhaseMixture\n" << endl;
|
||||
autoPtr<phaseChangeTwoPhaseMixture> twoPhaseProperties =
|
||||
@ -65,12 +65,6 @@
|
||||
);
|
||||
rho.oldTime();
|
||||
|
||||
|
||||
label pRefCell = 0;
|
||||
scalar pRefValue = 0.0;
|
||||
setRefCell(p, mesh.solutionDict().subDict("PISO"), pRefCell, pRefValue);
|
||||
|
||||
|
||||
// Construct interface from alpha1 distribution
|
||||
interfaceProperties interface(alpha1, U, twoPhaseProperties());
|
||||
|
||||
@ -79,3 +73,43 @@
|
||||
(
|
||||
incompressible::turbulenceModel::New(U, phi, twoPhaseProperties())
|
||||
);
|
||||
|
||||
|
||||
Info<< "Calculating field g.h\n" << endl;
|
||||
volScalarField gh("gh", g & mesh.C());
|
||||
surfaceScalarField ghf("ghf", g & mesh.Cf());
|
||||
|
||||
volScalarField p
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"p",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::NO_READ,
|
||||
IOobject::AUTO_WRITE
|
||||
),
|
||||
p_rgh + rho*gh
|
||||
);
|
||||
|
||||
label pRefCell = 0;
|
||||
scalar pRefValue = 0.0;
|
||||
setRefCell
|
||||
(
|
||||
p,
|
||||
p_rgh,
|
||||
mesh.solutionDict().subDict("PISO"),
|
||||
pRefCell,
|
||||
pRefValue
|
||||
);
|
||||
|
||||
if (p_rgh.needReference())
|
||||
{
|
||||
p += dimensionedScalar
|
||||
(
|
||||
"p",
|
||||
p.dimensions(),
|
||||
pRefValue - getRefCellValue(p, pRefCell)
|
||||
);
|
||||
p_rgh = p - rho*gh;
|
||||
}
|
||||
|
||||
@ -59,7 +59,7 @@ int main(int argc, char *argv[])
|
||||
#include "initContinuityErrs.H"
|
||||
#include "createFields.H"
|
||||
#include "readTimeControls.H"
|
||||
#include "correctPhi.H"
|
||||
#include "../interFoam/correctPhi.H"
|
||||
#include "CourantNo.H"
|
||||
#include "setInitialDeltaT.H"
|
||||
|
||||
@ -82,9 +82,11 @@ int main(int argc, char *argv[])
|
||||
|
||||
turbulence->correct();
|
||||
|
||||
// --- Outer-corrector loop
|
||||
// --- Pressure-velocity PIMPLE corrector loop
|
||||
for (int oCorr=0; oCorr<nOuterCorr; oCorr++)
|
||||
{
|
||||
bool finalIter = oCorr == nOuterCorr-1;
|
||||
|
||||
#include "UEqn.H"
|
||||
|
||||
// --- PISO loop
|
||||
@ -92,8 +94,6 @@ int main(int argc, char *argv[])
|
||||
{
|
||||
#include "pEqn.H"
|
||||
}
|
||||
|
||||
#include "continuityErrs.H"
|
||||
}
|
||||
|
||||
twoPhaseProperties->correct();
|
||||
|
||||
@ -11,14 +11,13 @@
|
||||
+ fvc::ddtPhiCorr(rUA, rho, U, phi)
|
||||
);
|
||||
|
||||
adjustPhi(phiU, U, p);
|
||||
adjustPhi(phiU, U, p_rgh);
|
||||
|
||||
phi = phiU +
|
||||
(
|
||||
fvc::interpolate(interface.sigmaK())
|
||||
*fvc::snGrad(alpha1)*mesh.magSf()
|
||||
+ fvc::interpolate(rho)*(g & mesh.Sf())
|
||||
)*rUAf;
|
||||
fvc::interpolate(interface.sigmaK())*fvc::snGrad(alpha1)
|
||||
- ghf*fvc::snGrad(rho)
|
||||
)*rUAf*mesh.magSf();
|
||||
|
||||
Pair<tmp<volScalarField> > vDotP = twoPhaseProperties->vDotP();
|
||||
const volScalarField& vDotcP = vDotP[0]();
|
||||
@ -26,29 +25,48 @@
|
||||
|
||||
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
|
||||
{
|
||||
fvScalarMatrix pEqn
|
||||
fvScalarMatrix p_rghEqn
|
||||
(
|
||||
fvc::div(phi) - fvm::laplacian(rUAf, p)
|
||||
- (vDotvP - vDotcP)*pSat + fvm::Sp(vDotvP - vDotcP, p)
|
||||
fvc::div(phi) - fvm::laplacian(rUAf, p_rgh)
|
||||
- (vDotvP - vDotcP)*(pSat - rho*gh) + fvm::Sp(vDotvP - vDotcP, p_rgh)
|
||||
);
|
||||
|
||||
pEqn.setReference(pRefCell, pRefValue);
|
||||
p_rghEqn.setReference(pRefCell, pRefValue);
|
||||
|
||||
if (corr == nCorr-1 && nonOrth == nNonOrthCorr)
|
||||
{
|
||||
pEqn.solve(mesh.solver(p.name() + "Final"));
|
||||
}
|
||||
else
|
||||
{
|
||||
pEqn.solve(mesh.solver(p.name()));
|
||||
}
|
||||
p_rghEqn.solve
|
||||
(
|
||||
mesh.solver
|
||||
(
|
||||
p_rgh.select
|
||||
(
|
||||
finalIter
|
||||
&& corr == nCorr-1
|
||||
&& nonOrth == nNonOrthCorr
|
||||
)
|
||||
)
|
||||
);
|
||||
|
||||
if (nonOrth == nNonOrthCorr)
|
||||
{
|
||||
phi += pEqn.flux();
|
||||
phi += p_rghEqn.flux();
|
||||
}
|
||||
}
|
||||
|
||||
U += rUA*fvc::reconstruct((phi - phiU)/rUAf);
|
||||
U.correctBoundaryConditions();
|
||||
|
||||
#include "continuityErrs.H"
|
||||
|
||||
p == p_rgh + rho*gh;
|
||||
|
||||
if (p_rgh.needReference())
|
||||
{
|
||||
p += dimensionedScalar
|
||||
(
|
||||
"p",
|
||||
p.dimensions(),
|
||||
pRefValue - getRefCellValue(p, pRefCell)
|
||||
);
|
||||
p_rgh = p - rho*gh;
|
||||
}
|
||||
}
|
||||
|
||||
@ -9,16 +9,16 @@ License
|
||||
This file is part of OpenFOAM.
|
||||
|
||||
OpenFOAM is free software: you can redistribute it and/or modify it
|
||||
under the terms of the GNU Generac License as published by
|
||||
the Free Software Foundation; either 2 of the License, or
|
||||
under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OpenFOAM is distributed in the ho it will be useful, but WITHOUT
|
||||
ANY WARRANTY; without even the imarranty of MERCHANTABILITY or
|
||||
FITNESS FOR A PARTICULAR PURPOSE.he GNU General Public License
|
||||
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
||||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
for more details.
|
||||
|
||||
You should have received a copy oNU General Public License
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
Class
|
||||
|
||||
@ -9,16 +9,16 @@ License
|
||||
This file is part of OpenFOAM.
|
||||
|
||||
OpenFOAM is free software: you can redistribute it and/or modify it
|
||||
under the terms of the GNU Generac License as published by
|
||||
the Free Software Foundation; either 2 of the License, or
|
||||
under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OpenFOAM is distributed in the ho it will be useful, but WITHOUT
|
||||
ANY WARRANTY; without even the imarranty of MERCHANTABILITY or
|
||||
FITNESS FOR A PARTICULAR PURPOSE.he GNU General Public License
|
||||
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
||||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
for more details.
|
||||
|
||||
You should have received a copy oNU General Public License
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
Class
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
/*---------------------------------------------------------------------------*\
|
||||
========Merkle= |
|
||||
========= |
|
||||
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
||||
\\ / O peration |
|
||||
\\ / A nd | Copyright (C) 1991-2010 OpenCFD Ltd.
|
||||
@ -9,16 +9,16 @@ License
|
||||
This file is part of OpenFOAM.
|
||||
|
||||
OpenFOAM is free software: you can redistribute it and/or modify it
|
||||
under the terms of the GNU Generac License as published by
|
||||
the Free Software Foundation; either 2 of the License, or
|
||||
under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OpenFOAM is distributed in the ho it will be useful, but WITHOUT
|
||||
ANY WARRANTY; without even the imarranty of MERCHANTABILITY or
|
||||
FITNESS FOR A PARTICULAR PURPOSE.he GNU General Public License
|
||||
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
||||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
for more details.
|
||||
|
||||
You should have received a copy oNU General Public License
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
Class
|
||||
|
||||
@ -36,27 +36,30 @@ Foam::phaseChangeTwoPhaseMixture::New
|
||||
const word& alpha1Name
|
||||
)
|
||||
{
|
||||
// get model name, but do not register the dictionary
|
||||
const word mixtureType
|
||||
IOdictionary transportPropertiesDict
|
||||
(
|
||||
IOdictionary
|
||||
IOobject
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"transportProperties",
|
||||
U.time().constant(),
|
||||
U.db(),
|
||||
IOobject::MUST_READ_IF_MODIFIED,
|
||||
IOobject::NO_WRITE,
|
||||
false
|
||||
)
|
||||
).lookup("phaseChangeTwoPhaseMixture")
|
||||
"transportProperties",
|
||||
U.time().constant(),
|
||||
U.db(),
|
||||
IOobject::MUST_READ,
|
||||
IOobject::NO_WRITE,
|
||||
false
|
||||
)
|
||||
);
|
||||
|
||||
Info<< "Selecting phaseChange model " << mixtureType << endl;
|
||||
word phaseChangeTwoPhaseMixtureTypeName
|
||||
(
|
||||
transportPropertiesDict.lookup("phaseChangeTwoPhaseMixture")
|
||||
);
|
||||
|
||||
Info<< "Selecting phaseChange model "
|
||||
<< phaseChangeTwoPhaseMixtureTypeName << endl;
|
||||
|
||||
componentsConstructorTable::iterator cstrIter =
|
||||
componentsConstructorTablePtr_->find(mixtureType);
|
||||
componentsConstructorTablePtr_
|
||||
->find(phaseChangeTwoPhaseMixtureTypeName);
|
||||
|
||||
if (cstrIter == componentsConstructorTablePtr_->end())
|
||||
{
|
||||
@ -64,8 +67,8 @@ Foam::phaseChangeTwoPhaseMixture::New
|
||||
(
|
||||
"phaseChangeTwoPhaseMixture::New"
|
||||
) << "Unknown phaseChangeTwoPhaseMixture type "
|
||||
<< mixtureType << nl << nl
|
||||
<< "Valid phaseChangeTwoPhaseMixture types are : " << endl
|
||||
<< phaseChangeTwoPhaseMixtureTypeName << endl << endl
|
||||
<< "Valid phaseChangeTwoPhaseMixtures are : " << endl
|
||||
<< componentsConstructorTablePtr_->sortedToc()
|
||||
<< exit(FatalError);
|
||||
}
|
||||
@ -28,7 +28,7 @@ Description
|
||||
|
||||
SourceFiles
|
||||
phaseChangeTwoPhaseMixture.C
|
||||
phaseChangeModelNew.C
|
||||
newPhaseChangeModel.C
|
||||
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
|
||||
8
applications/solvers/multiphase/multiphaseInterFoam/Allwclean
Executable file
8
applications/solvers/multiphase/multiphaseInterFoam/Allwclean
Executable file
@ -0,0 +1,8 @@
|
||||
#!/bin/sh
|
||||
cd ${0%/*} || exit 1 # run from this directory
|
||||
set -x
|
||||
|
||||
wclean
|
||||
wclean MRFMultiphaseInterFoam
|
||||
|
||||
# ----------------------------------------------------------------- end-of-file
|
||||
9
applications/solvers/multiphase/multiphaseInterFoam/Allwmake
Executable file
9
applications/solvers/multiphase/multiphaseInterFoam/Allwmake
Executable file
@ -0,0 +1,9 @@
|
||||
#!/bin/sh
|
||||
cd ${0%/*} || exit 1 # run from this directory
|
||||
set -x
|
||||
|
||||
wmake libso multiphaseMixture
|
||||
wmake
|
||||
wmake MRFMultiphaseInterFoam
|
||||
|
||||
# ----------------------------------------------------------------- end-of-file
|
||||
@ -0,0 +1,99 @@
|
||||
/*---------------------------------------------------------------------------*\
|
||||
========= |
|
||||
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
||||
\\ / O peration |
|
||||
\\ / A nd | Copyright (C) 1991-2010 OpenCFD Ltd.
|
||||
\\/ M anipulation |
|
||||
-------------------------------------------------------------------------------
|
||||
License
|
||||
This file is part of OpenFOAM.
|
||||
|
||||
OpenFOAM is free software: you can redistribute it and/or modify it
|
||||
under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
||||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
Application
|
||||
MRFMultiphaseInterFoam
|
||||
|
||||
Description
|
||||
Solver for n incompressible fluids which captures the interfaces and
|
||||
includes surface-tension and contact-angle effects for each phase.
|
||||
|
||||
Turbulence modelling is generic, i.e. laminar, RAS or LES may be selected.
|
||||
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
#include "fvCFD.H"
|
||||
#include "multiphaseMixture.H"
|
||||
#include "turbulenceModel.H"
|
||||
#include "MRFZones.H"
|
||||
|
||||
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
#include "setRootCase.H"
|
||||
#include "createTime.H"
|
||||
#include "createMesh.H"
|
||||
#include "readPISOControls.H"
|
||||
#include "initContinuityErrs.H"
|
||||
#include "createFields.H"
|
||||
#include "createMRFZones.H"
|
||||
#include "readTimeControls.H"
|
||||
#include "correctPhi.H"
|
||||
#include "CourantNo.H"
|
||||
#include "setInitialDeltaT.H"
|
||||
|
||||
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
||||
|
||||
Info<< "\nStarting time loop\n" << endl;
|
||||
|
||||
while (runTime.run())
|
||||
{
|
||||
#include "readPISOControls.H"
|
||||
#include "readTimeControls.H"
|
||||
#include "CourantNo.H"
|
||||
#include "alphaCourantNo.H"
|
||||
#include "setDeltaT.H"
|
||||
|
||||
runTime++;
|
||||
|
||||
Info<< "Time = " << runTime.timeName() << nl << endl;
|
||||
|
||||
mixture.solve();
|
||||
rho = mixture.rho();
|
||||
#include "zonePhaseVolumes.H"
|
||||
|
||||
#include "UEqn.H"
|
||||
|
||||
// --- PISO loop
|
||||
for (int corr=0; corr<nCorr; corr++)
|
||||
{
|
||||
#include "pEqn.H"
|
||||
}
|
||||
|
||||
turbulence->correct();
|
||||
|
||||
runTime.write();
|
||||
|
||||
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
|
||||
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
|
||||
<< nl << endl;
|
||||
}
|
||||
|
||||
Info<< "End\n" << endl;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
// ************************************************************************* //
|
||||
@ -0,0 +1,3 @@
|
||||
MRFMultiphaseInterFoam.C
|
||||
|
||||
EXE = $(FOAM_APPBIN)/MRFMultiphaseInterFoam
|
||||
@ -0,0 +1,19 @@
|
||||
EXE_INC = \
|
||||
-I.. \
|
||||
-I../../interFoam \
|
||||
-I../../interFoam/MRFInterFoam \
|
||||
-I../multiphaseMixture/lnInclude \
|
||||
-I$(LIB_SRC)/transportModels \
|
||||
-I$(LIB_SRC)/transportModels/incompressible/lnInclude \
|
||||
-I$(LIB_SRC)/transportModels/interfaceProperties/lnInclude \
|
||||
-I$(LIB_SRC)/turbulenceModels/incompressible/turbulenceModel \
|
||||
-I$(LIB_SRC)/finiteVolume/lnInclude
|
||||
|
||||
EXE_LIBS = \
|
||||
-lmultiphaseInterFoam \
|
||||
-linterfaceProperties \
|
||||
-lincompressibleTransportModels \
|
||||
-lincompressibleTurbulenceModel \
|
||||
-lincompressibleRASModels \
|
||||
-lincompressibleLESModels \
|
||||
-lfiniteVolume
|
||||
@ -0,0 +1,35 @@
|
||||
surfaceScalarField muEff
|
||||
(
|
||||
"muEff",
|
||||
mixture.muf()
|
||||
+ fvc::interpolate(rho*turbulence->nut())
|
||||
);
|
||||
|
||||
fvVectorMatrix UEqn
|
||||
(
|
||||
fvm::ddt(rho, U)
|
||||
+ fvm::div(mixture.rhoPhi(), U)
|
||||
- fvm::laplacian(muEff, U)
|
||||
- (fvc::grad(U) & fvc::grad(muEff))
|
||||
//- fvc::div(muEff*(fvc::interpolate(dev(fvc::grad(U))) & mesh.Sf()))
|
||||
);
|
||||
mrfZones.addCoriolis(rho, UEqn);
|
||||
|
||||
UEqn.relax();
|
||||
|
||||
if (momentumPredictor)
|
||||
{
|
||||
solve
|
||||
(
|
||||
UEqn
|
||||
==
|
||||
fvc::reconstruct
|
||||
(
|
||||
(
|
||||
mixture.surfaceTensionForce()
|
||||
- ghf*fvc::snGrad(rho)
|
||||
- fvc::snGrad(p_rgh)
|
||||
) * mesh.magSf()
|
||||
)
|
||||
);
|
||||
}
|
||||
@ -0,0 +1,63 @@
|
||||
{
|
||||
volScalarField rAU = 1.0/UEqn.A();
|
||||
surfaceScalarField rAUf = fvc::interpolate(rAU);
|
||||
|
||||
U = rAU*UEqn.H();
|
||||
|
||||
surfaceScalarField phiU
|
||||
(
|
||||
"phiU",
|
||||
(fvc::interpolate(U) & mesh.Sf())
|
||||
//+ fvc::ddtPhiCorr(rAU, rho, U, phi)
|
||||
);
|
||||
mrfZones.relativeFlux(phiU);
|
||||
|
||||
adjustPhi(phiU, U, p_rgh);
|
||||
|
||||
phi = phiU +
|
||||
(
|
||||
mixture.surfaceTensionForce()
|
||||
- ghf*fvc::snGrad(rho)
|
||||
)*rAUf*mesh.magSf();
|
||||
|
||||
for(int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
|
||||
{
|
||||
fvScalarMatrix p_rghEqn
|
||||
(
|
||||
fvm::laplacian(rAUf, p_rgh) == fvc::div(phi)
|
||||
);
|
||||
|
||||
p_rghEqn.setReference(pRefCell, getRefCellValue(p_rgh, pRefCell));
|
||||
|
||||
p_rghEqn.solve
|
||||
(
|
||||
mesh.solver
|
||||
(
|
||||
p_rgh.select(corr == nCorr-1 && nonOrth == nNonOrthCorr)
|
||||
)
|
||||
);
|
||||
|
||||
if (nonOrth == nNonOrthCorr)
|
||||
{
|
||||
phi -= p_rghEqn.flux();
|
||||
}
|
||||
}
|
||||
|
||||
U += rAU*fvc::reconstruct((phi - phiU)/rAUf);
|
||||
U.correctBoundaryConditions();
|
||||
|
||||
#include "continuityErrs.H"
|
||||
|
||||
p == p_rgh + rho*gh;
|
||||
|
||||
if (p_rgh.needReference())
|
||||
{
|
||||
p += dimensionedScalar
|
||||
(
|
||||
"p",
|
||||
p.dimensions(),
|
||||
pRefValue - getRefCellValue(p, pRefCell)
|
||||
);
|
||||
p_rgh = p - rho*gh;
|
||||
}
|
||||
}
|
||||
@ -0,0 +1,26 @@
|
||||
{
|
||||
const scalarField& V = mesh.V();
|
||||
|
||||
forAll(mesh.cellZones(), czi)
|
||||
{
|
||||
const labelList& cellLabels = mesh.cellZones()[czi];
|
||||
|
||||
forAllConstIter(PtrDictionary<phase>, mixture.phases(), iter)
|
||||
{
|
||||
const volScalarField& alpha = iter();
|
||||
scalar phaseVolume = 0;
|
||||
|
||||
forAll(cellLabels, cli)
|
||||
{
|
||||
label celli = cellLabels[cli];
|
||||
phaseVolume += alpha[celli]*V[celli];
|
||||
}
|
||||
|
||||
reduce(phaseVolume, sumOp<scalar>());
|
||||
|
||||
Info<< alpha.name()
|
||||
<< " phase volume in zone " << mesh.cellZones()[czi].name()
|
||||
<< " = " << phaseVolume*1e6 << " ml " << endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -1,6 +1,3 @@
|
||||
multiphaseMixture/phase/phase.C
|
||||
multiphaseMixture/multiphaseAlphaContactAngle/multiphaseAlphaContactAngleFvPatchScalarField.C
|
||||
multiphaseMixture/multiphaseMixture.C
|
||||
multiphaseInterFoam.C
|
||||
|
||||
EXE = $(FOAM_APPBIN)/multiphaseInterFoam
|
||||
|
||||
@ -1,14 +1,14 @@
|
||||
EXE_INC = \
|
||||
-I../interFoam \
|
||||
-ImultiphaseMixture \
|
||||
-ImultiphaseMixture/phase \
|
||||
-ImultiphaseMixture/multiphaseAlphaContactAngle \
|
||||
-ImultiphaseMixture/lnInclude \
|
||||
-I$(LIB_SRC)/transportModels \
|
||||
-I$(LIB_SRC)/transportModels/incompressible/lnInclude \
|
||||
-I$(LIB_SRC)/transportModels/interfaceProperties/lnInclude \
|
||||
-I$(LIB_SRC)/turbulenceModels/incompressible/turbulenceModel \
|
||||
-I$(LIB_SRC)/finiteVolume/lnInclude
|
||||
|
||||
EXE_LIBS = \
|
||||
-lmultiphaseInterFoam \
|
||||
-linterfaceProperties \
|
||||
-lincompressibleTransportModels \
|
||||
-lincompressibleTurbulenceModel \
|
||||
|
||||
@ -24,10 +24,10 @@
|
||||
==
|
||||
fvc::reconstruct
|
||||
(
|
||||
fvc::interpolate(rho)*(g & mesh.Sf())
|
||||
+ (
|
||||
(
|
||||
mixture.surfaceTensionForce()
|
||||
- fvc::snGrad(p)
|
||||
- ghf*fvc::snGrad(rho)
|
||||
- fvc::snGrad(p_rgh)
|
||||
) * mesh.magSf()
|
||||
)
|
||||
);
|
||||
|
||||
@ -0,0 +1,56 @@
|
||||
/*---------------------------------------------------------------------------*\
|
||||
========= |
|
||||
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
||||
\\ / O peration |
|
||||
\\ / A nd | Copyright (C) 1991-2010 OpenCFD Ltd.
|
||||
\\/ M anipulation |
|
||||
-------------------------------------------------------------------------------
|
||||
License
|
||||
This file is part of OpenFOAM.
|
||||
|
||||
OpenFOAM is free software: you can redistribute it and/or modify it
|
||||
under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
||||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
Global
|
||||
CourantNo
|
||||
|
||||
Description
|
||||
Calculates and outputs the mean and maximum Courant Numbers.
|
||||
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
scalar maxAlphaCo
|
||||
(
|
||||
readScalar(runTime.controlDict().lookup("maxAlphaCo"))
|
||||
);
|
||||
|
||||
scalar alphaCoNum = 0.0;
|
||||
scalar meanAlphaCoNum = 0.0;
|
||||
|
||||
if (mesh.nInternalFaces())
|
||||
{
|
||||
surfaceScalarField SfUfbyDelta =
|
||||
mixture.nearInterface()
|
||||
*mesh.surfaceInterpolation::deltaCoeffs()*mag(phi);
|
||||
|
||||
alphaCoNum = max(SfUfbyDelta/mesh.magSf())
|
||||
.value()*runTime.deltaT().value();
|
||||
|
||||
meanAlphaCoNum = (sum(SfUfbyDelta)/sum(mesh.magSf()))
|
||||
.value()*runTime.deltaT().value();
|
||||
}
|
||||
|
||||
Info<< "Interface Courant Number mean: " << meanAlphaCoNum
|
||||
<< " max: " << alphaCoNum << endl;
|
||||
|
||||
// ************************************************************************* //
|
||||
@ -1,9 +1,9 @@
|
||||
Info<< "Reading field p\n" << endl;
|
||||
volScalarField p
|
||||
Info<< "Reading field p_rgh\n" << endl;
|
||||
volScalarField p_rgh
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"p",
|
||||
"p_rgh",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::MUST_READ,
|
||||
@ -45,13 +45,48 @@
|
||||
rho.oldTime();
|
||||
|
||||
|
||||
label pRefCell = 0;
|
||||
scalar pRefValue = 0.0;
|
||||
setRefCell(p, mesh.solutionDict().subDict("PISO"), pRefCell, pRefValue);
|
||||
|
||||
|
||||
// Construct incompressible turbulence model
|
||||
autoPtr<incompressible::turbulenceModel> turbulence
|
||||
(
|
||||
incompressible::turbulenceModel::New(U, phi, mixture)
|
||||
);
|
||||
|
||||
#include "readGravitationalAcceleration.H"
|
||||
|
||||
Info<< "Calculating field g.h\n" << endl;
|
||||
volScalarField gh("gh", g & mesh.C());
|
||||
surfaceScalarField ghf("ghf", g & mesh.Cf());
|
||||
|
||||
volScalarField p
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"p",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::NO_READ,
|
||||
IOobject::AUTO_WRITE
|
||||
),
|
||||
p_rgh + rho*gh
|
||||
);
|
||||
|
||||
label pRefCell = 0;
|
||||
scalar pRefValue = 0.0;
|
||||
setRefCell
|
||||
(
|
||||
p,
|
||||
p_rgh,
|
||||
mesh.solutionDict().subDict("PISO"),
|
||||
pRefCell,
|
||||
pRefValue
|
||||
);
|
||||
|
||||
if (p_rgh.needReference())
|
||||
{
|
||||
p += dimensionedScalar
|
||||
(
|
||||
"p",
|
||||
p.dimensions(),
|
||||
pRefValue - getRefCellValue(p, pRefCell)
|
||||
);
|
||||
}
|
||||
|
||||
@ -43,7 +43,6 @@ int main(int argc, char *argv[])
|
||||
#include "setRootCase.H"
|
||||
#include "createTime.H"
|
||||
#include "createMesh.H"
|
||||
#include "readGravitationalAcceleration.H"
|
||||
#include "readPISOControls.H"
|
||||
#include "initContinuityErrs.H"
|
||||
#include "createFields.H"
|
||||
@ -61,13 +60,14 @@ int main(int argc, char *argv[])
|
||||
#include "readPISOControls.H"
|
||||
#include "readTimeControls.H"
|
||||
#include "CourantNo.H"
|
||||
#include "alphaCourantNo.H"
|
||||
#include "setDeltaT.H"
|
||||
|
||||
runTime++;
|
||||
|
||||
Info<< "Time = " << runTime.timeName() << nl << endl;
|
||||
|
||||
mixture.correct();
|
||||
mixture.solve();
|
||||
rho = mixture.rho();
|
||||
|
||||
#include "UEqn.H"
|
||||
@ -78,18 +78,16 @@ int main(int argc, char *argv[])
|
||||
#include "pEqn.H"
|
||||
}
|
||||
|
||||
#include "continuityErrs.H"
|
||||
|
||||
//turbulence->correct();
|
||||
turbulence->correct();
|
||||
|
||||
runTime.write();
|
||||
|
||||
Info<< "ExecutionTime = "
|
||||
<< runTime.elapsedCpuTime()
|
||||
<< " s\n" << endl << endl;
|
||||
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
|
||||
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
|
||||
<< nl << endl;
|
||||
}
|
||||
|
||||
Info<< "\n end \n";
|
||||
Info<< "End\n" << endl;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
@ -0,0 +1,5 @@
|
||||
phase/phase.C
|
||||
alphaContactAngle/alphaContactAngleFvPatchScalarField.C
|
||||
multiphaseMixture.C
|
||||
|
||||
LIB = $(FOAM_LIBBIN)/libmultiphaseInterFoam
|
||||
@ -0,0 +1,11 @@
|
||||
EXE_INC = \
|
||||
-IalphaContactAngle \
|
||||
-I$(LIB_SRC)/transportModels \
|
||||
-I$(LIB_SRC)/transportModels/incompressible/lnInclude \
|
||||
-I$(LIB_SRC)/transportModels/interfaceProperties/lnInclude \
|
||||
-I$(LIB_SRC)/finiteVolume/lnInclude
|
||||
|
||||
EXE_LIBS = \
|
||||
-linterfaceProperties \
|
||||
-lincompressibleTransportModels \
|
||||
-lfiniteVolume
|
||||
@ -23,7 +23,7 @@ License
|
||||
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
#include "multiphaseAlphaContactAngleFvPatchScalarField.H"
|
||||
#include "alphaContactAngleFvPatchScalarField.H"
|
||||
#include "addToRunTimeSelectionTable.H"
|
||||
#include "fvPatchFieldMapper.H"
|
||||
|
||||
@ -32,8 +32,7 @@ License
|
||||
namespace Foam
|
||||
{
|
||||
|
||||
multiphaseAlphaContactAngleFvPatchScalarField::interfaceThetaProps::
|
||||
interfaceThetaProps
|
||||
alphaContactAngleFvPatchScalarField::interfaceThetaProps::interfaceThetaProps
|
||||
(
|
||||
Istream& is
|
||||
)
|
||||
@ -48,10 +47,10 @@ interfaceThetaProps
|
||||
Istream& operator>>
|
||||
(
|
||||
Istream& is,
|
||||
multiphaseAlphaContactAngleFvPatchScalarField::interfaceThetaProps& tp
|
||||
alphaContactAngleFvPatchScalarField::interfaceThetaProps& tp
|
||||
)
|
||||
{
|
||||
is >> tp.theta0_ >> tp.uTheta_ >> tp.thetaA_ >> tp.thetaR_;
|
||||
is >> tp.theta0_ >> tp.uTheta_ >> tp.thetaA_ >> tp.thetaR_;
|
||||
return is;
|
||||
}
|
||||
|
||||
@ -59,7 +58,7 @@ Istream& operator>>
|
||||
Ostream& operator<<
|
||||
(
|
||||
Ostream& os,
|
||||
const multiphaseAlphaContactAngleFvPatchScalarField::interfaceThetaProps& tp
|
||||
const alphaContactAngleFvPatchScalarField::interfaceThetaProps& tp
|
||||
)
|
||||
{
|
||||
os << tp.theta0_ << token::SPACE
|
||||
@ -73,8 +72,7 @@ Ostream& operator<<
|
||||
|
||||
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
|
||||
|
||||
multiphaseAlphaContactAngleFvPatchScalarField::
|
||||
multiphaseAlphaContactAngleFvPatchScalarField
|
||||
alphaContactAngleFvPatchScalarField::alphaContactAngleFvPatchScalarField
|
||||
(
|
||||
const fvPatch& p,
|
||||
const DimensionedField<scalar, volMesh>& iF
|
||||
@ -84,10 +82,9 @@ multiphaseAlphaContactAngleFvPatchScalarField
|
||||
{}
|
||||
|
||||
|
||||
multiphaseAlphaContactAngleFvPatchScalarField::
|
||||
multiphaseAlphaContactAngleFvPatchScalarField
|
||||
alphaContactAngleFvPatchScalarField::alphaContactAngleFvPatchScalarField
|
||||
(
|
||||
const multiphaseAlphaContactAngleFvPatchScalarField& gcpsf,
|
||||
const alphaContactAngleFvPatchScalarField& gcpsf,
|
||||
const fvPatch& p,
|
||||
const DimensionedField<scalar, volMesh>& iF,
|
||||
const fvPatchFieldMapper& mapper
|
||||
@ -98,8 +95,7 @@ multiphaseAlphaContactAngleFvPatchScalarField
|
||||
{}
|
||||
|
||||
|
||||
multiphaseAlphaContactAngleFvPatchScalarField::
|
||||
multiphaseAlphaContactAngleFvPatchScalarField
|
||||
alphaContactAngleFvPatchScalarField::alphaContactAngleFvPatchScalarField
|
||||
(
|
||||
const fvPatch& p,
|
||||
const DimensionedField<scalar, volMesh>& iF,
|
||||
@ -113,10 +109,9 @@ multiphaseAlphaContactAngleFvPatchScalarField
|
||||
}
|
||||
|
||||
|
||||
multiphaseAlphaContactAngleFvPatchScalarField::
|
||||
multiphaseAlphaContactAngleFvPatchScalarField
|
||||
alphaContactAngleFvPatchScalarField::alphaContactAngleFvPatchScalarField
|
||||
(
|
||||
const multiphaseAlphaContactAngleFvPatchScalarField& gcpsf,
|
||||
const alphaContactAngleFvPatchScalarField& gcpsf,
|
||||
const DimensionedField<scalar, volMesh>& iF
|
||||
)
|
||||
:
|
||||
@ -127,7 +122,7 @@ multiphaseAlphaContactAngleFvPatchScalarField
|
||||
|
||||
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
|
||||
|
||||
void multiphaseAlphaContactAngleFvPatchScalarField::write(Ostream& os) const
|
||||
void alphaContactAngleFvPatchScalarField::write(Ostream& os) const
|
||||
{
|
||||
fvPatchScalarField::write(os);
|
||||
os.writeKeyword("thetaProperties")
|
||||
@ -138,11 +133,7 @@ void multiphaseAlphaContactAngleFvPatchScalarField::write(Ostream& os) const
|
||||
|
||||
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
||||
|
||||
makePatchTypeField
|
||||
(
|
||||
fvPatchScalarField,
|
||||
multiphaseAlphaContactAngleFvPatchScalarField
|
||||
);
|
||||
makePatchTypeField(fvPatchScalarField, alphaContactAngleFvPatchScalarField);
|
||||
|
||||
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
||||
|
||||
@ -22,19 +22,19 @@ License
|
||||
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
Class
|
||||
Foam::multiphaseAlphaContactAngleFvPatchScalarField
|
||||
Foam::alphaContactAngleFvPatchScalarField
|
||||
|
||||
Description
|
||||
Contact-angle boundary condition for multi-phase interface-capturing
|
||||
simulations. Used in conjuction with multiphaseMixture.
|
||||
|
||||
SourceFiles
|
||||
multiphaseAlphaContactAngleFvPatchScalarField.C
|
||||
alphaContactAngleFvPatchScalarField.C
|
||||
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
#ifndef multiphaseAlphaContactAngleFvPatchScalarField_H
|
||||
#define multiphaseAlphaContactAngleFvPatchScalarField_H
|
||||
#ifndef alphaContactAngleFvPatchScalarField_H
|
||||
#define alphaContactAngleFvPatchScalarField_H
|
||||
|
||||
#include "zeroGradientFvPatchFields.H"
|
||||
#include "multiphaseMixture.H"
|
||||
@ -45,10 +45,10 @@ namespace Foam
|
||||
{
|
||||
|
||||
/*---------------------------------------------------------------------------*\
|
||||
Class multiphaseAlphaContactAngleFvPatch Declaration
|
||||
Class alphaContactAngleFvPatch Declaration
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
class multiphaseAlphaContactAngleFvPatchScalarField
|
||||
class alphaContactAngleFvPatchScalarField
|
||||
:
|
||||
public zeroGradientFvPatchScalarField
|
||||
{
|
||||
@ -132,32 +132,31 @@ private:
|
||||
public:
|
||||
|
||||
//- Runtime type information
|
||||
TypeName("multiphaseAlphaContactAngle");
|
||||
TypeName("alphaContactAngle");
|
||||
|
||||
|
||||
// Constructors
|
||||
|
||||
//- Construct from patch and internal field
|
||||
multiphaseAlphaContactAngleFvPatchScalarField
|
||||
alphaContactAngleFvPatchScalarField
|
||||
(
|
||||
const fvPatch&,
|
||||
const DimensionedField<scalar, volMesh>&
|
||||
);
|
||||
|
||||
//- Construct from patch, internal field and dictionary
|
||||
multiphaseAlphaContactAngleFvPatchScalarField
|
||||
alphaContactAngleFvPatchScalarField
|
||||
(
|
||||
const fvPatch&,
|
||||
const DimensionedField<scalar, volMesh>&,
|
||||
const dictionary&
|
||||
);
|
||||
|
||||
//- Construct by mapping given
|
||||
// multiphaseAlphaContactAngleFvPatchScalarField onto a new
|
||||
// patch
|
||||
multiphaseAlphaContactAngleFvPatchScalarField
|
||||
//- Construct by mapping given alphaContactAngleFvPatchScalarField
|
||||
// onto a new patch
|
||||
alphaContactAngleFvPatchScalarField
|
||||
(
|
||||
const multiphaseAlphaContactAngleFvPatchScalarField&,
|
||||
const alphaContactAngleFvPatchScalarField&,
|
||||
const fvPatch&,
|
||||
const DimensionedField<scalar, volMesh>&,
|
||||
const fvPatchFieldMapper&
|
||||
@ -168,14 +167,14 @@ public:
|
||||
{
|
||||
return tmp<fvPatchScalarField>
|
||||
(
|
||||
new multiphaseAlphaContactAngleFvPatchScalarField(*this)
|
||||
new alphaContactAngleFvPatchScalarField(*this)
|
||||
);
|
||||
}
|
||||
|
||||
//- Construct as copy setting internal field reference
|
||||
multiphaseAlphaContactAngleFvPatchScalarField
|
||||
alphaContactAngleFvPatchScalarField
|
||||
(
|
||||
const multiphaseAlphaContactAngleFvPatchScalarField&,
|
||||
const alphaContactAngleFvPatchScalarField&,
|
||||
const DimensionedField<scalar, volMesh>&
|
||||
);
|
||||
|
||||
@ -187,7 +186,7 @@ public:
|
||||
{
|
||||
return tmp<fvPatchScalarField>
|
||||
(
|
||||
new multiphaseAlphaContactAngleFvPatchScalarField(*this, iF)
|
||||
new alphaContactAngleFvPatchScalarField(*this, iF)
|
||||
);
|
||||
}
|
||||
|
||||
@ -24,11 +24,10 @@ License
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
#include "multiphaseMixture.H"
|
||||
#include "multiphaseAlphaContactAngleFvPatchScalarField.H"
|
||||
#include "alphaContactAngleFvPatchScalarField.H"
|
||||
#include "Time.H"
|
||||
#include "subCycle.H"
|
||||
#include "fvCFD.H"
|
||||
#include "mathematicalConstants.H"
|
||||
|
||||
// * * * * * * * * * * * * * * * Static Member Data * * * * * * * * * * * * //
|
||||
|
||||
@ -237,7 +236,7 @@ Foam::multiphaseMixture::surfaceTensionForce() const
|
||||
}
|
||||
|
||||
|
||||
void Foam::multiphaseMixture::correct()
|
||||
void Foam::multiphaseMixture::solve()
|
||||
{
|
||||
forAllIter(PtrDictionary<phase>, phases_, iter)
|
||||
{
|
||||
@ -296,6 +295,10 @@ void Foam::multiphaseMixture::correct()
|
||||
}
|
||||
|
||||
|
||||
void Foam::multiphaseMixture::correct()
|
||||
{}
|
||||
|
||||
|
||||
Foam::tmp<Foam::surfaceVectorField> Foam::multiphaseMixture::nHatfv
|
||||
(
|
||||
const volScalarField& alpha1,
|
||||
@ -351,11 +354,10 @@ void Foam::multiphaseMixture::correctContactAngle
|
||||
|
||||
forAll(boundary, patchi)
|
||||
{
|
||||
if (isA<multiphaseAlphaContactAngleFvPatchScalarField>(gbf[patchi]))
|
||||
if (isA<alphaContactAngleFvPatchScalarField>(gbf[patchi]))
|
||||
{
|
||||
const multiphaseAlphaContactAngleFvPatchScalarField& acap =
|
||||
refCast<const multiphaseAlphaContactAngleFvPatchScalarField>
|
||||
(gbf[patchi]);
|
||||
const alphaContactAngleFvPatchScalarField& acap =
|
||||
refCast<const alphaContactAngleFvPatchScalarField>(gbf[patchi]);
|
||||
|
||||
vectorField& nHatPatch = nHatb[patchi];
|
||||
|
||||
@ -363,7 +365,7 @@ void Foam::multiphaseMixture::correctContactAngle
|
||||
mesh_.Sf().boundaryField()[patchi]
|
||||
/mesh_.magSf().boundaryField()[patchi];
|
||||
|
||||
multiphaseAlphaContactAngleFvPatchScalarField::thetaPropsTable::
|
||||
alphaContactAngleFvPatchScalarField::thetaPropsTable::
|
||||
const_iterator tp =
|
||||
acap.thetaProps().find(interfacePair(alpha1, alpha2));
|
||||
|
||||
@ -455,6 +457,34 @@ Foam::tmp<Foam::volScalarField> Foam::multiphaseMixture::K
|
||||
}
|
||||
|
||||
|
||||
Foam::tmp<Foam::surfaceScalarField>
|
||||
Foam::multiphaseMixture::nearInterface() const
|
||||
{
|
||||
tmp<surfaceScalarField> tnearInt
|
||||
(
|
||||
new surfaceScalarField
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"nearInterface",
|
||||
mesh_.time().timeName(),
|
||||
mesh_
|
||||
),
|
||||
mesh_,
|
||||
dimensionedScalar("nearInterface", dimless, 0.0)
|
||||
)
|
||||
);
|
||||
|
||||
forAllConstIter(PtrDictionary<phase>, phases_, iter)
|
||||
{
|
||||
surfaceScalarField alphaf = fvc::interpolate(iter());
|
||||
tnearInt() = max(tnearInt(), pos(alphaf - 0.01)*pos(0.99 - alphaf));
|
||||
}
|
||||
|
||||
return tnearInt;
|
||||
}
|
||||
|
||||
|
||||
void Foam::multiphaseMixture::solveAlphas
|
||||
(
|
||||
const label nAlphaCorr,
|
||||
@ -466,7 +496,7 @@ void Foam::multiphaseMixture::solveAlphas
|
||||
nSolves++;
|
||||
|
||||
word alphaScheme("div(phi,alpha)");
|
||||
word alphacScheme("div(phic,alpha)");
|
||||
word alphacScheme("div(phirb,alpha)");
|
||||
|
||||
tmp<fv::convectionScheme<scalar> > mvConvection
|
||||
(
|
||||
|
||||
@ -164,7 +164,7 @@ private:
|
||||
multivariateSurfaceInterpolationScheme<scalar>::fieldTable alphaTable_;
|
||||
|
||||
|
||||
// Private Member Functions
|
||||
// Private member functions
|
||||
|
||||
void calcAlphas();
|
||||
|
||||
@ -256,6 +256,13 @@ public:
|
||||
|
||||
tmp<surfaceScalarField> surfaceTensionForce() const;
|
||||
|
||||
//- Indicator of the proximity of the interface
|
||||
// Field values are 1 near and 0 away for the interface.
|
||||
tmp<surfaceScalarField> nearInterface() const;
|
||||
|
||||
//- Solve for the mixture phase-fractions
|
||||
void solve();
|
||||
|
||||
//- Correct the mixture properties
|
||||
void correct();
|
||||
|
||||
|
||||
@ -1,47 +1,62 @@
|
||||
{
|
||||
volScalarField rUA = 1.0/UEqn.A();
|
||||
surfaceScalarField rUAf = fvc::interpolate(rUA);
|
||||
volScalarField rAU = 1.0/UEqn.A();
|
||||
surfaceScalarField rAUf = fvc::interpolate(rAU);
|
||||
|
||||
U = rUA*UEqn.H();
|
||||
U = rAU*UEqn.H();
|
||||
|
||||
surfaceScalarField phiU
|
||||
(
|
||||
"phiU",
|
||||
(fvc::interpolate(U) & mesh.Sf()) + fvc::ddtPhiCorr(rUA, rho, U, phi)
|
||||
(fvc::interpolate(U) & mesh.Sf())
|
||||
+ fvc::ddtPhiCorr(rAU, rho, U, phi)
|
||||
);
|
||||
|
||||
adjustPhi(phiU, U, p);
|
||||
adjustPhi(phiU, U, p_rgh);
|
||||
|
||||
phi = phiU +
|
||||
(
|
||||
mixture.surfaceTensionForce()*mesh.magSf()
|
||||
+ fvc::interpolate(rho)*(g & mesh.Sf())
|
||||
)*rUAf;
|
||||
(
|
||||
mixture.surfaceTensionForce()
|
||||
- ghf*fvc::snGrad(rho)
|
||||
)*rAUf*mesh.magSf();
|
||||
|
||||
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
|
||||
{
|
||||
fvScalarMatrix pEqn
|
||||
fvScalarMatrix p_rghEqn
|
||||
(
|
||||
fvm::laplacian(rUAf, p) == fvc::div(phi)
|
||||
fvm::laplacian(rAUf, p_rgh) == fvc::div(phi)
|
||||
);
|
||||
|
||||
pEqn.setReference(pRefCell, pRefValue);
|
||||
p_rghEqn.setReference(pRefCell, getRefCellValue(p_rgh, pRefCell));
|
||||
|
||||
if (corr == nCorr-1)
|
||||
{
|
||||
pEqn.solve(mesh.solver(p.name() + "Final"));
|
||||
}
|
||||
else
|
||||
{
|
||||
pEqn.solve(mesh.solver(p.name()));
|
||||
}
|
||||
p_rghEqn.solve
|
||||
(
|
||||
mesh.solver
|
||||
(
|
||||
p_rgh.select(corr == nCorr-1 && nonOrth == nNonOrthCorr)
|
||||
)
|
||||
);
|
||||
|
||||
if (nonOrth == nNonOrthCorr)
|
||||
{
|
||||
phi -= pEqn.flux();
|
||||
phi -= p_rghEqn.flux();
|
||||
}
|
||||
}
|
||||
|
||||
U += rUA*fvc::reconstruct((phi - phiU)/rUAf);
|
||||
U += rAU*fvc::reconstruct((phi - phiU)/rAUf);
|
||||
U.correctBoundaryConditions();
|
||||
|
||||
#include "continuityErrs.H"
|
||||
|
||||
p == p_rgh + rho*gh;
|
||||
|
||||
if (p_rgh.needReference())
|
||||
{
|
||||
p += dimensionedScalar
|
||||
(
|
||||
"p",
|
||||
p.dimensions(),
|
||||
pRefValue - getRefCellValue(p, pRefCell)
|
||||
);
|
||||
p_rgh = p - rho*gh;
|
||||
}
|
||||
}
|
||||
|
||||
@ -22,7 +22,10 @@
|
||||
==
|
||||
fvc::reconstruct
|
||||
(
|
||||
(- ghf*fvc::snGrad(rho) - fvc::snGrad(pmh))*mesh.magSf()
|
||||
(
|
||||
- ghf*fvc::snGrad(rho)
|
||||
- fvc::snGrad(p_rgh)
|
||||
)*mesh.magSf()
|
||||
)
|
||||
);
|
||||
}
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user