mirror of
https://develop.openfoam.com/Development/openfoam.git
synced 2025-12-28 03:37:59 +00:00
GIT: Resolved merge conflict when merging develop branch
This commit is contained in:
@ -2,7 +2,7 @@
|
||||
========= |
|
||||
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
||||
\\ / O peration |
|
||||
\\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation
|
||||
\\ / A nd | Copyright (C) 2011-2017 OpenFOAM Foundation
|
||||
\\/ M anipulation |
|
||||
-------------------------------------------------------------------------------
|
||||
License
|
||||
@ -184,7 +184,8 @@ public:
|
||||
//- Evaluate the patch field
|
||||
virtual void evaluate
|
||||
(
|
||||
const Pstream::commsTypes commsType=Pstream::blocking
|
||||
const Pstream::commsTypes commsType=
|
||||
Pstream::commsTypes::blocking
|
||||
);
|
||||
|
||||
//- Return face-gradient transform diagonal
|
||||
|
||||
@ -2,11 +2,11 @@
|
||||
|
||||
Info<< "Reading thermophysical properties\n" << endl;
|
||||
|
||||
autoPtr<psiThermo> pThermo
|
||||
autoPtr<fluidThermo> pThermo
|
||||
(
|
||||
psiThermo::New(mesh)
|
||||
fluidThermo::New(mesh)
|
||||
);
|
||||
psiThermo& thermo = pThermo();
|
||||
fluidThermo& thermo = pThermo();
|
||||
thermo.validate(args.executable(), "h", "e");
|
||||
|
||||
volScalarField& p = thermo.p();
|
||||
@ -40,27 +40,7 @@ volVectorField U
|
||||
|
||||
#include "compressibleCreatePhi.H"
|
||||
|
||||
dimensionedScalar rhoMax
|
||||
(
|
||||
dimensionedScalar::lookupOrDefault
|
||||
(
|
||||
"rhoMax",
|
||||
pimple.dict(),
|
||||
dimDensity,
|
||||
GREAT
|
||||
)
|
||||
);
|
||||
|
||||
dimensionedScalar rhoMin
|
||||
(
|
||||
dimensionedScalar::lookupOrDefault
|
||||
(
|
||||
"rhoMin",
|
||||
pimple.dict(),
|
||||
dimDensity,
|
||||
0
|
||||
)
|
||||
);
|
||||
pressureControl pressureControl(p, rho, pimple.dict(), false);
|
||||
|
||||
Info<< "Creating turbulence model\n" << endl;
|
||||
autoPtr<compressible::turbulenceModel> turbulence
|
||||
|
||||
@ -1,8 +1,3 @@
|
||||
rho = thermo.rho();
|
||||
rho = max(rho, rhoMin);
|
||||
rho = min(rho, rhoMax);
|
||||
rho.relax();
|
||||
|
||||
volScalarField rAU(1.0/UEqn.A());
|
||||
surfaceScalarField rhorAUf("rhorAUf", fvc::interpolate(rho*rAU));
|
||||
volVectorField HbyA(constrainHbyA(rAU*UEqn.H(), U, p));
|
||||
@ -12,55 +7,52 @@ if (pimple.nCorrPISO() <= 1)
|
||||
tUEqn.clear();
|
||||
}
|
||||
|
||||
surfaceScalarField phiHbyA
|
||||
(
|
||||
"phiHbyA",
|
||||
fvc::flux(rho*HbyA)
|
||||
+ rhorAUf*fvc::ddtCorr(rho, U, phi)
|
||||
);
|
||||
|
||||
MRF.makeRelative(fvc::interpolate(rho), phiHbyA);
|
||||
|
||||
// Update the pressure BCs to ensure flux consistency
|
||||
constrainPressure(p, rho, U, phiHbyA, rhorAUf, MRF);
|
||||
|
||||
if (pimple.transonic())
|
||||
{
|
||||
surfaceScalarField phid
|
||||
(
|
||||
"phid",
|
||||
fvc::interpolate(psi)
|
||||
*(
|
||||
fvc::flux(HbyA)
|
||||
+ rhorAUf*fvc::ddtCorr(rho, U, phi)/fvc::interpolate(rho)
|
||||
)
|
||||
(fvc::interpolate(psi)/fvc::interpolate(rho))*phiHbyA
|
||||
);
|
||||
|
||||
MRF.makeRelative(fvc::interpolate(psi), phid);
|
||||
phiHbyA -= fvc::interpolate(p)*phid;
|
||||
|
||||
while (pimple.correctNonOrthogonal())
|
||||
{
|
||||
fvScalarMatrix pEqn
|
||||
(
|
||||
fvm::ddt(psi, p)
|
||||
+ fvc::div(phiHbyA)
|
||||
+ fvm::div(phid, p)
|
||||
- fvm::laplacian(rhorAUf, p)
|
||||
==
|
||||
fvOptions(psi, p, rho.name())
|
||||
);
|
||||
|
||||
// Relax the pressure equation to ensure diagonal-dominance
|
||||
pEqn.relax();
|
||||
|
||||
pEqn.solve(mesh.solver(p.select(pimple.finalInnerIter())));
|
||||
|
||||
if (pimple.finalNonOrthogonalIter())
|
||||
{
|
||||
phi == pEqn.flux();
|
||||
phi = phiHbyA + pEqn.flux();
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
surfaceScalarField phiHbyA
|
||||
(
|
||||
"phiHbyA",
|
||||
(
|
||||
fvc::flux(rho*HbyA)
|
||||
+ rhorAUf*fvc::ddtCorr(rho, U, phi)
|
||||
)
|
||||
);
|
||||
|
||||
MRF.makeRelative(fvc::interpolate(rho), phiHbyA);
|
||||
|
||||
// Update the pressure BCs to ensure flux consistency
|
||||
constrainPressure(p, rho, U, phiHbyA, rhorAUf, MRF);
|
||||
|
||||
while (pimple.correctNonOrthogonal())
|
||||
{
|
||||
fvScalarMatrix pEqn
|
||||
@ -87,19 +79,20 @@ else
|
||||
// Explicitly relax pressure for momentum corrector
|
||||
p.relax();
|
||||
|
||||
// Recalculate density from the relaxed pressure
|
||||
rho = thermo.rho();
|
||||
rho = max(rho, rhoMin);
|
||||
rho = min(rho, rhoMax);
|
||||
rho.relax();
|
||||
Info<< "rho max/min : " << max(rho).value()
|
||||
<< " " << min(rho).value() << endl;
|
||||
|
||||
U = HbyA - rAU*fvc::grad(p);
|
||||
U.correctBoundaryConditions();
|
||||
fvOptions.correct(U);
|
||||
K = 0.5*magSqr(U);
|
||||
|
||||
pressureControl.limit(p);
|
||||
p.correctBoundaryConditions();
|
||||
rho = thermo.rho();
|
||||
|
||||
if (!pimple.transonic())
|
||||
{
|
||||
rho.relax();
|
||||
}
|
||||
|
||||
if (thermo.dpdt())
|
||||
{
|
||||
dpdt = fvc::ddt(p);
|
||||
|
||||
@ -1,8 +1,3 @@
|
||||
rho = thermo.rho();
|
||||
rho = max(rho, rhoMin);
|
||||
rho = min(rho, rhoMax);
|
||||
rho.relax();
|
||||
|
||||
volScalarField rAU(1.0/UEqn.A());
|
||||
volScalarField rAtU(1.0/(1.0/rAU - UEqn.H1()));
|
||||
volVectorField HbyA(constrainHbyA(rAU*UEqn.H(), U, p));
|
||||
@ -12,72 +7,64 @@ if (pimple.nCorrPISO() <= 1)
|
||||
tUEqn.clear();
|
||||
}
|
||||
|
||||
surfaceScalarField phiHbyA
|
||||
(
|
||||
"phiHbyA",
|
||||
(
|
||||
fvc::flux(rho*HbyA)
|
||||
+ fvc::interpolate(rho*rAU)*fvc::ddtCorr(rho, U, phi)
|
||||
)
|
||||
);
|
||||
|
||||
MRF.makeRelative(fvc::interpolate(rho), phiHbyA);
|
||||
|
||||
volScalarField rhorAtU("rhorAtU", rho*rAtU);
|
||||
|
||||
// Update the pressure BCs to ensure flux consistency
|
||||
constrainPressure(p, rho, U, phiHbyA, rhorAtU, MRF);
|
||||
|
||||
if (pimple.transonic())
|
||||
{
|
||||
surfaceScalarField phid
|
||||
(
|
||||
"phid",
|
||||
fvc::interpolate(psi)
|
||||
*(
|
||||
fvc::flux(HbyA)
|
||||
+ fvc::interpolate(rho*rAU)*fvc::ddtCorr(rho, U, phi)
|
||||
/fvc::interpolate(rho)
|
||||
)
|
||||
(fvc::interpolate(psi)/fvc::interpolate(rho))*phiHbyA
|
||||
);
|
||||
|
||||
MRF.makeRelative(fvc::interpolate(psi), phid);
|
||||
|
||||
surfaceScalarField phic
|
||||
(
|
||||
"phic",
|
||||
phiHbyA +=
|
||||
fvc::interpolate(rho*(rAtU - rAU))*fvc::snGrad(p)*mesh.magSf()
|
||||
);
|
||||
- fvc::interpolate(p)*phid;
|
||||
|
||||
HbyA -= (rAU - rAtU)*fvc::grad(p);
|
||||
|
||||
volScalarField rhorAtU("rhorAtU", rho*rAtU);
|
||||
|
||||
while (pimple.correctNonOrthogonal())
|
||||
{
|
||||
fvScalarMatrix pEqn
|
||||
(
|
||||
fvm::ddt(psi, p)
|
||||
+ fvc::div(phiHbyA)
|
||||
+ fvm::div(phid, p)
|
||||
+ fvc::div(phic)
|
||||
- fvm::laplacian(rhorAtU, p)
|
||||
==
|
||||
fvOptions(psi, p, rho.name())
|
||||
);
|
||||
|
||||
// Relax the pressure equation to ensure diagonal-dominance
|
||||
pEqn.relax();
|
||||
|
||||
pEqn.solve(mesh.solver(p.select(pimple.finalInnerIter())));
|
||||
|
||||
if (pimple.finalNonOrthogonalIter())
|
||||
{
|
||||
phi == phic + pEqn.flux();
|
||||
phi = phiHbyA + pEqn.flux();
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
surfaceScalarField phiHbyA
|
||||
(
|
||||
"phiHbyA",
|
||||
(
|
||||
fvc::flux(rho*HbyA)
|
||||
+ fvc::interpolate(rho*rAU)*fvc::ddtCorr(rho, U, phi)
|
||||
)
|
||||
);
|
||||
|
||||
MRF.makeRelative(fvc::interpolate(rho), phiHbyA);
|
||||
|
||||
phiHbyA += fvc::interpolate(rho*(rAtU - rAU))*fvc::snGrad(p)*mesh.magSf();
|
||||
HbyA -= (rAU - rAtU)*fvc::grad(p);
|
||||
|
||||
volScalarField rhorAtU("rhorAtU", rho*rAtU);
|
||||
|
||||
// Update the pressure BCs to ensure flux consistency
|
||||
constrainPressure(p, rho, U, phiHbyA, rhorAtU, MRF);
|
||||
|
||||
while (pimple.correctNonOrthogonal())
|
||||
{
|
||||
fvScalarMatrix pEqn
|
||||
@ -109,19 +96,16 @@ U.correctBoundaryConditions();
|
||||
fvOptions.correct(U);
|
||||
K = 0.5*magSqr(U);
|
||||
|
||||
if (thermo.dpdt())
|
||||
{
|
||||
dpdt = fvc::ddt(p);
|
||||
}
|
||||
|
||||
// Recalculate density from the relaxed pressure
|
||||
pressureControl.limit(p);
|
||||
p.correctBoundaryConditions();
|
||||
rho = thermo.rho();
|
||||
rho = max(rho, rhoMin);
|
||||
rho = min(rho, rhoMax);
|
||||
|
||||
if (!pimple.transonic())
|
||||
{
|
||||
rho.relax();
|
||||
}
|
||||
|
||||
Info<< "rho max/min : " << max(rho).value() << " " << min(rho).value() << endl;
|
||||
if (thermo.dpdt())
|
||||
{
|
||||
dpdt = fvc::ddt(p);
|
||||
}
|
||||
|
||||
@ -1,8 +1,3 @@
|
||||
rho = thermo.rho();
|
||||
rho = max(rho, rhoMin);
|
||||
rho = min(rho, rhoMax);
|
||||
rho.relax();
|
||||
|
||||
volScalarField rAU(1.0/UEqn.A());
|
||||
surfaceScalarField rhorAUf("rhorAUf", fvc::interpolate(rho*rAU));
|
||||
volVectorField HbyA(constrainHbyA(rAU*UEqn.H(), U, p));
|
||||
@ -12,55 +7,53 @@ if (pimple.nCorrPISO() <= 1)
|
||||
tUEqn.clear();
|
||||
}
|
||||
|
||||
surfaceScalarField phiHbyA
|
||||
(
|
||||
"phiHbyA",
|
||||
fvc::flux(rho*HbyA)
|
||||
+ rhorAUf*fvc::ddtCorr(rho, U, rhoUf)
|
||||
);
|
||||
|
||||
fvc::makeRelative(phiHbyA, rho, U);
|
||||
MRF.makeRelative(fvc::interpolate(rho), phiHbyA);
|
||||
|
||||
// Update the pressure BCs to ensure flux consistency
|
||||
constrainPressure(p, rho, U, phiHbyA, rhorAUf, MRF);
|
||||
|
||||
if (pimple.transonic())
|
||||
{
|
||||
surfaceScalarField phid
|
||||
(
|
||||
"phid",
|
||||
fvc::interpolate(psi)
|
||||
*(
|
||||
fvc::flux(HbyA)
|
||||
+ rhorAUf*fvc::ddtCorr(rho, U, rhoUf)/fvc::interpolate(rho)
|
||||
)
|
||||
(fvc::interpolate(psi)/fvc::interpolate(rho))*phiHbyA
|
||||
);
|
||||
|
||||
fvc::makeRelative(phid, psi, U);
|
||||
MRF.makeRelative(fvc::interpolate(psi), phid);
|
||||
phiHbyA -= fvc::interpolate(p)*phid;
|
||||
|
||||
while (pimple.correctNonOrthogonal())
|
||||
{
|
||||
fvScalarMatrix pEqn
|
||||
(
|
||||
fvm::ddt(psi, p)
|
||||
+ fvc::div(phiHbyA)
|
||||
+ fvm::div(phid, p)
|
||||
- fvm::laplacian(rhorAUf, p)
|
||||
==
|
||||
fvOptions(psi, p, rho.name())
|
||||
);
|
||||
|
||||
// Relax the pressure equation to ensure diagonal-dominance
|
||||
pEqn.relax();
|
||||
|
||||
pEqn.solve(mesh.solver(p.select(pimple.finalInnerIter())));
|
||||
|
||||
if (pimple.finalNonOrthogonalIter())
|
||||
{
|
||||
phi == pEqn.flux();
|
||||
phi = phiHbyA + pEqn.flux();
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
surfaceScalarField phiHbyA
|
||||
(
|
||||
"phiHbyA",
|
||||
fvc::flux(rho*HbyA)
|
||||
+ rhorAUf*fvc::ddtCorr(rho, U, rhoUf)
|
||||
);
|
||||
|
||||
fvc::makeRelative(phiHbyA, rho, U);
|
||||
MRF.makeRelative(fvc::interpolate(rho), phiHbyA);
|
||||
|
||||
// Update the pressure BCs to ensure flux consistency
|
||||
constrainPressure(p, rho, U, phiHbyA, rhorAUf, MRF);
|
||||
|
||||
while (pimple.correctNonOrthogonal())
|
||||
{
|
||||
// Pressure corrector
|
||||
@ -88,19 +81,20 @@ else
|
||||
// Explicitly relax pressure for momentum corrector
|
||||
p.relax();
|
||||
|
||||
// Recalculate density from the relaxed pressure
|
||||
rho = thermo.rho();
|
||||
rho = max(rho, rhoMin);
|
||||
rho = min(rho, rhoMax);
|
||||
rho.relax();
|
||||
Info<< "rho max/min : " << max(rho).value()
|
||||
<< " " << min(rho).value() << endl;
|
||||
|
||||
U = HbyA - rAU*fvc::grad(p);
|
||||
U.correctBoundaryConditions();
|
||||
fvOptions.correct(U);
|
||||
K = 0.5*magSqr(U);
|
||||
|
||||
pressureControl.limit(p);
|
||||
p.correctBoundaryConditions();
|
||||
rho = thermo.rho();
|
||||
|
||||
if (!pimple.transonic())
|
||||
{
|
||||
rho.relax();
|
||||
}
|
||||
|
||||
{
|
||||
rhoUf = fvc::interpolate(rho*U);
|
||||
surfaceVectorField n(mesh.Sf()/mesh.magSf());
|
||||
|
||||
@ -2,7 +2,7 @@
|
||||
========= |
|
||||
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
||||
\\ / O peration |
|
||||
\\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation
|
||||
\\ / A nd | Copyright (C) 2011-2017 OpenFOAM Foundation
|
||||
\\/ M anipulation |
|
||||
-------------------------------------------------------------------------------
|
||||
License
|
||||
@ -22,7 +22,7 @@ License
|
||||
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
Application
|
||||
rhoPimpleFoam
|
||||
rhoPimpleDyMFoam
|
||||
|
||||
Group
|
||||
grpCompressibleSolvers grpMovingMeshSolvers
|
||||
@ -38,10 +38,11 @@ Description
|
||||
|
||||
#include "fvCFD.H"
|
||||
#include "dynamicFvMesh.H"
|
||||
#include "psiThermo.H"
|
||||
#include "fluidThermo.H"
|
||||
#include "turbulentFluidThermoModel.H"
|
||||
#include "bound.H"
|
||||
#include "pimpleControl.H"
|
||||
#include "pressureControl.H"
|
||||
#include "CorrectPhi.H"
|
||||
#include "fvOptions.H"
|
||||
#include "localEulerDdtScheme.H"
|
||||
|
||||
@ -2,7 +2,7 @@
|
||||
========= |
|
||||
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
||||
\\ / O peration |
|
||||
\\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation
|
||||
\\ / A nd | Copyright (C) 2011-2017 OpenFOAM Foundation
|
||||
\\/ M anipulation |
|
||||
-------------------------------------------------------------------------------
|
||||
License
|
||||
@ -37,10 +37,11 @@ Description
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
#include "fvCFD.H"
|
||||
#include "psiThermo.H"
|
||||
#include "fluidThermo.H"
|
||||
#include "turbulentFluidThermoModel.H"
|
||||
#include "bound.H"
|
||||
#include "pimpleControl.H"
|
||||
#include "pressureControl.H"
|
||||
#include "fvOptions.H"
|
||||
#include "localEulerDdtScheme.H"
|
||||
#include "fvcSmooth.H"
|
||||
|
||||
@ -1,11 +1,14 @@
|
||||
Info<< "Reading thermophysical properties\n" << endl;
|
||||
autoPtr<rhoThermo> pThermo
|
||||
|
||||
autoPtr<fluidThermo> pThermo
|
||||
(
|
||||
rhoThermo::New(mesh)
|
||||
fluidThermo::New(mesh)
|
||||
);
|
||||
rhoThermo& thermo = pThermo();
|
||||
fluidThermo& thermo = pThermo();
|
||||
thermo.validate(args.executable(), "h", "e");
|
||||
|
||||
volScalarField& p = thermo.p();
|
||||
|
||||
volScalarField rho
|
||||
(
|
||||
IOobject
|
||||
@ -19,8 +22,6 @@ volScalarField rho
|
||||
thermo.rho()
|
||||
);
|
||||
|
||||
volScalarField& p = thermo.p();
|
||||
|
||||
Info<< "Reading field U\n" << endl;
|
||||
volVectorField U
|
||||
(
|
||||
@ -37,35 +38,10 @@ volVectorField U
|
||||
|
||||
#include "compressibleCreatePhi.H"
|
||||
|
||||
|
||||
label pRefCell = 0;
|
||||
scalar pRefValue = 0.0;
|
||||
setRefCell(p, simple.dict(), pRefCell, pRefValue);
|
||||
pressureControl pressureControl(p, rho, simple.dict());
|
||||
|
||||
mesh.setFluxRequired(p.name());
|
||||
|
||||
dimensionedScalar rhoMax
|
||||
(
|
||||
dimensionedScalar::lookupOrDefault
|
||||
(
|
||||
"rhoMax",
|
||||
simple.dict(),
|
||||
dimDensity,
|
||||
GREAT
|
||||
)
|
||||
);
|
||||
|
||||
dimensionedScalar rhoMin
|
||||
(
|
||||
dimensionedScalar::lookupOrDefault
|
||||
(
|
||||
"rhoMin",
|
||||
simple.dict(),
|
||||
dimDensity,
|
||||
0
|
||||
)
|
||||
);
|
||||
|
||||
Info<< "Creating turbulence model\n" << endl;
|
||||
autoPtr<compressible::turbulenceModel> turbulence
|
||||
(
|
||||
|
||||
@ -1,6 +1,4 @@
|
||||
{
|
||||
//const volScalarField& psi = thermo.psi();
|
||||
|
||||
volScalarField rAU(1.0/UEqn.A());
|
||||
surfaceScalarField rhorAUf("rhorAUf", fvc::interpolate(rho*rAU));
|
||||
volVectorField HbyA(constrainHbyA(rAU*UEqn.H(), U, p));
|
||||
@ -8,22 +6,27 @@
|
||||
|
||||
bool closedVolume = false;
|
||||
|
||||
surfaceScalarField phiHbyA("phiHbyA", fvc::flux(rho*HbyA));
|
||||
MRF.makeRelative(fvc::interpolate(rho), phiHbyA);
|
||||
|
||||
// Update the pressure BCs to ensure flux consistency
|
||||
constrainPressure(p, rho, U, phiHbyA, rhorAUf, MRF);
|
||||
|
||||
if (simple.transonic())
|
||||
{
|
||||
surfaceScalarField phid
|
||||
(
|
||||
"phid",
|
||||
fvc::interpolate(psi)
|
||||
*fvc::flux(HbyA)
|
||||
(fvc::interpolate(psi)/fvc::interpolate(rho))*phiHbyA
|
||||
);
|
||||
|
||||
MRF.makeRelative(fvc::interpolate(psi), phid);
|
||||
phiHbyA -= fvc::interpolate(p)*phid;
|
||||
|
||||
while (simple.correctNonOrthogonal())
|
||||
{
|
||||
fvScalarMatrix pEqn
|
||||
(
|
||||
fvm::div(phid, p)
|
||||
fvc::div(phiHbyA)
|
||||
+ fvm::div(phid, p)
|
||||
- fvm::laplacian(rhorAUf, p)
|
||||
==
|
||||
fvOptions(psi, p, rho.name())
|
||||
@ -32,26 +35,24 @@
|
||||
// Relax the pressure equation to ensure diagonal-dominance
|
||||
pEqn.relax();
|
||||
|
||||
pEqn.setReference(pRefCell, pRefValue);
|
||||
pEqn.setReference
|
||||
(
|
||||
pressureControl.refCell(),
|
||||
pressureControl.refValue()
|
||||
);
|
||||
|
||||
pEqn.solve();
|
||||
|
||||
if (simple.finalNonOrthogonalIter())
|
||||
{
|
||||
phi == pEqn.flux();
|
||||
phi = phiHbyA + pEqn.flux();
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
surfaceScalarField phiHbyA("phiHbyA", fvc::flux(rho*HbyA));
|
||||
MRF.makeRelative(fvc::interpolate(rho), phiHbyA);
|
||||
|
||||
closedVolume = adjustPhi(phiHbyA, U, p);
|
||||
|
||||
// Update the pressure BCs to ensure flux consistency
|
||||
constrainPressure(p, rho, U, phiHbyA, rhorAUf, MRF);
|
||||
|
||||
while (simple.correctNonOrthogonal())
|
||||
{
|
||||
fvScalarMatrix pEqn
|
||||
@ -62,7 +63,11 @@
|
||||
fvOptions(psi, p, rho.name())
|
||||
);
|
||||
|
||||
pEqn.setReference(pRefCell, pRefValue);
|
||||
pEqn.setReference
|
||||
(
|
||||
pressureControl.refCell(),
|
||||
pressureControl.refValue()
|
||||
);
|
||||
|
||||
pEqn.solve();
|
||||
|
||||
@ -83,6 +88,8 @@
|
||||
U.correctBoundaryConditions();
|
||||
fvOptions.correct(U);
|
||||
|
||||
pressureControl.limit(p);
|
||||
|
||||
// For closed-volume cases adjust the pressure and density levels
|
||||
// to obey overall mass continuity
|
||||
if (closedVolume)
|
||||
@ -91,19 +98,12 @@
|
||||
/fvc::domainIntegrate(psi);
|
||||
}
|
||||
|
||||
rho = thermo.rho();
|
||||
rho = max(rho, rhoMin);
|
||||
rho = min(rho, rhoMax);
|
||||
p.correctBoundaryConditions();
|
||||
|
||||
thermo.rho() = max(thermo.rho(), rhoMin);
|
||||
thermo.rho() = min(thermo.rho(), rhoMax);
|
||||
rho = thermo.rho();
|
||||
|
||||
if (!simple.transonic())
|
||||
{
|
||||
rho.relax();
|
||||
}
|
||||
|
||||
Info<< "rho max/min : "
|
||||
<< max(rho).value() << " "
|
||||
<< min(rho).value() << endl;
|
||||
}
|
||||
|
||||
@ -5,33 +5,34 @@ tUEqn.clear();
|
||||
|
||||
bool closedVolume = false;
|
||||
|
||||
surfaceScalarField phiHbyA("phiHbyA", fvc::flux(rho*HbyA));
|
||||
MRF.makeRelative(fvc::interpolate(rho), phiHbyA);
|
||||
|
||||
volScalarField rhorAtU("rhorAtU", rho*rAtU);
|
||||
|
||||
// Update the pressure BCs to ensure flux consistency
|
||||
constrainPressure(p, rho, U, phiHbyA, rhorAtU, MRF);
|
||||
|
||||
if (simple.transonic())
|
||||
{
|
||||
surfaceScalarField phid
|
||||
(
|
||||
"phid",
|
||||
fvc::interpolate(psi)
|
||||
*fvc::flux(HbyA)
|
||||
(fvc::interpolate(psi)/fvc::interpolate(rho))*phiHbyA
|
||||
);
|
||||
|
||||
MRF.makeRelative(fvc::interpolate(psi), phid);
|
||||
|
||||
surfaceScalarField phic
|
||||
(
|
||||
"phic",
|
||||
phiHbyA +=
|
||||
fvc::interpolate(rho*(rAtU - rAU))*fvc::snGrad(p)*mesh.magSf()
|
||||
);
|
||||
- fvc::interpolate(p)*phid;
|
||||
|
||||
HbyA -= (rAU - rAtU)*fvc::grad(p);
|
||||
|
||||
volScalarField rhorAtU("rhorAtU", rho*rAtU);
|
||||
|
||||
while (simple.correctNonOrthogonal())
|
||||
{
|
||||
fvScalarMatrix pEqn
|
||||
(
|
||||
fvm::div(phid, p)
|
||||
+ fvc::div(phic)
|
||||
fvc::div(phiHbyA)
|
||||
+ fvm::div(phid, p)
|
||||
- fvm::laplacian(rhorAtU, p)
|
||||
==
|
||||
fvOptions(psi, p, rho.name())
|
||||
@ -40,31 +41,27 @@ if (simple.transonic())
|
||||
// Relax the pressure equation to maintain diagonal dominance
|
||||
pEqn.relax();
|
||||
|
||||
pEqn.setReference(pRefCell, pRefValue);
|
||||
pEqn.setReference
|
||||
(
|
||||
pressureControl.refCell(),
|
||||
pressureControl.refValue()
|
||||
);
|
||||
|
||||
pEqn.solve();
|
||||
|
||||
if (simple.finalNonOrthogonalIter())
|
||||
{
|
||||
phi == phic + pEqn.flux();
|
||||
phi = phiHbyA + pEqn.flux();
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
surfaceScalarField phiHbyA("phiHbyA", fvc::flux(rho*HbyA));
|
||||
MRF.makeRelative(fvc::interpolate(rho), phiHbyA);
|
||||
|
||||
closedVolume = adjustPhi(phiHbyA, U, p);
|
||||
|
||||
phiHbyA += fvc::interpolate(rho*(rAtU - rAU))*fvc::snGrad(p)*mesh.magSf();
|
||||
HbyA -= (rAU - rAtU)*fvc::grad(p);
|
||||
|
||||
volScalarField rhorAtU("rhorAtU", rho*rAtU);
|
||||
|
||||
// Update the pressure BCs to ensure flux consistency
|
||||
constrainPressure(p, rho, U, phiHbyA, rhorAtU, MRF);
|
||||
|
||||
while (simple.correctNonOrthogonal())
|
||||
{
|
||||
fvScalarMatrix pEqn
|
||||
@ -75,7 +72,11 @@ else
|
||||
fvOptions(psi, p, rho.name())
|
||||
);
|
||||
|
||||
pEqn.setReference(pRefCell, pRefValue);
|
||||
pEqn.setReference
|
||||
(
|
||||
pressureControl.refCell(),
|
||||
pressureControl.refValue()
|
||||
);
|
||||
|
||||
pEqn.solve();
|
||||
|
||||
@ -97,6 +98,8 @@ U = HbyA - rAtU*fvc::grad(p);
|
||||
U.correctBoundaryConditions();
|
||||
fvOptions.correct(U);
|
||||
|
||||
pressureControl.limit(p);
|
||||
|
||||
// For closed-volume cases adjust the pressure and density levels
|
||||
// to obey overall mass continuity
|
||||
if (closedVolume)
|
||||
@ -105,16 +108,12 @@ if (closedVolume)
|
||||
/fvc::domainIntegrate(psi);
|
||||
}
|
||||
|
||||
p.correctBoundaryConditions();
|
||||
|
||||
// Recalculate density from the relaxed pressure
|
||||
rho = thermo.rho();
|
||||
rho = max(rho, rhoMin);
|
||||
rho = min(rho, rhoMax);
|
||||
thermo.rho() = max(thermo.rho(), rhoMin);
|
||||
thermo.rho() = min(thermo.rho(), rhoMax);
|
||||
|
||||
if (!simple.transonic())
|
||||
{
|
||||
rho.relax();
|
||||
}
|
||||
|
||||
Info<< "rho max/min : " << max(rho).value() << " " << min(rho).value() << endl;
|
||||
|
||||
@ -1,26 +0,0 @@
|
||||
{
|
||||
volScalarField& he = thermo.he();
|
||||
|
||||
fvScalarMatrix EEqn
|
||||
(
|
||||
fvm::div(phi, he)
|
||||
+ (
|
||||
he.name() == "e"
|
||||
? fvc::div(phi, volScalarField("Ekp", 0.5*magSqr(U) + p/rho))
|
||||
: fvc::div(phi, volScalarField("K", 0.5*magSqr(U)))
|
||||
)
|
||||
- fvm::laplacian(turbulence->alphaEff(), he)
|
||||
==
|
||||
fvOptions(rho, he)
|
||||
);
|
||||
|
||||
EEqn.relax();
|
||||
|
||||
fvOptions.constrain(EEqn);
|
||||
|
||||
EEqn.solve();
|
||||
|
||||
fvOptions.correct(he);
|
||||
|
||||
thermo.correct();
|
||||
}
|
||||
@ -1,84 +0,0 @@
|
||||
Info<< "Reading thermophysical properties\n" << endl;
|
||||
|
||||
autoPtr<rhoThermo> pThermo
|
||||
(
|
||||
rhoThermo::New(mesh)
|
||||
);
|
||||
rhoThermo& thermo = pThermo();
|
||||
thermo.validate(args.executable(), "h", "e");
|
||||
|
||||
volScalarField rho
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"rho",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::READ_IF_PRESENT,
|
||||
IOobject::AUTO_WRITE
|
||||
),
|
||||
thermo.rho()
|
||||
);
|
||||
|
||||
volScalarField& p = thermo.p();
|
||||
|
||||
Info<< "Reading field U\n" << endl;
|
||||
volVectorField U
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"U",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::MUST_READ,
|
||||
IOobject::AUTO_WRITE
|
||||
),
|
||||
mesh
|
||||
);
|
||||
|
||||
#include "compressibleCreatePhi.H"
|
||||
|
||||
|
||||
label pRefCell = 0;
|
||||
scalar pRefValue = 0.0;
|
||||
setRefCell(p, simple.dict(), pRefCell, pRefValue);
|
||||
|
||||
mesh.setFluxRequired(p.name());
|
||||
|
||||
dimensionedScalar rhoMax
|
||||
(
|
||||
dimensionedScalar::lookupOrDefault
|
||||
(
|
||||
"rhoMax",
|
||||
simple.dict(),
|
||||
dimDensity,
|
||||
GREAT
|
||||
)
|
||||
);
|
||||
|
||||
dimensionedScalar rhoMin
|
||||
(
|
||||
dimensionedScalar::lookupOrDefault
|
||||
(
|
||||
"rhoMin",
|
||||
simple.dict(),
|
||||
dimDensity,
|
||||
0
|
||||
)
|
||||
);
|
||||
|
||||
Info<< "Creating turbulence model\n" << endl;
|
||||
autoPtr<compressible::turbulenceModel> turbulence
|
||||
(
|
||||
compressible::turbulenceModel::New
|
||||
(
|
||||
rho,
|
||||
U,
|
||||
phi,
|
||||
thermo
|
||||
)
|
||||
);
|
||||
|
||||
dimensionedScalar initialMass = fvc::domainIntegrate(rho);
|
||||
|
||||
#include "createMRF.H"
|
||||
@ -48,7 +48,11 @@
|
||||
|
||||
fvScalarMatrix& pEqn = tpEqn.ref();
|
||||
|
||||
pEqn.setReference(pRefCell, pRefValue);
|
||||
pEqn.setReference
|
||||
(
|
||||
pressureControl.refCell(),
|
||||
pressureControl.refValue()
|
||||
);
|
||||
|
||||
pEqn.solve();
|
||||
|
||||
@ -75,6 +79,8 @@
|
||||
U.correctBoundaryConditions();
|
||||
fvOptions.correct(U);
|
||||
|
||||
pressureControl.limit(p);
|
||||
|
||||
// For closed-volume cases adjust the pressure and density levels
|
||||
// to obey overall mass continuity
|
||||
if (closedVolume)
|
||||
@ -84,14 +90,5 @@
|
||||
}
|
||||
|
||||
rho = thermo.rho();
|
||||
rho = max(rho, rhoMin);
|
||||
rho = min(rho, rhoMax);
|
||||
|
||||
thermo.rho() = max(thermo.rho(), rhoMin);
|
||||
thermo.rho() = min(thermo.rho(), rhoMax);
|
||||
|
||||
rho.relax();
|
||||
Info<< "rho max/min : "
|
||||
<< max(rho).value() << " "
|
||||
<< min(rho).value() << endl;
|
||||
}
|
||||
|
||||
@ -2,7 +2,7 @@
|
||||
========= |
|
||||
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
||||
\\ / O peration |
|
||||
\\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation
|
||||
\\ / A nd | Copyright (C) 2011-2017 OpenFOAM Foundation
|
||||
\\/ M anipulation |
|
||||
-------------------------------------------------------------------------------
|
||||
License
|
||||
@ -34,11 +34,12 @@ Description
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
#include "fvCFD.H"
|
||||
#include "rhoThermo.H"
|
||||
#include "fluidThermo.H"
|
||||
#include "turbulentFluidThermoModel.H"
|
||||
#include "simpleControl.H"
|
||||
#include "pressureControl.H"
|
||||
#include "fvOptions.H"
|
||||
#include "IOporosityModelList.H"
|
||||
#include "simpleControl.H"
|
||||
|
||||
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
||||
|
||||
|
||||
@ -2,7 +2,7 @@
|
||||
========= |
|
||||
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
||||
\\ / O peration |
|
||||
\\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation
|
||||
\\ / A nd | Copyright (C) 2011-2017 OpenFOAM Foundation
|
||||
\\/ M anipulation |
|
||||
-------------------------------------------------------------------------------
|
||||
License
|
||||
@ -33,9 +33,10 @@ Description
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
#include "fvCFD.H"
|
||||
#include "rhoThermo.H"
|
||||
#include "fluidThermo.H"
|
||||
#include "turbulentFluidThermoModel.H"
|
||||
#include "simpleControl.H"
|
||||
#include "pressureControl.H"
|
||||
#include "fvOptions.H"
|
||||
|
||||
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
||||
|
||||
@ -1,37 +1,37 @@
|
||||
Info<< "Reading thermodynamicProperties\n" << endl;
|
||||
Info<< "Reading thermodynamicProperties\n" << endl;
|
||||
|
||||
IOdictionary thermodynamicProperties
|
||||
IOdictionary thermodynamicProperties
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"thermodynamicProperties",
|
||||
runTime.constant(),
|
||||
mesh,
|
||||
IOobject::MUST_READ_IF_MODIFIED,
|
||||
IOobject::NO_WRITE
|
||||
)
|
||||
);
|
||||
"thermodynamicProperties",
|
||||
runTime.constant(),
|
||||
mesh,
|
||||
IOobject::MUST_READ_IF_MODIFIED,
|
||||
IOobject::NO_WRITE
|
||||
)
|
||||
);
|
||||
|
||||
dimensionedScalar rho0
|
||||
(
|
||||
"rho0",
|
||||
dimDensity,
|
||||
thermodynamicProperties
|
||||
);
|
||||
dimensionedScalar rho0
|
||||
(
|
||||
"rho0",
|
||||
dimDensity,
|
||||
thermodynamicProperties
|
||||
);
|
||||
|
||||
dimensionedScalar p0
|
||||
(
|
||||
"p0",
|
||||
dimPressure,
|
||||
thermodynamicProperties
|
||||
);
|
||||
dimensionedScalar p0
|
||||
(
|
||||
"p0",
|
||||
dimPressure,
|
||||
thermodynamicProperties
|
||||
);
|
||||
|
||||
dimensionedScalar psi
|
||||
(
|
||||
"psi",
|
||||
dimCompressibility,
|
||||
thermodynamicProperties
|
||||
);
|
||||
dimensionedScalar psi
|
||||
(
|
||||
"psi",
|
||||
dimCompressibility,
|
||||
thermodynamicProperties
|
||||
);
|
||||
|
||||
// Density offset, i.e. the constant part of the density
|
||||
dimensionedScalar rhoO("rhoO", rho0 - psi*p0);
|
||||
// Density offset, i.e. the constant part of the density
|
||||
dimensionedScalar rhoO("rhoO", rho0 - psi*p0);
|
||||
|
||||
Reference in New Issue
Block a user