ENH: Add automatic feature extraction to foamyHexMesh

This commit is contained in:
laurence
2013-05-13 10:24:03 +01:00
parent f9372806da
commit 9a5b9e6ba2
12 changed files with 1088 additions and 409 deletions

View File

@ -47,8 +47,8 @@ surfaceConformation
{
flange
{
featureMethod extendedFeatureEdgeMesh;
extendedFeatureEdgeMesh "flange.extendedFeatureEdgeMesh";
featureMethod extractFeatures;
includedAngle 140;
}
}
}

View File

@ -1,38 +0,0 @@
/*--------------------------------*- C++ -*----------------------------------*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: dev |
| \\ / A nd | Web: www.OpenFOAM.org |
| \\/ M anipulation | |
\*---------------------------------------------------------------------------*/
FoamFile
{
version 2.0;
format ascii;
class dictionary;
object surfaceFeatureExtractDict;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
flange.obj
{
extractionMethod extractFromSurface;
extractFromSurfaceCoeffs
{
// Mark edges whose adjacent surface normals are at an angle less
// than includedAngle as features
// - 0 : selects no edges
// - 180: selects all edges
includedAngle 100;
}
// Write options
// Write features to obj format for postprocessing
writeObj yes;
}
// ************************************************************************* //

View File

@ -35,7 +35,7 @@ runApplication surfaceFeatureExtract
# Generate aligned points (in constant/internalDelaunayVertices) and a
# mesh from that.
runApplication cvMesh
runApplication foamyHexMesh
# Generate some sets for a bit of mesh inspection
runApplication topoSet -time 0:100

View File

@ -1,368 +0,0 @@
/*--------------------------------*- C++ -*----------------------------------*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: dev |
| \\ / A nd | Web: www.OpenFOAM.org |
| \\/ M anipulation | |
\*---------------------------------------------------------------------------*/
FoamFile
{
version 2.0;
format ascii;
class dictionary;
object cvMeshDict;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
/*
Control dictionary for cvMesh - polyhedral mesh generator.
cvMesh phases:
1. fill volume with initial points (initialPoints subdictionary). An option
is to reread from previous set of points.
2. internal point motion (motionControl subdictionary)
3. every once in a while add point duplets/triplets to conform to
surfaces and features (surfaceConformation subdictionary)
4. back to 2
5. construct polyMesh.
- filter (polyMeshFiltering subdictionary)
- check (meshQualityControls subdictionary) and undo filtering
See also cvControls.H in the conformalVoronoiMesh library
*/
// Important:
// ----------
// Any scalar with a name <name>Coeff specifies a value that will be implemented
// as a faction of the target cell size
// Any scalar with a name <name>Size specifies an absolute size.
// Geometry. Definition of all surfaces. All surfaces are of class
// searchableSurface.
// Surfaces need to be (almost) closed - use closedTriSurfaceMesh
// if they are not topologically closed. Surfaces need to be oriented so
// the space to be meshed is always on the inside of all surfaces. Use e.g.
// surfaceOrient.
geometry
{
// Internal shape
coneAndSphere_clean_orient.obj
{
name coneAndSphere;
type triSurfaceMesh;
}
// Outside of domain
domain_clean_orient.stl
{
name domain;
type triSurfaceMesh;
regions
{
ascii{ name domain_patch0; }
}
}
}
// Controls for conforming to the surfaces.
surfaceConformation
{
// A point inside surfaces that is inside mesh.
locationInMesh (0 -0.5 0);
// How far apart are point-duplets generated. Balance this between
// - very low distance: little chance of interference from other
// surfaces
// - largish distance: less non-orthogonality in final cell
// (circumcentre far away from centroid)
pointPairDistanceCoeff 0.1;
// Mixed feature edges - both inside and outside edges. Recreated
// by inserting triplets of points to recreate a single edge. Done for
// all edges emanating from point. triplets of points get inserted
// mixedFeaturePointPPDistanceCoeff distance away from feature point.
mixedFeaturePointPPDistanceCoeff 5.0;
// Distance to a feature point within which surface and edge
// conformation points are excluded - fraction of the local target
// cell size
featurePointExclusionDistanceCoeff 0.6;
// Distance to an existing feature edge conformation location
// within which other edge conformation location are excluded -
// fraction of the local target cell size
featureEdgeExclusionDistanceCoeff 0.6;
// Optimisation: do not check for surface intersection (of dual edges)
// for points near to surface.
surfaceSearchDistanceCoeff 2.5;
// Maximum allowable protrusion through the surface before
// conformation points are added - fraction of the local target
// cell size. These small protusions are (hopefully) done by mesh filtering
// instead.
maxSurfaceProtrusionCoeff 0.1;
// If feature edge with large angle (so more than 125 degrees) introduce
// additional points to create two half angled cells (= mitering).
maxQuadAngle 125;
// Frequency to redo surface conformation (expensive).
surfaceConformationRebuildFrequency 10;
// Specialised feature point handling
specialiseFeaturePoints on;
// Initial and intermediate controls
conformationControls
{
// We've got a point poking through the surface. Don't do any
// surface conformation if near feature edge (since feature edge
// conformation should have priority)
// distance to search for near feature edges
edgeSearchDistCoeff 2;
// Proximity to a feature edge where a surface hit is
// not created, only the edge conformation is created
// - fraction of the local target cell size. Coarse
// conformation, initial protrusion tests.
surfacePtReplaceDistCoeff 0.5;
surfacePtExclusionDistanceCoeff 0.5;
// Stop either at maxIterations or if the number of surface pokes
// is very small (iterationToInitialHitRatioLimit * initial number)
// Note: perhaps iterationToInitialHitRatioLimit should be absolute
// count?
maxIterations 15;
iterationToInitialHitRatioLimit 0.001;
}
// Geometry to mesh to
geometryToConformTo
{
coneAndSphere
{
featureMethod extendedFeatureEdgeMesh;
extendedFeatureEdgeMesh "coneAndSphere_clean_orient.extendedFeatureEdgeMesh";
}
domain
{
featureMethod extendedFeatureEdgeMesh;
extendedFeatureEdgeMesh "domain_clean_orient.extendedFeatureEdgeMesh";
}
}
additionalFeatures
{}
}
// Controls for seeding initial points and general control of the target
// cell size (used everywhere)
initialPoints
{
// Do not place point closer than minimumSurfaceDistanceCoeff
// to the surface. Is fraction of local target cell size (see below)
minimumSurfaceDistanceCoeff 0.55;
initialPointsMethod autoDensity;
// initialPointsMethod uniformGrid;
// initialPointsMethod bodyCentredCubic;
// initialPointsMethod pointFile;
// Take boundbox of all geometry. Samples with this box. If too much
// samples (due to target cell size) in box split box.
autoDensityCoeffs
{
minCellSizeLimit 0.1;
// Initial number of refinement levels. Needs to be enough to pick
// up features due to size ratio. If not enough it will take longer
// to determine point seeding.
minLevels 4;
// Split box if ratio of min to max cell size larger than maxSizeRatio
maxSizeRatio 5.0;
// Per box sample 3x3x3 internally
sampleResolution 3;
// Additionally per face of the box sample 3
surfaceSampleResolution 3;
}
uniformGridCoeffs
{
// Absolute cell size.
initialCellSize 0.0015;
randomiseInitialGrid yes;
randomPerturbationCoeff 0.02;
}
bodyCentredCubicCoeffs
{
initialCellSize 0.0015;
randomiseInitialGrid no;
randomPerturbationCoeff 0.1;
}
pointFileCoeffs
{
// Reads points from file. Still rejects points that are too
// close to the surface (minimumSurfaceDistanceCoeff) or on the
// wrong side of the surfaces.
pointFile "constant/internalDelaunayVertices";
}
}
// Control size of voronoi cells i.e. distance between points. This
// determines the target cell size which is used everywhere.
// It determines the cell size given a location. It then uses all
// the rules
// - defaultCellSize
// - cellSizeControlGeometry
// to determine target cell size. Rule with highest priority wins. If same
// priority smallest cell size wins.
motionControl
{
// Absolute cell size of back ground mesh. This is the maximum cell size.
defaultCellSize 0.1;
minimumCellSizeCoeff 0;
// For background cell size and alignment grid
maxSmoothingIterations 100;
maxRefinementIterations 0;
shapeControlFunctions
{
coneAndSphere
{
type searchableSurfaceControl;
priority 1;
mode bothSides;
surfaceCellSizeFunction uniformValue;
uniformValueCoeffs
{
surfaceCellSizeCoeff 0.75;
}
cellSizeFunction uniform;
uniformCoeffs
{}
}
domain
{
type searchableSurfaceControl;
priority 1;
mode bothSides;
surfaceCellSizeFunction uniformValue;
uniformValueCoeffs
{
surfaceCellSizeCoeff 1;
}
cellSizeFunction uniform;
uniformCoeffs
{}
}
}
cellAspectRatioControl
{
aspectRatio 1.0;
aspectRatioDirection (0 0 0);
}
// Underrelaxation for point motion. Simulated annealing: starts off at 1
// and lowers to 0 (at simulation endTime) to converge points.
// adaptiveLinear is preferred choice.
// Points move by e.g. 10% of tet size.
relaxationModel adaptiveLinear; //rampHoldFall
adaptiveLinearCoeffs
{
relaxationStart 1.0;
relaxationEnd 0.0;
}
// Output lots and lots of .obj files
objOutput no;
// Timing and memory usage.
timeChecks no;
// For each delaunay edge (between two vertices, becomes
// the Voronoi face normal) snap to the alignment direction if within
// alignmentAcceptanceAngle. Slightly > 45 is a good choice - prevents
// flipping.
alignmentAcceptanceAngle 48;
// When to insert points. Not advisable change to
// these settings.
pointInsertionCriteria
{
// If edge larger than 1.75 target cell size
// (so tets too large/stretched) insert point
cellCentreDistCoeff 1.75;
// Do not insert point if voronoi face (on edge) very small.
faceAreaRatioCoeff 0.0025;
// Insert point only if edge closely aligned to local alignment
// direction.
acceptanceAngle 21.5;
}
// Opposite: remove point if mesh too compressed. Do not change these
// settings.
pointRemovalCriteria
{
cellCentreDistCoeff 0.65;
}
// How to determine the point motion. All edges got some direction.
// Sum all edge contributions to determine point motion. Weigh by
// face area so motion is preferentially determined by large faces
// (or more importantly ignore contribution from small faces).
// Do not change these settings.
faceAreaWeightModel piecewiseLinearRamp;
piecewiseLinearRampCoeffs
{
lowerAreaFraction 0.5;
upperAreaFraction 1.0;
}
}
// After simulation, when converting to polyMesh, filter out small faces/edges.
// Do not change. See cvControls.H
polyMeshFiltering
{
filterEdges on;
filterFaces on;
writeTetDualMesh false;
}
#include "meshQualityDict";
// ************************************************************************* //

View File

@ -0,0 +1,203 @@
/*--------------------------------*- C++ -*----------------------------------*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: dev |
| \\ / A nd | Web: www.OpenFOAM.org |
| \\/ M anipulation | |
\*---------------------------------------------------------------------------*/
FoamFile
{
version 2.0;
format ascii;
class dictionary;
object foamyHexMeshDict;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
// Include defaults parameters from master dictionary
#include "$WM_PROJECT_DIR/etc/caseDicts/foamyHexMeshDict"
geometry
{
// Internal shape
coneAndSphere_clean_orient.obj
{
name coneAndSphere;
type triSurfaceMesh;
}
// Outside of domain
domain_clean_orient.stl
{
name domain;
type triSurfaceMesh;
regions
{
ascii{ name domain_patch0; }
}
}
}
// Controls for conforming to the surfaces.
surfaceConformation
{
// A point inside surfaces that is inside mesh.
locationInMesh (0 -0.5 0);
// Geometry to mesh to
geometryToConformTo
{
coneAndSphere
{
featureMethod extractFeatures;
includedAngle 140;
featureMethod extendedFeatureEdgeMesh;
extendedFeatureEdgeMesh "coneAndSphere_clean_orient.extendedFeatureEdgeMesh";
}
domain
{
featureMethod extractFeatures;
includedAngle 125;
featureMethod extendedFeatureEdgeMesh;
extendedFeatureEdgeMesh "domain_clean_orient.extendedFeatureEdgeMesh";
}
}
additionalFeatures
{}
}
// Controls for seeding initial points and general control of the target
// cell size (used everywhere)
initialPoints
{
initialPointsMethod autoDensity;
// initialPointsMethod uniformGrid;
// initialPointsMethod bodyCentredCubic;
// initialPointsMethod pointFile;
// Take boundbox of all geometry. Samples with this box. If too much
// samples (due to target cell size) in box split box.
autoDensityCoeffs
{
minCellSizeLimit 0.1;
// Initial number of refinement levels. Needs to be enough to pick
// up features due to size ratio. If not enough it will take longer
// to determine point seeding.
minLevels 4;
// Split box if ratio of min to max cell size larger than maxSizeRatio
maxSizeRatio 5.0;
// Per box sample 3x3x3 internally
sampleResolution 3;
// Additionally per face of the box sample 3
surfaceSampleResolution 3;
}
uniformGridCoeffs
{
// Absolute cell size.
initialCellSize 0.0015;
randomiseInitialGrid yes;
randomPerturbationCoeff 0.02;
}
bodyCentredCubicCoeffs
{
initialCellSize 0.0015;
randomiseInitialGrid no;
randomPerturbationCoeff 0.1;
}
pointFileCoeffs
{
// Reads points from file. Still rejects points that are too
// close to the surface (minimumSurfaceDistanceCoeff) or on the
// wrong side of the surfaces.
pointFile "constant/internalDelaunayVertices";
}
}
// Control size of voronoi cells i.e. distance between points. This
// determines the target cell size which is used everywhere.
// It determines the cell size given a location. It then uses all
// the rules
// - defaultCellSize
// - cellSizeControlGeometry
// to determine target cell size. Rule with highest priority wins. If same
// priority smallest cell size wins.
motionControl
{
// Absolute cell size of back ground mesh. This is the maximum cell size.
defaultCellSize 0.1;
minimumCellSizeCoeff 0;
// For background cell size and alignment grid
maxSmoothingIterations 100;
maxRefinementIterations 0;
shapeControlFunctions
{
coneAndSphere
{
type searchableSurfaceControl;
priority 1;
mode bothSides;
surfaceCellSizeFunction uniformValue;
uniformValueCoeffs
{
surfaceCellSizeCoeff 0.75;
}
cellSizeFunction uniform;
uniformCoeffs
{}
}
domain
{
type searchableSurfaceControl;
priority 1;
mode bothSides;
surfaceCellSizeFunction uniformValue;
uniformValueCoeffs
{
surfaceCellSizeCoeff 1;
}
cellSizeFunction uniform;
uniformCoeffs
{}
}
}
// Output lots and lots of .obj files
objOutput no;
// Timing and memory usage.
timeChecks no;
}
// After simulation, when converting to polyMesh, filter out small faces/edges.
// Do not change. See cvControls.H
polyMeshFiltering
{
filterEdges on;
filterFaces on;
writeTetDualMesh false;
}
#include "meshQualityDict";
// ************************************************************************* //