mirror of
https://develop.openfoam.com/Development/openfoam.git
synced 2025-11-28 03:28:01 +00:00
BUG: mantis #1373: eigen value/vector calculation now handles repeated eigen values
This commit is contained in:
@ -69,5 +69,121 @@ int main()
|
||||
Info<< (symm(t7) && t7) - (0.5*(t7 + t7.T()) && t7) << endl;
|
||||
Info<< (t7 && symm(t7)) - (t7 && 0.5*(t7 + t7.T())) << endl;
|
||||
|
||||
|
||||
/*
|
||||
// Lots of awkward eigenvector tests ...
|
||||
|
||||
tensor T_rand_real
|
||||
(
|
||||
0.9999996423721313, 0.3330855667591095, 0.6646450161933899,
|
||||
0.9745196104049683, 0.0369445420801640, 0.0846728682518005,
|
||||
0.6474838852882385, 0.1617118716239929, 0.2041363865137100
|
||||
);
|
||||
Debug(T_rand_real);
|
||||
vector L_rand_real(eigenValues(T_rand_real));
|
||||
Debug(L_rand_real);
|
||||
tensor U_rand_real(eigenVectors(T_rand_real));
|
||||
Debug(U_rand_real);
|
||||
|
||||
Info << endl << endl;
|
||||
|
||||
tensor T_rand_imag
|
||||
(
|
||||
0.8668024539947510, 0.1664607226848602, 0.8925783634185791,
|
||||
0.9126510620117188, 0.7408077120780945, 0.1499115079641342,
|
||||
0.0936608463525772, 0.7615650296211243, 0.8953040242195129
|
||||
);
|
||||
Debug(T_rand_imag);
|
||||
vector L_rand_imag(eigenValues(T_rand_imag));
|
||||
Debug(L_rand_imag);
|
||||
tensor U_rand_imag(eigenVectors(T_rand_imag));
|
||||
Debug(U_rand_imag);
|
||||
|
||||
Info << endl << endl;
|
||||
|
||||
tensor T_rand_symm
|
||||
(
|
||||
1.9999992847442627, 1.3076051771640778, 1.3121289014816284,
|
||||
1.3076051771640778, 0.0738890841603279, 0.2463847398757935,
|
||||
1.3121289014816284, 0.2463847398757935, 0.4082727730274200
|
||||
);
|
||||
Debug(T_rand_symm);
|
||||
vector L_rand_symm(eigenValues(T_rand_symm));
|
||||
Debug(L_rand_symm);
|
||||
tensor U_rand_symm(eigenVectors(T_rand_symm));
|
||||
Debug(U_rand_symm);
|
||||
|
||||
Info << endl << endl;
|
||||
|
||||
symmTensor T_rand_Symm
|
||||
(
|
||||
1.9999992847442627, 1.3076051771640778, 1.3121289014816284,
|
||||
0.0738890841603279, 0.2463847398757935,
|
||||
0.4082727730274200
|
||||
);
|
||||
Debug(T_rand_Symm);
|
||||
vector L_rand_Symm(eigenValues(T_rand_Symm));
|
||||
Debug(L_rand_Symm);
|
||||
tensor U_rand_Symm(eigenVectors(T_rand_Symm));
|
||||
Debug(U_rand_Symm);
|
||||
|
||||
Info << endl << endl;
|
||||
|
||||
tensor T_rand_diag
|
||||
(
|
||||
0.8668024539947510, 0, 0,
|
||||
0, 0.7408077120780945, 0,
|
||||
0, 0, 0.8953040242195129
|
||||
);
|
||||
Debug(T_rand_diag);
|
||||
vector L_rand_diag(eigenValues(T_rand_diag));
|
||||
Debug(L_rand_diag);
|
||||
tensor U_rand_diag(eigenVectors(T_rand_diag));
|
||||
Debug(U_rand_diag);
|
||||
|
||||
Info << endl << endl;
|
||||
|
||||
tensor T_repeated
|
||||
(
|
||||
0, 1, 1,
|
||||
1, 0, 1,
|
||||
1, 1, 0
|
||||
);
|
||||
Debug(T_repeated);
|
||||
vector L_repeated(eigenValues(T_repeated));
|
||||
Debug(L_repeated);
|
||||
tensor U_repeated(eigenVectors(T_repeated));
|
||||
Debug(U_repeated);
|
||||
|
||||
Info << endl << endl;
|
||||
|
||||
tensor T_repeated_zero
|
||||
(
|
||||
1, 1, 1,
|
||||
1, 1, 1,
|
||||
1, 1, 1
|
||||
);
|
||||
Debug(T_repeated_zero);
|
||||
vector L_repeated_zero(eigenValues(T_repeated_zero));
|
||||
Debug(L_repeated_zero);
|
||||
tensor U_repeated_zero(eigenVectors(T_repeated_zero));
|
||||
Debug(U_repeated_zero);
|
||||
|
||||
Info << endl << endl;
|
||||
|
||||
tensor T_triple
|
||||
(
|
||||
2, 0, 0,
|
||||
0, 2, 0,
|
||||
0, 0, 2
|
||||
);
|
||||
Debug(T_triple);
|
||||
vector L_triple(eigenValues(T_triple));
|
||||
Debug(L_triple);
|
||||
tensor U_triple(eigenVectors(T_triple));
|
||||
Debug(U_triple);
|
||||
*/
|
||||
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
@ -89,99 +89,80 @@ namespace Foam
|
||||
|
||||
Foam::vector Foam::eigenValues(const tensor& t)
|
||||
{
|
||||
scalar i = 0;
|
||||
scalar ii = 0;
|
||||
scalar iii = 0;
|
||||
// The eigenvalues
|
||||
scalar i, ii, iii;
|
||||
|
||||
if
|
||||
(
|
||||
(
|
||||
mag(t.xy()) + mag(t.xz()) + mag(t.yx())
|
||||
+ mag(t.yz()) + mag(t.zx()) + mag(t.zy())
|
||||
)
|
||||
< SMALL
|
||||
)
|
||||
{
|
||||
// diagonal matrix
|
||||
i = t.xx();
|
||||
ii = t.yy();
|
||||
iii = t.zz();
|
||||
}
|
||||
else
|
||||
{
|
||||
scalar a = -t.xx() - t.yy() - t.zz();
|
||||
// Coefficients of the characteristic polynmial
|
||||
// x^3 + a*x^2 + b*x + c = 0
|
||||
scalar a =
|
||||
- t.xx() - t.yy() - t.zz();
|
||||
|
||||
scalar b = t.xx()*t.yy() + t.xx()*t.zz() + t.yy()*t.zz()
|
||||
- t.xy()*t.yx() - t.xz()*t.zx() - t.yz()*t.zy();
|
||||
scalar b =
|
||||
t.xx()*t.yy() + t.xx()*t.zz() + t.yy()*t.zz()
|
||||
- t.xy()*t.yx() - t.yz()*t.zy() - t.zx()*t.xz();
|
||||
|
||||
scalar c = - t.xx()*t.yy()*t.zz() - t.xy()*t.yz()*t.zx()
|
||||
- t.xz()*t.yx()*t.zy() + t.xz()*t.yy()*t.zx()
|
||||
+ t.xy()*t.yx()*t.zz() + t.xx()*t.yz()*t.zy();
|
||||
scalar c =
|
||||
- t.xx()*t.yy()*t.zz()
|
||||
- t.xy()*t.yz()*t.zx() - t.xz()*t.zy()*t.yx()
|
||||
+ t.xx()*t.yz()*t.zy() + t.yy()*t.zx()*t.xz() + t.zz()*t.xy()*t.yx();
|
||||
|
||||
// If there is a zero root
|
||||
if (mag(c) < 1e-100)
|
||||
{
|
||||
scalar disc = sqr(a) - 4*b;
|
||||
|
||||
if (disc >= -SMALL)
|
||||
{
|
||||
scalar q = -0.5*sqrt(max(0.0, disc));
|
||||
|
||||
i = 0;
|
||||
ii = -0.5*a + q;
|
||||
iii = -0.5*a - q;
|
||||
}
|
||||
else
|
||||
{
|
||||
FatalErrorIn("eigenValues(const tensor&)")
|
||||
<< "zero and complex eigenvalues in tensor: " << t
|
||||
<< abort(FatalError);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
scalar Q = (a*a - 3*b)/9;
|
||||
scalar R = (2*a*a*a - 9*a*b + 27*c)/54;
|
||||
|
||||
scalar R2 = sqr(R);
|
||||
scalar Q3 = pow3(Q);
|
||||
|
||||
// Three different real roots
|
||||
if (R2 < Q3)
|
||||
{
|
||||
scalar sqrtQ = sqrt(Q);
|
||||
scalar theta = acos(min(1.0, max(-1.0, R/(Q*sqrtQ))));
|
||||
|
||||
scalar m2SqrtQ = -2*sqrtQ;
|
||||
// Auxillary variables
|
||||
scalar aBy3 = a/3;
|
||||
|
||||
i = m2SqrtQ*cos(theta/3) - aBy3;
|
||||
ii = m2SqrtQ*cos((theta + twoPi)/3) - aBy3;
|
||||
iii = m2SqrtQ*cos((theta - twoPi)/3) - aBy3;
|
||||
}
|
||||
else
|
||||
{
|
||||
scalar A = cbrt(R + sqrt(R2 - Q3));
|
||||
scalar P = (a*a - 3*b)/9; // == -p_wikipedia/3
|
||||
scalar PPP = P*P*P;
|
||||
|
||||
// Three equal real roots
|
||||
if (A < SMALL)
|
||||
scalar Q = (2*a*a*a - 9*a*b + 27*c)/54; // == q_wikipedia/2
|
||||
scalar QQ = Q*Q;
|
||||
|
||||
// Three identical roots
|
||||
if (mag(P) < SMALL && mag(Q) < SMALL)
|
||||
{
|
||||
scalar root = -a/3;
|
||||
return vector(root, root, root);
|
||||
return vector(- aBy3, - aBy3, - aBy3);
|
||||
}
|
||||
|
||||
// Two identical roots and one distinct root
|
||||
else if (mag(PPP/QQ - 1) < SMALL)
|
||||
{
|
||||
scalar sqrtP = sqrt(P);
|
||||
scalar signQ = sign(Q);
|
||||
|
||||
i = ii = signQ*sqrtP - aBy3;
|
||||
iii = - 2*signQ*sqrtP - aBy3;
|
||||
}
|
||||
|
||||
// Three distinct roots
|
||||
else if (PPP > QQ)
|
||||
{
|
||||
scalar sqrtP = sqrt(P);
|
||||
scalar value = cos(acos(Q/sqrt(PPP))/3);
|
||||
scalar delta = sqrt(3 - 3*value*value);
|
||||
|
||||
i = - 2*sqrtP*value - aBy3;
|
||||
ii = sqrtP*(value + delta) - aBy3;
|
||||
iii = sqrtP*(value - delta) - aBy3;
|
||||
}
|
||||
|
||||
// One real root, two imaginary roots
|
||||
// based on the above logic, PPP must be less than QQ
|
||||
else
|
||||
{
|
||||
// Complex roots
|
||||
WarningIn("eigenValues(const tensor&)")
|
||||
<< "complex eigenvalues detected for tensor: " << t
|
||||
<< endl;
|
||||
|
||||
return vector::zero;
|
||||
}
|
||||
}
|
||||
if (mag(P) < SMALL)
|
||||
{
|
||||
i = cbrt(QQ/2);
|
||||
}
|
||||
else
|
||||
{
|
||||
scalar w = cbrt(- Q - sqrt(QQ - PPP));
|
||||
i = w + P/w - aBy3;
|
||||
}
|
||||
|
||||
return vector(-VGREAT, i, VGREAT);
|
||||
}
|
||||
|
||||
// Sort the eigenvalues into ascending order
|
||||
if (i > ii)
|
||||
@ -203,24 +184,35 @@ Foam::vector Foam::eigenValues(const tensor& t)
|
||||
}
|
||||
|
||||
|
||||
Foam::vector Foam::eigenVector(const tensor& t, const scalar lambda)
|
||||
Foam::vector Foam::eigenVector
|
||||
(
|
||||
const tensor& t,
|
||||
const scalar lambda
|
||||
)
|
||||
{
|
||||
if (mag(lambda) < SMALL)
|
||||
{
|
||||
return vector::zero;
|
||||
}
|
||||
// Constantly rotating direction ensures different eigenvectors are
|
||||
// generated when called sequentially with a multiple eigenvalue
|
||||
static vector direction(0,0,1);
|
||||
vector oldDirection(direction);
|
||||
scalar temp = direction[2];
|
||||
direction[2] = direction[1];
|
||||
direction[1] = direction[0];
|
||||
direction[0] = temp;
|
||||
|
||||
// Construct the matrix for the eigenvector problem
|
||||
// Construct the linear system for this eigenvalue
|
||||
tensor A(t - lambda*I);
|
||||
|
||||
// Calculate the sub-determinants of the 3 components
|
||||
scalar sd0 = A.yy()*A.zz() - A.yz()*A.zy();
|
||||
scalar sd1 = A.xx()*A.zz() - A.xz()*A.zx();
|
||||
scalar sd2 = A.xx()*A.yy() - A.xy()*A.yx();
|
||||
// Determinants of the 2x2 sub-matrices used to find the eigenvectors
|
||||
scalar sd0, sd1, sd2;
|
||||
scalar magSd0, magSd1, magSd2;
|
||||
|
||||
scalar magSd0 = mag(sd0);
|
||||
scalar magSd1 = mag(sd1);
|
||||
scalar magSd2 = mag(sd2);
|
||||
// Sub-determinants for a unique eivenvalue
|
||||
sd0 = A.yy()*A.zz() - A.yz()*A.zy();
|
||||
sd1 = A.zz()*A.xx() - A.zx()*A.xz();
|
||||
sd2 = A.xx()*A.yy() - A.xy()*A.yx();
|
||||
magSd0 = mag(sd0);
|
||||
magSd1 = mag(sd1);
|
||||
magSd2 = mag(sd2);
|
||||
|
||||
// Evaluate the eigenvector using the largest sub-determinant
|
||||
if (magSd0 >= magSd1 && magSd0 >= magSd2 && magSd0 > SMALL)
|
||||
@ -231,9 +223,8 @@ Foam::vector Foam::eigenVector(const tensor& t, const scalar lambda)
|
||||
(A.yz()*A.zx() - A.zz()*A.yx())/sd0,
|
||||
(A.zy()*A.yx() - A.yy()*A.zx())/sd0
|
||||
);
|
||||
ev /= mag(ev);
|
||||
|
||||
return ev;
|
||||
return ev/mag(ev);
|
||||
}
|
||||
else if (magSd1 >= magSd2 && magSd1 > SMALL)
|
||||
{
|
||||
@ -243,9 +234,8 @@ Foam::vector Foam::eigenVector(const tensor& t, const scalar lambda)
|
||||
1,
|
||||
(A.zx()*A.xy() - A.xx()*A.zy())/sd1
|
||||
);
|
||||
ev /= mag(ev);
|
||||
|
||||
return ev;
|
||||
return ev/mag(ev);
|
||||
}
|
||||
else if (magSd2 > SMALL)
|
||||
{
|
||||
@ -255,14 +245,55 @@ Foam::vector Foam::eigenVector(const tensor& t, const scalar lambda)
|
||||
(A.yx()*A.xz() - A.xx()*A.yz())/sd2,
|
||||
1
|
||||
);
|
||||
ev /= mag(ev);
|
||||
|
||||
return ev;
|
||||
return ev/mag(ev);
|
||||
}
|
||||
else
|
||||
|
||||
// Sub-determinants for a repeated eigenvalue
|
||||
sd0 = A.yy()*direction.z() - A.yz()*direction.y();
|
||||
sd1 = A.zz()*direction.x() - A.zx()*direction.z();
|
||||
sd2 = A.xx()*direction.y() - A.xy()*direction.x();
|
||||
magSd0 = mag(sd0);
|
||||
magSd1 = mag(sd1);
|
||||
magSd2 = mag(sd2);
|
||||
|
||||
// Evaluate the eigenvector using the largest sub-determinant
|
||||
if (magSd0 >= magSd1 && magSd0 >= magSd2 && magSd0 > SMALL)
|
||||
{
|
||||
return vector::zero;
|
||||
vector ev
|
||||
(
|
||||
1,
|
||||
(A.yz()*direction.x() - direction.z()*A.yx())/sd0,
|
||||
(direction.y()*A.yx() - A.yy()*direction.x())/sd0
|
||||
);
|
||||
|
||||
return ev/mag(ev);
|
||||
}
|
||||
else if (magSd1 >= magSd2 && magSd1 > SMALL)
|
||||
{
|
||||
vector ev
|
||||
(
|
||||
(direction.z()*A.zy() - A.zz()*direction.y())/sd1,
|
||||
1,
|
||||
(A.zx()*direction.y() - direction.x()*A.zy())/sd1
|
||||
);
|
||||
|
||||
return ev/mag(ev);
|
||||
}
|
||||
else if (magSd2 > SMALL)
|
||||
{
|
||||
vector ev
|
||||
(
|
||||
(A.xy()*direction.z() - direction.y()*A.xz())/sd2,
|
||||
(direction.x()*A.xz() - A.xx()*direction.z())/sd2,
|
||||
1
|
||||
);
|
||||
|
||||
return ev/mag(ev);
|
||||
}
|
||||
|
||||
// Triple eigenvalue
|
||||
return oldDirection;
|
||||
}
|
||||
|
||||
|
||||
@ -281,198 +312,21 @@ Foam::tensor Foam::eigenVectors(const tensor& t)
|
||||
}
|
||||
|
||||
|
||||
// Return eigenvalues in ascending order of absolute values
|
||||
Foam::vector Foam::eigenValues(const symmTensor& t)
|
||||
{
|
||||
scalar i = 0;
|
||||
scalar ii = 0;
|
||||
scalar iii = 0;
|
||||
|
||||
if
|
||||
(
|
||||
(
|
||||
mag(t.xy()) + mag(t.xz()) + mag(t.xy())
|
||||
+ mag(t.yz()) + mag(t.xz()) + mag(t.yz())
|
||||
)
|
||||
< SMALL
|
||||
)
|
||||
{
|
||||
// diagonal matrix
|
||||
i = t.xx();
|
||||
ii = t.yy();
|
||||
iii = t.zz();
|
||||
}
|
||||
else
|
||||
{
|
||||
scalar a = -t.xx() - t.yy() - t.zz();
|
||||
|
||||
scalar b = t.xx()*t.yy() + t.xx()*t.zz() + t.yy()*t.zz()
|
||||
- t.xy()*t.xy() - t.xz()*t.xz() - t.yz()*t.yz();
|
||||
|
||||
scalar c = - t.xx()*t.yy()*t.zz() - t.xy()*t.yz()*t.xz()
|
||||
- t.xz()*t.xy()*t.yz() + t.xz()*t.yy()*t.xz()
|
||||
+ t.xy()*t.xy()*t.zz() + t.xx()*t.yz()*t.yz();
|
||||
|
||||
// If there is a zero root
|
||||
if (mag(c) < 1e-100)
|
||||
{
|
||||
scalar disc = sqr(a) - 4*b;
|
||||
|
||||
if (disc >= -SMALL)
|
||||
{
|
||||
scalar q = -0.5*sqrt(max(0.0, disc));
|
||||
|
||||
i = 0;
|
||||
ii = -0.5*a + q;
|
||||
iii = -0.5*a - q;
|
||||
}
|
||||
else
|
||||
{
|
||||
FatalErrorIn("eigenValues(const tensor&)")
|
||||
<< "zero and complex eigenvalues in tensor: " << t
|
||||
<< abort(FatalError);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
scalar Q = (a*a - 3*b)/9;
|
||||
scalar R = (2*a*a*a - 9*a*b + 27*c)/54;
|
||||
|
||||
scalar R2 = sqr(R);
|
||||
scalar Q3 = pow3(Q);
|
||||
|
||||
// Three different real roots
|
||||
if (R2 < Q3)
|
||||
{
|
||||
scalar sqrtQ = sqrt(Q);
|
||||
scalar theta = acos(min(1.0, max(-1.0, R/(Q*sqrtQ))));
|
||||
|
||||
scalar m2SqrtQ = -2*sqrtQ;
|
||||
scalar aBy3 = a/3;
|
||||
|
||||
i = m2SqrtQ*cos(theta/3) - aBy3;
|
||||
ii = m2SqrtQ*cos((theta + twoPi)/3) - aBy3;
|
||||
iii = m2SqrtQ*cos((theta - twoPi)/3) - aBy3;
|
||||
}
|
||||
else
|
||||
{
|
||||
scalar A = cbrt(R + sqrt(R2 - Q3));
|
||||
|
||||
// Three equal real roots
|
||||
if (A < SMALL)
|
||||
{
|
||||
scalar root = -a/3;
|
||||
return vector(root, root, root);
|
||||
}
|
||||
else
|
||||
{
|
||||
// Complex roots
|
||||
WarningIn("eigenValues(const symmTensor&)")
|
||||
<< "complex eigenvalues detected for symmTensor: " << t
|
||||
<< endl;
|
||||
|
||||
return vector::zero;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Sort the eigenvalues into ascending order
|
||||
if (i > ii)
|
||||
{
|
||||
Swap(i, ii);
|
||||
}
|
||||
|
||||
if (ii > iii)
|
||||
{
|
||||
Swap(ii, iii);
|
||||
}
|
||||
|
||||
if (i > ii)
|
||||
{
|
||||
Swap(i, ii);
|
||||
}
|
||||
|
||||
return vector(i, ii, iii);
|
||||
return eigenValues(tensor(t));
|
||||
}
|
||||
|
||||
|
||||
Foam::vector Foam::eigenVector(const symmTensor& t, const scalar lambda)
|
||||
{
|
||||
if (mag(lambda) < SMALL)
|
||||
{
|
||||
return vector::zero;
|
||||
}
|
||||
|
||||
// Construct the matrix for the eigenvector problem
|
||||
symmTensor A(t - lambda*I);
|
||||
|
||||
// Calculate the sub-determinants of the 3 components
|
||||
scalar sd0 = A.yy()*A.zz() - A.yz()*A.yz();
|
||||
scalar sd1 = A.xx()*A.zz() - A.xz()*A.xz();
|
||||
scalar sd2 = A.xx()*A.yy() - A.xy()*A.xy();
|
||||
|
||||
scalar magSd0 = mag(sd0);
|
||||
scalar magSd1 = mag(sd1);
|
||||
scalar magSd2 = mag(sd2);
|
||||
|
||||
// Evaluate the eigenvector using the largest sub-determinant
|
||||
if (magSd0 >= magSd1 && magSd0 >= magSd2 && magSd0 > SMALL)
|
||||
{
|
||||
vector ev
|
||||
(
|
||||
1,
|
||||
(A.yz()*A.xz() - A.zz()*A.xy())/sd0,
|
||||
(A.yz()*A.xy() - A.yy()*A.xz())/sd0
|
||||
);
|
||||
ev /= mag(ev);
|
||||
|
||||
return ev;
|
||||
}
|
||||
else if (magSd1 >= magSd2 && magSd1 > SMALL)
|
||||
{
|
||||
vector ev
|
||||
(
|
||||
(A.xz()*A.yz() - A.zz()*A.xy())/sd1,
|
||||
1,
|
||||
(A.xz()*A.xy() - A.xx()*A.yz())/sd1
|
||||
);
|
||||
ev /= mag(ev);
|
||||
|
||||
return ev;
|
||||
}
|
||||
else if (magSd2 > SMALL)
|
||||
{
|
||||
vector ev
|
||||
(
|
||||
(A.xy()*A.yz() - A.yy()*A.xz())/sd2,
|
||||
(A.xy()*A.xz() - A.xx()*A.yz())/sd2,
|
||||
1
|
||||
);
|
||||
ev /= mag(ev);
|
||||
|
||||
return ev;
|
||||
}
|
||||
else
|
||||
{
|
||||
return vector::zero;
|
||||
}
|
||||
return eigenVector(tensor(t), lambda);
|
||||
}
|
||||
|
||||
|
||||
Foam::tensor Foam::eigenVectors(const symmTensor& t)
|
||||
{
|
||||
vector evals(eigenValues(t));
|
||||
|
||||
tensor evs
|
||||
(
|
||||
eigenVector(t, evals.x()),
|
||||
eigenVector(t, evals.y()),
|
||||
eigenVector(t, evals.z())
|
||||
);
|
||||
|
||||
return evs;
|
||||
return eigenVectors(tensor(t));
|
||||
}
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user