GIT: Resolved merge conflict when merging develop branch

This commit is contained in:
Andrew Heather
2017-05-24 12:30:09 +01:00
2762 changed files with 124329 additions and 53036 deletions

View File

@ -2,7 +2,7 @@
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation
\\ / A nd | Copyright (C) 2011-2017 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
@ -184,7 +184,8 @@ public:
//- Evaluate the patch field
virtual void evaluate
(
const Pstream::commsTypes commsType=Pstream::blocking
const Pstream::commsTypes commsType=
Pstream::commsTypes::blocking
);
//- Return face-gradient transform diagonal

View File

@ -2,11 +2,11 @@
Info<< "Reading thermophysical properties\n" << endl;
autoPtr<psiThermo> pThermo
autoPtr<fluidThermo> pThermo
(
psiThermo::New(mesh)
fluidThermo::New(mesh)
);
psiThermo& thermo = pThermo();
fluidThermo& thermo = pThermo();
thermo.validate(args.executable(), "h", "e");
volScalarField& p = thermo.p();
@ -40,27 +40,7 @@ volVectorField U
#include "compressibleCreatePhi.H"
dimensionedScalar rhoMax
(
dimensionedScalar::lookupOrDefault
(
"rhoMax",
pimple.dict(),
dimDensity,
GREAT
)
);
dimensionedScalar rhoMin
(
dimensionedScalar::lookupOrDefault
(
"rhoMin",
pimple.dict(),
dimDensity,
0
)
);
pressureControl pressureControl(p, rho, pimple.dict(), false);
Info<< "Creating turbulence model\n" << endl;
autoPtr<compressible::turbulenceModel> turbulence

View File

@ -1,8 +1,3 @@
rho = thermo.rho();
rho = max(rho, rhoMin);
rho = min(rho, rhoMax);
rho.relax();
volScalarField rAU(1.0/UEqn.A());
surfaceScalarField rhorAUf("rhorAUf", fvc::interpolate(rho*rAU));
volVectorField HbyA(constrainHbyA(rAU*UEqn.H(), U, p));
@ -12,55 +7,52 @@ if (pimple.nCorrPISO() <= 1)
tUEqn.clear();
}
surfaceScalarField phiHbyA
(
"phiHbyA",
fvc::flux(rho*HbyA)
+ rhorAUf*fvc::ddtCorr(rho, U, phi)
);
MRF.makeRelative(fvc::interpolate(rho), phiHbyA);
// Update the pressure BCs to ensure flux consistency
constrainPressure(p, rho, U, phiHbyA, rhorAUf, MRF);
if (pimple.transonic())
{
surfaceScalarField phid
(
"phid",
fvc::interpolate(psi)
*(
fvc::flux(HbyA)
+ rhorAUf*fvc::ddtCorr(rho, U, phi)/fvc::interpolate(rho)
)
(fvc::interpolate(psi)/fvc::interpolate(rho))*phiHbyA
);
MRF.makeRelative(fvc::interpolate(psi), phid);
phiHbyA -= fvc::interpolate(p)*phid;
while (pimple.correctNonOrthogonal())
{
fvScalarMatrix pEqn
(
fvm::ddt(psi, p)
+ fvc::div(phiHbyA)
+ fvm::div(phid, p)
- fvm::laplacian(rhorAUf, p)
==
fvOptions(psi, p, rho.name())
);
// Relax the pressure equation to ensure diagonal-dominance
pEqn.relax();
pEqn.solve(mesh.solver(p.select(pimple.finalInnerIter())));
if (pimple.finalNonOrthogonalIter())
{
phi == pEqn.flux();
phi = phiHbyA + pEqn.flux();
}
}
}
else
{
surfaceScalarField phiHbyA
(
"phiHbyA",
(
fvc::flux(rho*HbyA)
+ rhorAUf*fvc::ddtCorr(rho, U, phi)
)
);
MRF.makeRelative(fvc::interpolate(rho), phiHbyA);
// Update the pressure BCs to ensure flux consistency
constrainPressure(p, rho, U, phiHbyA, rhorAUf, MRF);
while (pimple.correctNonOrthogonal())
{
fvScalarMatrix pEqn
@ -87,19 +79,20 @@ else
// Explicitly relax pressure for momentum corrector
p.relax();
// Recalculate density from the relaxed pressure
rho = thermo.rho();
rho = max(rho, rhoMin);
rho = min(rho, rhoMax);
rho.relax();
Info<< "rho max/min : " << max(rho).value()
<< " " << min(rho).value() << endl;
U = HbyA - rAU*fvc::grad(p);
U.correctBoundaryConditions();
fvOptions.correct(U);
K = 0.5*magSqr(U);
pressureControl.limit(p);
p.correctBoundaryConditions();
rho = thermo.rho();
if (!pimple.transonic())
{
rho.relax();
}
if (thermo.dpdt())
{
dpdt = fvc::ddt(p);

View File

@ -1,8 +1,3 @@
rho = thermo.rho();
rho = max(rho, rhoMin);
rho = min(rho, rhoMax);
rho.relax();
volScalarField rAU(1.0/UEqn.A());
volScalarField rAtU(1.0/(1.0/rAU - UEqn.H1()));
volVectorField HbyA(constrainHbyA(rAU*UEqn.H(), U, p));
@ -12,72 +7,64 @@ if (pimple.nCorrPISO() <= 1)
tUEqn.clear();
}
surfaceScalarField phiHbyA
(
"phiHbyA",
(
fvc::flux(rho*HbyA)
+ fvc::interpolate(rho*rAU)*fvc::ddtCorr(rho, U, phi)
)
);
MRF.makeRelative(fvc::interpolate(rho), phiHbyA);
volScalarField rhorAtU("rhorAtU", rho*rAtU);
// Update the pressure BCs to ensure flux consistency
constrainPressure(p, rho, U, phiHbyA, rhorAtU, MRF);
if (pimple.transonic())
{
surfaceScalarField phid
(
"phid",
fvc::interpolate(psi)
*(
fvc::flux(HbyA)
+ fvc::interpolate(rho*rAU)*fvc::ddtCorr(rho, U, phi)
/fvc::interpolate(rho)
)
(fvc::interpolate(psi)/fvc::interpolate(rho))*phiHbyA
);
MRF.makeRelative(fvc::interpolate(psi), phid);
surfaceScalarField phic
(
"phic",
phiHbyA +=
fvc::interpolate(rho*(rAtU - rAU))*fvc::snGrad(p)*mesh.magSf()
);
- fvc::interpolate(p)*phid;
HbyA -= (rAU - rAtU)*fvc::grad(p);
volScalarField rhorAtU("rhorAtU", rho*rAtU);
while (pimple.correctNonOrthogonal())
{
fvScalarMatrix pEqn
(
fvm::ddt(psi, p)
+ fvc::div(phiHbyA)
+ fvm::div(phid, p)
+ fvc::div(phic)
- fvm::laplacian(rhorAtU, p)
==
fvOptions(psi, p, rho.name())
);
// Relax the pressure equation to ensure diagonal-dominance
pEqn.relax();
pEqn.solve(mesh.solver(p.select(pimple.finalInnerIter())));
if (pimple.finalNonOrthogonalIter())
{
phi == phic + pEqn.flux();
phi = phiHbyA + pEqn.flux();
}
}
}
else
{
surfaceScalarField phiHbyA
(
"phiHbyA",
(
fvc::flux(rho*HbyA)
+ fvc::interpolate(rho*rAU)*fvc::ddtCorr(rho, U, phi)
)
);
MRF.makeRelative(fvc::interpolate(rho), phiHbyA);
phiHbyA += fvc::interpolate(rho*(rAtU - rAU))*fvc::snGrad(p)*mesh.magSf();
HbyA -= (rAU - rAtU)*fvc::grad(p);
volScalarField rhorAtU("rhorAtU", rho*rAtU);
// Update the pressure BCs to ensure flux consistency
constrainPressure(p, rho, U, phiHbyA, rhorAtU, MRF);
while (pimple.correctNonOrthogonal())
{
fvScalarMatrix pEqn
@ -109,19 +96,16 @@ U.correctBoundaryConditions();
fvOptions.correct(U);
K = 0.5*magSqr(U);
if (thermo.dpdt())
{
dpdt = fvc::ddt(p);
}
// Recalculate density from the relaxed pressure
pressureControl.limit(p);
p.correctBoundaryConditions();
rho = thermo.rho();
rho = max(rho, rhoMin);
rho = min(rho, rhoMax);
if (!pimple.transonic())
{
rho.relax();
}
Info<< "rho max/min : " << max(rho).value() << " " << min(rho).value() << endl;
if (thermo.dpdt())
{
dpdt = fvc::ddt(p);
}

View File

@ -1,8 +1,3 @@
rho = thermo.rho();
rho = max(rho, rhoMin);
rho = min(rho, rhoMax);
rho.relax();
volScalarField rAU(1.0/UEqn.A());
surfaceScalarField rhorAUf("rhorAUf", fvc::interpolate(rho*rAU));
volVectorField HbyA(constrainHbyA(rAU*UEqn.H(), U, p));
@ -12,55 +7,53 @@ if (pimple.nCorrPISO() <= 1)
tUEqn.clear();
}
surfaceScalarField phiHbyA
(
"phiHbyA",
fvc::flux(rho*HbyA)
+ rhorAUf*fvc::ddtCorr(rho, U, rhoUf)
);
fvc::makeRelative(phiHbyA, rho, U);
MRF.makeRelative(fvc::interpolate(rho), phiHbyA);
// Update the pressure BCs to ensure flux consistency
constrainPressure(p, rho, U, phiHbyA, rhorAUf, MRF);
if (pimple.transonic())
{
surfaceScalarField phid
(
"phid",
fvc::interpolate(psi)
*(
fvc::flux(HbyA)
+ rhorAUf*fvc::ddtCorr(rho, U, rhoUf)/fvc::interpolate(rho)
)
(fvc::interpolate(psi)/fvc::interpolate(rho))*phiHbyA
);
fvc::makeRelative(phid, psi, U);
MRF.makeRelative(fvc::interpolate(psi), phid);
phiHbyA -= fvc::interpolate(p)*phid;
while (pimple.correctNonOrthogonal())
{
fvScalarMatrix pEqn
(
fvm::ddt(psi, p)
+ fvc::div(phiHbyA)
+ fvm::div(phid, p)
- fvm::laplacian(rhorAUf, p)
==
fvOptions(psi, p, rho.name())
);
// Relax the pressure equation to ensure diagonal-dominance
pEqn.relax();
pEqn.solve(mesh.solver(p.select(pimple.finalInnerIter())));
if (pimple.finalNonOrthogonalIter())
{
phi == pEqn.flux();
phi = phiHbyA + pEqn.flux();
}
}
}
else
{
surfaceScalarField phiHbyA
(
"phiHbyA",
fvc::flux(rho*HbyA)
+ rhorAUf*fvc::ddtCorr(rho, U, rhoUf)
);
fvc::makeRelative(phiHbyA, rho, U);
MRF.makeRelative(fvc::interpolate(rho), phiHbyA);
// Update the pressure BCs to ensure flux consistency
constrainPressure(p, rho, U, phiHbyA, rhorAUf, MRF);
while (pimple.correctNonOrthogonal())
{
// Pressure corrector
@ -88,19 +81,20 @@ else
// Explicitly relax pressure for momentum corrector
p.relax();
// Recalculate density from the relaxed pressure
rho = thermo.rho();
rho = max(rho, rhoMin);
rho = min(rho, rhoMax);
rho.relax();
Info<< "rho max/min : " << max(rho).value()
<< " " << min(rho).value() << endl;
U = HbyA - rAU*fvc::grad(p);
U.correctBoundaryConditions();
fvOptions.correct(U);
K = 0.5*magSqr(U);
pressureControl.limit(p);
p.correctBoundaryConditions();
rho = thermo.rho();
if (!pimple.transonic())
{
rho.relax();
}
{
rhoUf = fvc::interpolate(rho*U);
surfaceVectorField n(mesh.Sf()/mesh.magSf());

View File

@ -2,7 +2,7 @@
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation
\\ / A nd | Copyright (C) 2011-2017 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
@ -22,7 +22,7 @@ License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
rhoPimpleFoam
rhoPimpleDyMFoam
Group
grpCompressibleSolvers grpMovingMeshSolvers
@ -38,10 +38,11 @@ Description
#include "fvCFD.H"
#include "dynamicFvMesh.H"
#include "psiThermo.H"
#include "fluidThermo.H"
#include "turbulentFluidThermoModel.H"
#include "bound.H"
#include "pimpleControl.H"
#include "pressureControl.H"
#include "CorrectPhi.H"
#include "fvOptions.H"
#include "localEulerDdtScheme.H"

View File

@ -2,7 +2,7 @@
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation
\\ / A nd | Copyright (C) 2011-2017 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
@ -37,10 +37,11 @@ Description
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "psiThermo.H"
#include "fluidThermo.H"
#include "turbulentFluidThermoModel.H"
#include "bound.H"
#include "pimpleControl.H"
#include "pressureControl.H"
#include "fvOptions.H"
#include "localEulerDdtScheme.H"
#include "fvcSmooth.H"

View File

@ -1,11 +1,14 @@
Info<< "Reading thermophysical properties\n" << endl;
autoPtr<rhoThermo> pThermo
autoPtr<fluidThermo> pThermo
(
rhoThermo::New(mesh)
fluidThermo::New(mesh)
);
rhoThermo& thermo = pThermo();
fluidThermo& thermo = pThermo();
thermo.validate(args.executable(), "h", "e");
volScalarField& p = thermo.p();
volScalarField rho
(
IOobject
@ -19,8 +22,6 @@ volScalarField rho
thermo.rho()
);
volScalarField& p = thermo.p();
Info<< "Reading field U\n" << endl;
volVectorField U
(
@ -37,35 +38,10 @@ volVectorField U
#include "compressibleCreatePhi.H"
label pRefCell = 0;
scalar pRefValue = 0.0;
setRefCell(p, simple.dict(), pRefCell, pRefValue);
pressureControl pressureControl(p, rho, simple.dict());
mesh.setFluxRequired(p.name());
dimensionedScalar rhoMax
(
dimensionedScalar::lookupOrDefault
(
"rhoMax",
simple.dict(),
dimDensity,
GREAT
)
);
dimensionedScalar rhoMin
(
dimensionedScalar::lookupOrDefault
(
"rhoMin",
simple.dict(),
dimDensity,
0
)
);
Info<< "Creating turbulence model\n" << endl;
autoPtr<compressible::turbulenceModel> turbulence
(

View File

@ -1,6 +1,4 @@
{
//const volScalarField& psi = thermo.psi();
volScalarField rAU(1.0/UEqn.A());
surfaceScalarField rhorAUf("rhorAUf", fvc::interpolate(rho*rAU));
volVectorField HbyA(constrainHbyA(rAU*UEqn.H(), U, p));
@ -8,22 +6,27 @@
bool closedVolume = false;
surfaceScalarField phiHbyA("phiHbyA", fvc::flux(rho*HbyA));
MRF.makeRelative(fvc::interpolate(rho), phiHbyA);
// Update the pressure BCs to ensure flux consistency
constrainPressure(p, rho, U, phiHbyA, rhorAUf, MRF);
if (simple.transonic())
{
surfaceScalarField phid
(
"phid",
fvc::interpolate(psi)
*fvc::flux(HbyA)
(fvc::interpolate(psi)/fvc::interpolate(rho))*phiHbyA
);
MRF.makeRelative(fvc::interpolate(psi), phid);
phiHbyA -= fvc::interpolate(p)*phid;
while (simple.correctNonOrthogonal())
{
fvScalarMatrix pEqn
(
fvm::div(phid, p)
fvc::div(phiHbyA)
+ fvm::div(phid, p)
- fvm::laplacian(rhorAUf, p)
==
fvOptions(psi, p, rho.name())
@ -32,26 +35,24 @@
// Relax the pressure equation to ensure diagonal-dominance
pEqn.relax();
pEqn.setReference(pRefCell, pRefValue);
pEqn.setReference
(
pressureControl.refCell(),
pressureControl.refValue()
);
pEqn.solve();
if (simple.finalNonOrthogonalIter())
{
phi == pEqn.flux();
phi = phiHbyA + pEqn.flux();
}
}
}
else
{
surfaceScalarField phiHbyA("phiHbyA", fvc::flux(rho*HbyA));
MRF.makeRelative(fvc::interpolate(rho), phiHbyA);
closedVolume = adjustPhi(phiHbyA, U, p);
// Update the pressure BCs to ensure flux consistency
constrainPressure(p, rho, U, phiHbyA, rhorAUf, MRF);
while (simple.correctNonOrthogonal())
{
fvScalarMatrix pEqn
@ -62,7 +63,11 @@
fvOptions(psi, p, rho.name())
);
pEqn.setReference(pRefCell, pRefValue);
pEqn.setReference
(
pressureControl.refCell(),
pressureControl.refValue()
);
pEqn.solve();
@ -83,6 +88,8 @@
U.correctBoundaryConditions();
fvOptions.correct(U);
pressureControl.limit(p);
// For closed-volume cases adjust the pressure and density levels
// to obey overall mass continuity
if (closedVolume)
@ -91,19 +98,12 @@
/fvc::domainIntegrate(psi);
}
rho = thermo.rho();
rho = max(rho, rhoMin);
rho = min(rho, rhoMax);
p.correctBoundaryConditions();
thermo.rho() = max(thermo.rho(), rhoMin);
thermo.rho() = min(thermo.rho(), rhoMax);
rho = thermo.rho();
if (!simple.transonic())
{
rho.relax();
}
Info<< "rho max/min : "
<< max(rho).value() << " "
<< min(rho).value() << endl;
}

View File

@ -5,33 +5,34 @@ tUEqn.clear();
bool closedVolume = false;
surfaceScalarField phiHbyA("phiHbyA", fvc::flux(rho*HbyA));
MRF.makeRelative(fvc::interpolate(rho), phiHbyA);
volScalarField rhorAtU("rhorAtU", rho*rAtU);
// Update the pressure BCs to ensure flux consistency
constrainPressure(p, rho, U, phiHbyA, rhorAtU, MRF);
if (simple.transonic())
{
surfaceScalarField phid
(
"phid",
fvc::interpolate(psi)
*fvc::flux(HbyA)
(fvc::interpolate(psi)/fvc::interpolate(rho))*phiHbyA
);
MRF.makeRelative(fvc::interpolate(psi), phid);
surfaceScalarField phic
(
"phic",
phiHbyA +=
fvc::interpolate(rho*(rAtU - rAU))*fvc::snGrad(p)*mesh.magSf()
);
- fvc::interpolate(p)*phid;
HbyA -= (rAU - rAtU)*fvc::grad(p);
volScalarField rhorAtU("rhorAtU", rho*rAtU);
while (simple.correctNonOrthogonal())
{
fvScalarMatrix pEqn
(
fvm::div(phid, p)
+ fvc::div(phic)
fvc::div(phiHbyA)
+ fvm::div(phid, p)
- fvm::laplacian(rhorAtU, p)
==
fvOptions(psi, p, rho.name())
@ -40,31 +41,27 @@ if (simple.transonic())
// Relax the pressure equation to maintain diagonal dominance
pEqn.relax();
pEqn.setReference(pRefCell, pRefValue);
pEqn.setReference
(
pressureControl.refCell(),
pressureControl.refValue()
);
pEqn.solve();
if (simple.finalNonOrthogonalIter())
{
phi == phic + pEqn.flux();
phi = phiHbyA + pEqn.flux();
}
}
}
else
{
surfaceScalarField phiHbyA("phiHbyA", fvc::flux(rho*HbyA));
MRF.makeRelative(fvc::interpolate(rho), phiHbyA);
closedVolume = adjustPhi(phiHbyA, U, p);
phiHbyA += fvc::interpolate(rho*(rAtU - rAU))*fvc::snGrad(p)*mesh.magSf();
HbyA -= (rAU - rAtU)*fvc::grad(p);
volScalarField rhorAtU("rhorAtU", rho*rAtU);
// Update the pressure BCs to ensure flux consistency
constrainPressure(p, rho, U, phiHbyA, rhorAtU, MRF);
while (simple.correctNonOrthogonal())
{
fvScalarMatrix pEqn
@ -75,7 +72,11 @@ else
fvOptions(psi, p, rho.name())
);
pEqn.setReference(pRefCell, pRefValue);
pEqn.setReference
(
pressureControl.refCell(),
pressureControl.refValue()
);
pEqn.solve();
@ -97,6 +98,8 @@ U = HbyA - rAtU*fvc::grad(p);
U.correctBoundaryConditions();
fvOptions.correct(U);
pressureControl.limit(p);
// For closed-volume cases adjust the pressure and density levels
// to obey overall mass continuity
if (closedVolume)
@ -105,16 +108,12 @@ if (closedVolume)
/fvc::domainIntegrate(psi);
}
p.correctBoundaryConditions();
// Recalculate density from the relaxed pressure
rho = thermo.rho();
rho = max(rho, rhoMin);
rho = min(rho, rhoMax);
thermo.rho() = max(thermo.rho(), rhoMin);
thermo.rho() = min(thermo.rho(), rhoMax);
if (!simple.transonic())
{
rho.relax();
}
Info<< "rho max/min : " << max(rho).value() << " " << min(rho).value() << endl;

View File

@ -1,26 +0,0 @@
{
volScalarField& he = thermo.he();
fvScalarMatrix EEqn
(
fvm::div(phi, he)
+ (
he.name() == "e"
? fvc::div(phi, volScalarField("Ekp", 0.5*magSqr(U) + p/rho))
: fvc::div(phi, volScalarField("K", 0.5*magSqr(U)))
)
- fvm::laplacian(turbulence->alphaEff(), he)
==
fvOptions(rho, he)
);
EEqn.relax();
fvOptions.constrain(EEqn);
EEqn.solve();
fvOptions.correct(he);
thermo.correct();
}

View File

@ -1,84 +0,0 @@
Info<< "Reading thermophysical properties\n" << endl;
autoPtr<rhoThermo> pThermo
(
rhoThermo::New(mesh)
);
rhoThermo& thermo = pThermo();
thermo.validate(args.executable(), "h", "e");
volScalarField rho
(
IOobject
(
"rho",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
thermo.rho()
);
volScalarField& p = thermo.p();
Info<< "Reading field U\n" << endl;
volVectorField U
(
IOobject
(
"U",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
#include "compressibleCreatePhi.H"
label pRefCell = 0;
scalar pRefValue = 0.0;
setRefCell(p, simple.dict(), pRefCell, pRefValue);
mesh.setFluxRequired(p.name());
dimensionedScalar rhoMax
(
dimensionedScalar::lookupOrDefault
(
"rhoMax",
simple.dict(),
dimDensity,
GREAT
)
);
dimensionedScalar rhoMin
(
dimensionedScalar::lookupOrDefault
(
"rhoMin",
simple.dict(),
dimDensity,
0
)
);
Info<< "Creating turbulence model\n" << endl;
autoPtr<compressible::turbulenceModel> turbulence
(
compressible::turbulenceModel::New
(
rho,
U,
phi,
thermo
)
);
dimensionedScalar initialMass = fvc::domainIntegrate(rho);
#include "createMRF.H"

View File

@ -48,7 +48,11 @@
fvScalarMatrix& pEqn = tpEqn.ref();
pEqn.setReference(pRefCell, pRefValue);
pEqn.setReference
(
pressureControl.refCell(),
pressureControl.refValue()
);
pEqn.solve();
@ -75,6 +79,8 @@
U.correctBoundaryConditions();
fvOptions.correct(U);
pressureControl.limit(p);
// For closed-volume cases adjust the pressure and density levels
// to obey overall mass continuity
if (closedVolume)
@ -84,14 +90,5 @@
}
rho = thermo.rho();
rho = max(rho, rhoMin);
rho = min(rho, rhoMax);
thermo.rho() = max(thermo.rho(), rhoMin);
thermo.rho() = min(thermo.rho(), rhoMax);
rho.relax();
Info<< "rho max/min : "
<< max(rho).value() << " "
<< min(rho).value() << endl;
}

View File

@ -2,7 +2,7 @@
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation
\\ / A nd | Copyright (C) 2011-2017 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
@ -34,11 +34,12 @@ Description
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "rhoThermo.H"
#include "fluidThermo.H"
#include "turbulentFluidThermoModel.H"
#include "simpleControl.H"
#include "pressureControl.H"
#include "fvOptions.H"
#include "IOporosityModelList.H"
#include "simpleControl.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

View File

@ -2,7 +2,7 @@
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation
\\ / A nd | Copyright (C) 2011-2017 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
@ -33,9 +33,10 @@ Description
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "rhoThermo.H"
#include "fluidThermo.H"
#include "turbulentFluidThermoModel.H"
#include "simpleControl.H"
#include "pressureControl.H"
#include "fvOptions.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

View File

@ -1,37 +1,37 @@
Info<< "Reading thermodynamicProperties\n" << endl;
Info<< "Reading thermodynamicProperties\n" << endl;
IOdictionary thermodynamicProperties
IOdictionary thermodynamicProperties
(
IOobject
(
IOobject
(
"thermodynamicProperties",
runTime.constant(),
mesh,
IOobject::MUST_READ_IF_MODIFIED,
IOobject::NO_WRITE
)
);
"thermodynamicProperties",
runTime.constant(),
mesh,
IOobject::MUST_READ_IF_MODIFIED,
IOobject::NO_WRITE
)
);
dimensionedScalar rho0
(
"rho0",
dimDensity,
thermodynamicProperties
);
dimensionedScalar rho0
(
"rho0",
dimDensity,
thermodynamicProperties
);
dimensionedScalar p0
(
"p0",
dimPressure,
thermodynamicProperties
);
dimensionedScalar p0
(
"p0",
dimPressure,
thermodynamicProperties
);
dimensionedScalar psi
(
"psi",
dimCompressibility,
thermodynamicProperties
);
dimensionedScalar psi
(
"psi",
dimCompressibility,
thermodynamicProperties
);
// Density offset, i.e. the constant part of the density
dimensionedScalar rhoO("rhoO", rho0 - psi*p0);
// Density offset, i.e. the constant part of the density
dimensionedScalar rhoO("rhoO", rho0 - psi*p0);