GIT: Initial state after latest Foundation merge

This commit is contained in:
Andrew Heather
2016-09-20 14:49:08 +01:00
4571 changed files with 115696 additions and 74609 deletions

View File

@ -0,0 +1,677 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "Pstream.H"
#include "functionObjectList.H"
#include "streamLine.H"
#include "streamLineParticleCloud.H"
#include "ReadFields.H"
#include "meshSearch.H"
#include "sampledSet.H"
#include "globalIndex.H"
#include "mapDistribute.H"
#include "interpolationCellPoint.H"
#include "PatchTools.H"
#include "mapPolyMesh.H"
#include "addToRunTimeSelectionTable.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
namespace functionObjects
{
defineTypeNameAndDebug(streamLine, 0);
addToRunTimeSelectionTable(functionObject, streamLine, dictionary);
}
}
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
Foam::autoPtr<Foam::indirectPrimitivePatch>
Foam::functionObjects::streamLine::wallPatch() const
{
const polyBoundaryMesh& patches = mesh_.boundaryMesh();
label nFaces = 0;
forAll(patches, patchi)
{
if (isA<wallPolyPatch>(patches[patchi]))
{
nFaces += patches[patchi].size();
}
}
labelList addressing(nFaces);
nFaces = 0;
forAll(patches, patchi)
{
if (isA<wallPolyPatch>(patches[patchi]))
{
const polyPatch& pp = patches[patchi];
forAll(pp, i)
{
addressing[nFaces++] = pp.start()+i;
}
}
}
return autoPtr<indirectPrimitivePatch>
(
new indirectPrimitivePatch
(
IndirectList<face>
(
mesh_.faces(),
addressing
),
mesh_.points()
)
);
}
void Foam::functionObjects::streamLine::track()
{
IDLList<streamLineParticle> initialParticles;
streamLineParticleCloud particles
(
mesh_,
cloudName_,
initialParticles
);
const sampledSet& seedPoints = sampledSetPtr_();
forAll(seedPoints, i)
{
particles.addParticle
(
new streamLineParticle
(
mesh_,
seedPoints[i],
seedPoints.cells()[i],
lifeTime_
)
);
}
label nSeeds = returnReduce(particles.size(), sumOp<label>());
Info << " seeded " << nSeeds << " particles" << endl;
// Read or lookup fields
PtrList<volScalarField> vsFlds;
PtrList<interpolation<scalar>> vsInterp;
PtrList<volVectorField> vvFlds;
PtrList<interpolation<vector>> vvInterp;
label UIndex = -1;
label nScalar = 0;
label nVector = 0;
forAll(fields_, i)
{
if (mesh_.foundObject<volScalarField>(fields_[i]))
{
nScalar++;
}
else if (mesh_.foundObject<volVectorField>(fields_[i]))
{
nVector++;
}
else
{
FatalErrorInFunction
<< "Cannot find field " << fields_[i] << nl
<< "Valid scalar fields are:"
<< mesh_.names(volScalarField::typeName) << nl
<< "Valid vector fields are:"
<< mesh_.names(volVectorField::typeName)
<< exit(FatalError);
}
}
vsInterp.setSize(nScalar);
nScalar = 0;
vvInterp.setSize(nVector);
nVector = 0;
forAll(fields_, i)
{
if (mesh_.foundObject<volScalarField>(fields_[i]))
{
const volScalarField& f = mesh_.lookupObject<volScalarField>
(
fields_[i]
);
vsInterp.set
(
nScalar++,
interpolation<scalar>::New
(
interpolationScheme_,
f
)
);
}
else if (mesh_.foundObject<volVectorField>(fields_[i]))
{
const volVectorField& f = mesh_.lookupObject<volVectorField>
(
fields_[i]
);
if (f.name() == UName_)
{
UIndex = nVector;
}
vvInterp.set
(
nVector++,
interpolation<vector>::New
(
interpolationScheme_,
f
)
);
}
}
// Store the names
scalarNames_.setSize(vsInterp.size());
forAll(vsInterp, i)
{
scalarNames_[i] = vsInterp[i].psi().name();
}
vectorNames_.setSize(vvInterp.size());
forAll(vvInterp, i)
{
vectorNames_[i] = vvInterp[i].psi().name();
}
// Check that we know the index of U in the interpolators.
if (UIndex == -1)
{
FatalErrorInFunction
<< "Cannot find field to move particles with : " << UName_ << nl
<< "This field has to be present in the sampled fields " << fields_
<< " and in the objectRegistry."
<< exit(FatalError);
}
// Sampled data
// ~~~~~~~~~~~~
// Size to maximum expected sizes.
allTracks_.clear();
allTracks_.setCapacity(nSeeds);
allScalars_.setSize(vsInterp.size());
forAll(allScalars_, i)
{
allScalars_[i].clear();
allScalars_[i].setCapacity(nSeeds);
}
allVectors_.setSize(vvInterp.size());
forAll(allVectors_, i)
{
allVectors_[i].clear();
allVectors_[i].setCapacity(nSeeds);
}
// Additional particle info
streamLineParticle::trackingData td
(
particles,
vsInterp,
vvInterp,
UIndex, // index of U in vvInterp
trackForward_, // track in +u direction?
nSubCycle_, // automatic track control:step through cells in steps?
trackLength_, // fixed track length
allTracks_,
allScalars_,
allVectors_
);
// Set very large dt. Note: cannot use GREAT since 1/GREAT is SMALL
// which is a trigger value for the tracking...
const scalar trackTime = Foam::sqrt(GREAT);
// Track
particles.move(td, trackTime);
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::functionObjects::streamLine::streamLine
(
const word& name,
const Time& runTime,
const dictionary& dict
)
:
fvMeshFunctionObject(name, runTime, dict),
dict_(dict),
nSubCycle_(0)
{
read(dict_);
}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
Foam::functionObjects::streamLine::~streamLine()
{}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
bool Foam::functionObjects::streamLine::read(const dictionary& dict)
{
if (dict != dict_)
{
dict_ = dict;
}
Info<< type() << " " << name() << ":" << nl;
dict.lookup("fields") >> fields_;
if (dict.found("U"))
{
dict.lookup("U") >> UName_;
}
else
{
UName_ = "U";
if (dict.found("U"))
{
IOWarningInFunction(dict)
<< "Using deprecated entry \"U\"."
<< " Please use \"UName\" instead."
<< endl;
dict.lookup("U") >> UName_;
}
}
if (findIndex(fields_, UName_) == -1)
{
FatalIOErrorInFunction(dict)
<< "Velocity field for tracking " << UName_
<< " should be present in the list of fields " << fields_
<< exit(FatalIOError);
}
dict.lookup("trackForward") >> trackForward_;
dict.lookup("lifeTime") >> lifeTime_;
if (lifeTime_ < 1)
{
FatalErrorInFunction
<< "Illegal value " << lifeTime_ << " for lifeTime"
<< exit(FatalError);
}
bool subCycling = dict.found("nSubCycle");
bool fixedLength = dict.found("trackLength");
if (subCycling && fixedLength)
{
FatalIOErrorInFunction(dict)
<< "Cannot both specify automatic time stepping (through '"
<< "nSubCycle' specification) and fixed track length (through '"
<< "trackLength')"
<< exit(FatalIOError);
}
nSubCycle_ = 1;
if (dict.readIfPresent("nSubCycle", nSubCycle_))
{
trackLength_ = VGREAT;
if (nSubCycle_ < 1)
{
nSubCycle_ = 1;
}
Info<< " automatic track length specified through"
<< " number of sub cycles : " << nSubCycle_ << nl << endl;
}
else
{
dict.lookup("trackLength") >> trackLength_;
Info<< " fixed track length specified : "
<< trackLength_ << nl << endl;
}
interpolationScheme_ = dict.lookupOrDefault
(
"interpolationScheme",
interpolationCellPoint<scalar>::typeName
);
cloudName_ = dict.lookupOrDefault<word>("cloudName", "streamLine");
dict.lookup("seedSampleSet") >> seedSet_;
meshSearchPtr_.reset(new meshSearch(mesh_));
const dictionary& coeffsDict = dict.subDict(seedSet_ + "Coeffs");
sampledSetPtr_ = sampledSet::New
(
seedSet_,
mesh_,
meshSearchPtr_(),
coeffsDict
);
coeffsDict.lookup("axis") >> sampledSetAxis_;
scalarFormatterPtr_ = writer<scalar>::New(dict.lookup("setFormat"));
vectorFormatterPtr_ = writer<vector>::New(dict.lookup("setFormat"));
return true;
}
bool Foam::functionObjects::streamLine::execute()
{
return true;
}
bool Foam::functionObjects::streamLine::write()
{
Info<< type() << " " << name() << " write:" << nl;
const Time& runTime = obr_.time();
// Do all injection and tracking
track();
if (Pstream::parRun())
{
// Append slave tracks to master ones
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
globalIndex globalTrackIDs(allTracks_.size());
// Construct a distribution map to pull all to the master.
labelListList sendMap(Pstream::nProcs());
labelListList recvMap(Pstream::nProcs());
if (Pstream::master())
{
// Master: receive all. My own first, then consecutive
// processors.
label trackI = 0;
forAll(recvMap, proci)
{
labelList& fromProc = recvMap[proci];
fromProc.setSize(globalTrackIDs.localSize(proci));
forAll(fromProc, i)
{
fromProc[i] = trackI++;
}
}
}
labelList& toMaster = sendMap[0];
toMaster.setSize(globalTrackIDs.localSize());
forAll(toMaster, i)
{
toMaster[i] = i;
}
const mapDistribute distMap
(
globalTrackIDs.size(),
sendMap.xfer(),
recvMap.xfer()
);
// Distribute the track positions. Note: use scheduled comms
// to prevent buffering.
mapDistributeBase::distribute
(
Pstream::scheduled,
distMap.schedule(),
distMap.constructSize(),
distMap.subMap(),
false,
distMap.constructMap(),
false,
allTracks_,
flipOp()
);
// Distribute the scalars
forAll(allScalars_, scalarI)
{
allScalars_[scalarI].shrink();
mapDistributeBase::distribute
(
Pstream::scheduled,
distMap.schedule(),
distMap.constructSize(),
distMap.subMap(),
false,
distMap.constructMap(),
false,
allScalars_[scalarI],
flipOp()
);
allScalars_[scalarI].setCapacity(allScalars_[scalarI].size());
}
// Distribute the vectors
forAll(allVectors_, vectorI)
{
allVectors_[vectorI].shrink();
mapDistributeBase::distribute
(
Pstream::scheduled,
distMap.schedule(),
distMap.constructSize(),
distMap.subMap(),
false,
distMap.constructMap(),
false,
allVectors_[vectorI],
flipOp()
);
allVectors_[vectorI].setCapacity(allVectors_[vectorI].size());
}
}
label n = 0;
forAll(allTracks_, trackI)
{
n += allTracks_[trackI].size();
}
Info<< " Tracks:" << allTracks_.size() << nl
<< " Total samples:" << n
<< endl;
// Massage into form suitable for writers
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
if (Pstream::master() && allTracks_.size())
{
// Make output directory
fileName vtkPath
(
Pstream::parRun()
? runTime.path()/".."/"postProcessing"/"sets"/name()
: runTime.path()/"postProcessing"/"sets"/name()
);
if (mesh_.name() != fvMesh::defaultRegion)
{
vtkPath = vtkPath/mesh_.name();
}
vtkPath = vtkPath/mesh_.time().timeName();
mkDir(vtkPath);
// Convert track positions
PtrList<coordSet> tracks(allTracks_.size());
forAll(allTracks_, trackI)
{
tracks.set
(
trackI,
new coordSet
(
"track" + Foam::name(trackI),
sampledSetAxis_ //"xyz"
)
);
tracks[trackI].transfer(allTracks_[trackI]);
}
// Convert scalar values
if (allScalars_.size() > 0)
{
List<List<scalarField>> scalarValues(allScalars_.size());
forAll(allScalars_, scalarI)
{
DynamicList<scalarList>& allTrackVals =
allScalars_[scalarI];
scalarValues[scalarI].setSize(allTrackVals.size());
forAll(allTrackVals, trackI)
{
scalarList& trackVals = allTrackVals[trackI];
scalarValues[scalarI][trackI].transfer(trackVals);
}
}
fileName vtkFile
(
vtkPath
/ scalarFormatterPtr_().getFileName
(
tracks[0],
scalarNames_
)
);
Info<< " Writing data to " << vtkFile.path() << endl;
scalarFormatterPtr_().write
(
true, // writeTracks
tracks,
scalarNames_,
scalarValues,
OFstream(vtkFile)()
);
}
// Convert vector values
if (allVectors_.size() > 0)
{
List<List<vectorField>> vectorValues(allVectors_.size());
forAll(allVectors_, vectorI)
{
DynamicList<vectorList>& allTrackVals =
allVectors_[vectorI];
vectorValues[vectorI].setSize(allTrackVals.size());
forAll(allTrackVals, trackI)
{
vectorList& trackVals = allTrackVals[trackI];
vectorValues[vectorI][trackI].transfer(trackVals);
}
}
fileName vtkFile
(
vtkPath
/ vectorFormatterPtr_().getFileName
(
tracks[0],
vectorNames_
)
);
vectorFormatterPtr_().write
(
true, // writeTracks
tracks,
vectorNames_,
vectorValues,
OFstream(vtkFile)()
);
}
}
return true;
}
void Foam::functionObjects::streamLine::updateMesh(const mapPolyMesh& mpm)
{
if (&mpm.mesh() == &mesh_)
{
read(dict_);
}
}
void Foam::functionObjects::streamLine::movePoints(const polyMesh& mesh)
{
if (&mesh == &mesh_)
{
// Moving mesh affects the search tree
read(dict_);
}
}
// ************************************************************************* //

View File

@ -0,0 +1,184 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation
\\/ M anipulation | Copyright (C) 2015-2016 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Class
Foam::functionObjects::streamLine
Group
grpFieldFunctionObjects
Description
Generates streamline data by sampling a set of user-specified fields along a
particle track, transported by a user-specified velocity field.
Example of function object specification:
\verbatim
streamLine1
{
type streamLine;
libs ("libfieldFunctionObjects.so");
writeControl writeTime;
setFormat vtk;
trackForward yes;
fields
(
U
p
);
lifeTime 10000;
trackLength 1e-3;
nSubCycle 5;
bounds (0.2 -10 -10)(0.22 10 10);
cloudName particleTracks;
seedSampleSet uniform;
uniformCoeffs
{
type uniform;
axis x; //distance;
start (-0.0205 0.0001 0.00001);
end (-0.0205 0.0005 0.00001);
nPoints 100;
}
}
\endverbatim
Usage
\table
Property | Description | Required | Default value
type | Type name: streamLine | yes |
setFormat | Output data type | yes |
U | Tracking velocity field name | yes |
fields | Fields to sample | yes |
lifetime | Maximum number of particle tracking steps | yes |
trackLength | Tracking segment length | no |
nSubCycle | Number of tracking steps per cell | no|
cloudName | Cloud name to use | yes |
bounds | Bounding box to trim tracks | no | greatBox
seedSampleSet| Seeding method (see below)| yes |
\endtable
Where \c seedSampleSet is typically one of
\plaintable
uniform | uniform particle seeding
cloud | cloud of points
triSurfaceMeshPointSet | points according to a tri-surface mesh
\endplaintable
Note
When specifying the track resolution, the \c trackLength OR \c nSubCycle
option should be used
See also
Foam::functionObject
Foam::functionObjects::timeControl
Foam::sampledSet
Foam::wallBoundedStreamLine
Foam::streamLineBase
SourceFiles
streamLine.C
\*---------------------------------------------------------------------------*/
#ifndef functionObjects_streamLine_H
#define functionObjects_streamLine_H
#include "streamLineBase.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
class objectRegistry;
class dictionary;
namespace functionObjects
{
/*---------------------------------------------------------------------------*\
Class streamLine Declaration
\*---------------------------------------------------------------------------*/
class streamLine
:
public streamLineBase
{
// Private data
//- Number of subcycling steps
label nSubCycle_;
// Private Member Functions
//- Disallow default bitwise copy construct
streamLine(const streamLine&);
//- Disallow default bitwise assignment
void operator=(const streamLine&);
public:
//- Runtime type information
TypeName("streamLine");
// Constructors
//- Construct from Time and dictionary
streamLine
(
const word& name,
const Time& runTime,
const dictionary& dict
);
//- Destructor
virtual ~streamLine();
// Member Functions
//- Read settings
virtual bool read(const dictionary&);
//- Do the actual tracking to fill the track data
virtual void track();
};
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace functionObjects
} // End namespace Foam
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#endif
// ************************************************************************* //

View File

@ -0,0 +1,987 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2015 OpenFOAM Foundation
\\/ M anipulation | Copyright (C) 2015-2016 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "streamLineBase.H"
#include "fvMesh.H"
#include "ReadFields.H"
#include "sampledSet.H"
#include "globalIndex.H"
#include "mapDistribute.H"
#include "interpolationCellPoint.H"
#include "wallPolyPatch.H"
#include "meshSearchMeshObject.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
defineTypeNameAndDebug(streamLineBase, 0);
}
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
Foam::autoPtr<Foam::indirectPrimitivePatch>
Foam::streamLineBase::wallPatch() const
{
const fvMesh& mesh = dynamic_cast<const fvMesh&>(obr_);
const polyBoundaryMesh& patches = mesh.boundaryMesh();
label nFaces = 0;
forAll(patches, patchI)
{
//if (!polyPatch::constraintType(patches[patchI].type()))
if (isA<wallPolyPatch>(patches[patchI]))
{
nFaces += patches[patchI].size();
}
}
labelList addressing(nFaces);
nFaces = 0;
forAll(patches, patchI)
{
//if (!polyPatch::constraintType(patches[patchI].type()))
if (isA<wallPolyPatch>(patches[patchI]))
{
const polyPatch& pp = patches[patchI];
forAll(pp, i)
{
addressing[nFaces++] = pp.start()+i;
}
}
}
return autoPtr<indirectPrimitivePatch>
(
new indirectPrimitivePatch
(
IndirectList<face>
(
mesh.faces(),
addressing
),
mesh.points()
)
);
}
void Foam::streamLineBase::initInterpolations
(
const label nSeeds,
label& UIndex,
PtrList<volScalarField>& vsFlds,
PtrList<interpolation<scalar>>& vsInterp,
PtrList<volVectorField>& vvFlds,
PtrList<interpolation<vector>>& vvInterp
)
{
const Time& runTime = obr_.time();
const fvMesh& mesh = dynamic_cast<const fvMesh&>(obr_);
// Read or lookup fields
if (loadFromFiles_)
{
IOobjectList allObjects(mesh, runTime.timeName());
IOobjectList objects(2*fields_.size());
forAll(fields_, i)
{
objects.add(*allObjects[fields_[i]]);
}
ReadFields(mesh, objects, vsFlds);
vsInterp.setSize(vsFlds.size());
forAll(vsFlds, i)
{
vsInterp.set
(
i,
interpolation<scalar>::New
(
interpolationScheme_,
vsFlds[i]
)
);
}
ReadFields(mesh, objects, vvFlds);
vvInterp.setSize(vvFlds.size());
forAll(vvFlds, i)
{
vvInterp.set
(
i,
interpolation<vector>::New
(
interpolationScheme_,
vvFlds[i]
)
);
}
}
else
{
label nScalar = 0;
label nVector = 0;
forAll(fields_, i)
{
if (mesh.foundObject<volScalarField>(fields_[i]))
{
nScalar++;
}
else if (mesh.foundObject<volVectorField>(fields_[i]))
{
nVector++;
}
else
{
FatalErrorInFunction
<< "Cannot find field " << fields_[i] << nl
<< "Valid scalar fields are:"
<< mesh.names(volScalarField::typeName) << nl
<< "Valid vector fields are:"
<< mesh.names(volVectorField::typeName)
<< exit(FatalError);
}
}
vsInterp.setSize(nScalar);
nScalar = 0;
vvInterp.setSize(nVector);
nVector = 0;
forAll(fields_, i)
{
if (mesh.foundObject<volScalarField>(fields_[i]))
{
const volScalarField& f = mesh.lookupObject<volScalarField>
(
fields_[i]
);
vsInterp.set
(
nScalar++,
interpolation<scalar>::New
(
interpolationScheme_,
f
)
);
}
else if (mesh.foundObject<volVectorField>(fields_[i]))
{
const volVectorField& f = mesh.lookupObject<volVectorField>
(
fields_[i]
);
if (f.name() == UName_)
{
UIndex = nVector;
}
vvInterp.set
(
nVector++,
interpolation<vector>::New
(
interpolationScheme_,
f
)
);
}
}
}
// Store the names
scalarNames_.setSize(vsInterp.size());
forAll(vsInterp, i)
{
scalarNames_[i] = vsInterp[i].psi().name();
}
vectorNames_.setSize(vvInterp.size());
forAll(vvInterp, i)
{
vectorNames_[i] = vvInterp[i].psi().name();
}
// Check that we know the index of U in the interpolators.
if (UIndex == -1)
{
FatalErrorInFunction
<< "Cannot find field to move particles with : " << UName_ << nl
<< "This field has to be present in the sampled fields " << fields_
<< " and in the objectRegistry."
<< exit(FatalError);
}
// Sampled data
// ~~~~~~~~~~~~
// Size to maximum expected sizes.
allTracks_.clear();
allTracks_.setCapacity(nSeeds);
allScalars_.setSize(vsInterp.size());
forAll(allScalars_, i)
{
allScalars_[i].clear();
allScalars_[i].setCapacity(nSeeds);
}
allVectors_.setSize(vvInterp.size());
forAll(allVectors_, i)
{
allVectors_[i].clear();
allVectors_[i].setCapacity(nSeeds);
}
}
void Foam::streamLineBase::storePoint
(
const label trackI,
const scalar w,
const label leftI,
const label rightI,
DynamicList<point>& newTrack,
DynamicList<scalarList>& newScalars,
DynamicList<vectorList>& newVectors
) const
{
label sz = newTrack.size();
const List<point>& track = allTracks_[trackI];
newTrack.append((1.0-w)*track[leftI] + w*track[rightI]);
// Scalars
{
newScalars.append(scalarList(allScalars_.size()));
scalarList& newVals = newScalars[sz];
forAll(allScalars_, scalarI)
{
const scalarList& trackVals = allScalars_[scalarI][trackI];
newVals[scalarI] = (1.0-w)*trackVals[leftI] + w*trackVals[rightI];
}
}
// Vectors
{
newVectors.append(vectorList(allVectors_.size()));
vectorList& newVals = newVectors[sz];
forAll(allVectors_, vectorI)
{
const vectorList& trackVals = allVectors_[vectorI][trackI];
newVals[vectorI] = (1.0-w)*trackVals[leftI] + w*trackVals[rightI];
}
}
}
// Can split a track into multiple tracks
void Foam::streamLineBase::trimToBox
(
const treeBoundBox& bb,
const label trackI,
PtrList<DynamicList<point>>& newTracks,
PtrList<DynamicList<scalarList>>& newScalars,
PtrList<DynamicList<vectorList>>& newVectors
) const
{
const List<point>& track = allTracks_[trackI];
if (track.size())
{
for
(
label segmentI = 1;
segmentI < track.size();
segmentI++
)
{
const point& startPt = track[segmentI-1];
const point& endPt = track[segmentI];
const vector d(endPt-startPt);
scalar magD = mag(d);
if (magD > ROOTVSMALL)
{
if (bb.contains(startPt))
{
// Store 1.0*track[segmentI-1]+0*track[segmentI]
storePoint
(
trackI,
0.0,
segmentI-1,
segmentI,
newTracks.last(),
newScalars.last(),
newVectors.last()
);
if (!bb.contains(endPt))
{
point clipPt;
if (bb.intersects(endPt, startPt, clipPt))
{
// End of track. Store point and interpolated
// values
storePoint
(
trackI,
mag(clipPt-startPt)/magD,
segmentI-1,
segmentI,
newTracks.last(),
newScalars.last(),
newVectors.last()
);
newTracks.last().shrink();
newScalars.last().shrink();
newVectors.last().shrink();
}
}
}
else
{
// startPt outside box. New track. Get starting point
point clipPt;
if (bb.intersects(startPt, endPt, clipPt))
{
// New track
newTracks.append
(
new DynamicList<point>(track.size()/10)
);
newScalars.append
(
new DynamicList<scalarList>(track.size()/10)
);
newVectors.append
(
new DynamicList<vectorList>(track.size()/10)
);
// Store point and interpolated values
storePoint
(
trackI,
mag(clipPt-startPt)/magD,
segmentI-1,
segmentI,
newTracks.last(),
newScalars.last(),
newVectors.last()
);
if (!bb.contains(endPt))
{
bb.intersects
(
endPt,
point(clipPt),
clipPt
);
// Store point and interpolated values
storePoint
(
trackI,
mag(clipPt-startPt)/magD,
segmentI-1,
segmentI,
newTracks.last(),
newScalars.last(),
newVectors.last()
);
newTracks.last().shrink();
newScalars.last().shrink();
newVectors.last().shrink();
}
}
}
}
}
// Last point
if (bb.contains(track.last()))
{
storePoint
(
trackI,
1.0,
track.size()-2,
track.size()-1,
newTracks.last(),
newScalars.last(),
newVectors.last()
);
}
}
}
void Foam::streamLineBase::trimToBox(const treeBoundBox& bb)
{
// Storage for new tracks. Per track, per sample the coordinate (newTracks)
// or values for all the sampled fields (newScalars, newVectors)
PtrList<DynamicList<point>> newTracks;
PtrList<DynamicList<scalarList>> newScalars;
PtrList<DynamicList<vectorList>> newVectors;
forAll(allTracks_, trackI)
{
const List<point>& track = allTracks_[trackI];
if (track.size())
{
// New track. Assume it consists of the whole track
newTracks.append(new DynamicList<point>(track.size()));
newScalars.append(new DynamicList<scalarList>(track.size()));
newVectors.append(new DynamicList<vectorList>(track.size()));
// Trim, split and append to newTracks
trimToBox(bb, trackI, newTracks, newScalars, newVectors);
}
}
// Transfer newTracks to allTracks_
allTracks_.setSize(newTracks.size());
forAll(allTracks_, trackI)
{
allTracks_[trackI].transfer(newTracks[trackI]);
}
// Replace track scalars
forAll(allScalars_, scalarI)
{
DynamicList<scalarList>& fieldVals = allScalars_[scalarI];
fieldVals.setSize(newTracks.size());
forAll(fieldVals, trackI)
{
scalarList& trackVals = allScalars_[scalarI][trackI];
trackVals.setSize(newScalars[trackI].size());
forAll(trackVals, sampleI)
{
trackVals[sampleI] = newScalars[trackI][sampleI][scalarI];
}
}
}
// Replace track vectors
forAll(allVectors_, vectorI)
{
DynamicList<vectorList>& fieldVals = allVectors_[vectorI];
fieldVals.setSize(newTracks.size());
forAll(fieldVals, trackI)
{
vectorList& trackVals = allVectors_[vectorI][trackI];
trackVals.setSize(newVectors[trackI].size());
forAll(trackVals, sampleI)
{
trackVals[sampleI] = newVectors[trackI][sampleI][vectorI];
}
}
}
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::streamLineBase::streamLineBase
(
const word& name,
const objectRegistry& obr,
const dictionary& dict,
const bool loadFromFiles
)
:
functionObjectState(obr, name),
dict_(dict),
obr_(obr),
loadFromFiles_(loadFromFiles),
log_(true)
{}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
Foam::streamLineBase::~streamLineBase()
{}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
void Foam::streamLineBase::read(const dictionary& dict)
{
if (active_)
{
log_.readIfPresent("log", dict);
if (log_) Info<< type() << " " << name_ << ":" << nl;
dict.lookup("fields") >> fields_;
if (dict.found("UName"))
{
dict.lookup("UName") >> UName_;
}
else
{
UName_ = "U";
if (dict.found("U"))
{
IOWarningInFunction(dict)
<< "Using deprecated entry \"U\"."
<< " Please use \"UName\" instead."
<< endl;
dict.lookup("U") >> UName_;
}
}
if (findIndex(fields_, UName_) == -1)
{
FatalIOErrorInFunction(dict)
<< "Velocity field for tracking " << UName_
<< " should be present in the list of fields " << fields_
<< exit(FatalIOError);
}
dict.lookup("trackForward") >> trackForward_;
dict.lookup("lifeTime") >> lifeTime_;
if (lifeTime_ < 1)
{
FatalErrorInFunction
<< "Illegal value " << lifeTime_ << " for lifeTime"
<< exit(FatalError);
}
trackLength_ = VGREAT;
if (dict.found("trackLength"))
{
dict.lookup("trackLength") >> trackLength_;
if (log_)
{
Info<< type() << " : fixed track length specified : "
<< trackLength_ << nl << endl;
}
}
bounds_ = boundBox::greatBox;
if (dict.readIfPresent("bounds", bounds_))
{
if (log_) Info<< " clipping all segments to " << bounds_ << nl << endl;
}
interpolationScheme_ = dict.lookupOrDefault
(
"interpolationScheme",
interpolationCellPoint<scalar>::typeName
);
//if (log_) Info<< " using interpolation " << interpolationScheme_
// << endl;
cloudName_ = dict.lookupOrDefault<word>("cloudName", type());
dict.lookup("seedSampleSet") >> seedSet_;
const fvMesh& mesh = dynamic_cast<const fvMesh&>(obr_);
const dictionary& coeffsDict = dict.subDict(seedSet_ + "Coeffs");
sampledSetPtr_ = sampledSet::New
(
seedSet_,
mesh,
meshSearchMeshObject::New(mesh),
coeffsDict
);
coeffsDict.lookup("axis") >> sampledSetAxis_;
scalarFormatterPtr_ = writer<scalar>::New(dict.lookup("setFormat"));
vectorFormatterPtr_ = writer<vector>::New(dict.lookup("setFormat"));
}
}
void Foam::streamLineBase::execute()
{}
void Foam::streamLineBase::end()
{}
void Foam::streamLineBase::timeSet()
{}
void Foam::streamLineBase::write()
{
if (active_)
{
if (log_) Info<< type() << " " << name_ << " output:" << nl;
const Time& runTime = obr_.time();
const fvMesh& mesh = dynamic_cast<const fvMesh&>(obr_);
// Do all injection and tracking
track();
if (Pstream::parRun())
{
// Append slave tracks to master ones
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
globalIndex globalTrackIDs(allTracks_.size());
// Construct a distribution map to pull all to the master.
labelListList sendMap(Pstream::nProcs());
labelListList recvMap(Pstream::nProcs());
if (Pstream::master())
{
// Master: receive all. My own first, then consecutive
// processors.
label trackI = 0;
forAll(recvMap, procI)
{
labelList& fromProc = recvMap[procI];
fromProc.setSize(globalTrackIDs.localSize(procI));
forAll(fromProc, i)
{
fromProc[i] = trackI++;
}
}
}
labelList& toMaster = sendMap[0];
toMaster.setSize(globalTrackIDs.localSize());
forAll(toMaster, i)
{
toMaster[i] = i;
}
const mapDistribute distMap
(
globalTrackIDs.size(),
sendMap.xfer(),
recvMap.xfer()
);
// Distribute the track positions. Note: use scheduled comms
// to prevent buffering.
allTracks_.shrink();
mapDistributeBase::distribute
(
Pstream::scheduled,
distMap.schedule(),
distMap.constructSize(),
distMap.subMap(),
false,
distMap.constructMap(),
false,
allTracks_,
flipOp()
);
allTracks_.setCapacity(allTracks_.size());
// Distribute the scalars
forAll(allScalars_, scalarI)
{
allScalars_[scalarI].shrink();
mapDistributeBase::distribute
(
Pstream::scheduled,
distMap.schedule(),
distMap.constructSize(),
distMap.subMap(),
false,
distMap.constructMap(),
false,
allScalars_[scalarI],
flipOp()
);
allScalars_[scalarI].setCapacity(allScalars_[scalarI].size());
}
// Distribute the vectors
forAll(allVectors_, vectorI)
{
allVectors_[vectorI].shrink();
mapDistributeBase::distribute
(
Pstream::scheduled,
distMap.schedule(),
distMap.constructSize(),
distMap.subMap(),
false,
distMap.constructMap(),
false,
allVectors_[vectorI],
flipOp()
);
allVectors_[vectorI].setCapacity(allVectors_[vectorI].size());
}
}
// Note: filenames scattered below since used in global call
fileName scalarVtkFile;
fileName vectorVtkFile;
if (Pstream::master())
{
if (bounds_ != boundBox::greatBox)
{
// Clip to bounding box
trimToBox(treeBoundBox(bounds_));
}
label nTracks = 0;
label n = 0;
forAll(allTracks_, trackI)
{
if (allTracks_[trackI].size())
{
nTracks++;
n += allTracks_[trackI].size();
}
}
if (log_)
{
Info<< " Tracks:" << nTracks << nl
<< " Total samples:" << n
<< endl;
}
// Massage into form suitable for writers
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Make output directory
fileName vtkPath
(
Pstream::parRun()
? runTime.path()/".."/"postProcessing"/"sets"/name()
: runTime.path()/"postProcessing"/"sets"/name()
);
if (mesh.name() != fvMesh::defaultRegion)
{
vtkPath = vtkPath/mesh.name();
}
vtkPath = vtkPath/mesh.time().timeName();
mkDir(vtkPath);
// Convert track positions (and compact out empty tracks)
PtrList<coordSet> tracks(nTracks);
nTracks = 0;
labelList oldToNewTrack(allTracks_.size(), -1);
forAll(allTracks_, trackI)
{
if (allTracks_[trackI].size())
{
tracks.set
(
nTracks,
new coordSet
(
"track" + Foam::name(nTracks),
sampledSetAxis_ //"xyz"
)
);
oldToNewTrack[trackI] = nTracks;
tracks[nTracks].transfer(allTracks_[trackI]);
nTracks++;
}
}
// Convert scalar values
if (allScalars_.size() > 0)
{
List<List<scalarField>> scalarValues(allScalars_.size());
forAll(allScalars_, scalarI)
{
DynamicList<scalarList>& allTrackVals =
allScalars_[scalarI];
scalarValues[scalarI].setSize(nTracks);
forAll(allTrackVals, trackI)
{
scalarList& vals = allTrackVals[trackI];
if (vals.size())
{
label newTrackI = oldToNewTrack[trackI];
scalarValues[scalarI][newTrackI].transfer(vals);
}
}
}
scalarVtkFile = fileName
(
vtkPath
/ scalarFormatterPtr_().getFileName
(
tracks[0],
scalarNames_
)
);
if (log_) Info
<< " Writing data to " << scalarVtkFile.path() << endl;
scalarFormatterPtr_().write
(
true, // writeTracks
tracks,
scalarNames_,
scalarValues,
OFstream(scalarVtkFile)()
);
}
// Convert vector values
if (allVectors_.size() > 0)
{
List<List<vectorField>> vectorValues(allVectors_.size());
forAll(allVectors_, vectorI)
{
DynamicList<vectorList>& allTrackVals =
allVectors_[vectorI];
vectorValues[vectorI].setSize(nTracks);
forAll(allTrackVals, trackI)
{
vectorList& vals = allTrackVals[trackI];
if (vals.size())
{
label newTrackI = oldToNewTrack[trackI];
vectorValues[vectorI][newTrackI].transfer(vals);
}
}
}
vectorVtkFile = fileName
(
vtkPath
/ vectorFormatterPtr_().getFileName
(
tracks[0],
vectorNames_
)
);
//if (log_) Info<< " Writing vector data to "
// << vectorVtkFile << endl;
vectorFormatterPtr_().write
(
true, // writeTracks
tracks,
vectorNames_,
vectorValues,
OFstream(vectorVtkFile)()
);
}
}
// fileNames are generated on the master but setProperty needs to
// be across all procs
Pstream::scatter(scalarVtkFile);
forAll(scalarNames_, nameI)
{
dictionary propsDict;
propsDict.add("file", scalarVtkFile);
const word& fieldName = scalarNames_[nameI];
setProperty(fieldName, propsDict);
}
Pstream::scatter(vectorVtkFile);
forAll(vectorNames_, nameI)
{
dictionary propsDict;
propsDict.add("file", vectorVtkFile);
const word& fieldName = vectorNames_[nameI];
setProperty(fieldName, propsDict);
}
}
}
void Foam::streamLineBase::updateMesh(const mapPolyMesh&)
{
read(dict_);
}
void Foam::streamLineBase::movePoints(const polyMesh&)
{
// Moving mesh affects the search tree
read(dict_);
}
// ************************************************************************* //

View File

@ -0,0 +1,246 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2015 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Class
Foam::streamLineBase
SeeAlso
Foam::streamLine
Foam::wallBoundedStreamLine
SourceFiles
streamLineBase.C
\*---------------------------------------------------------------------------*/
#ifndef streamLineBase_H
#define streamLineBase_H
#include "functionObjectState.H"
#include "DynamicList.H"
#include "scalarList.H"
#include "vectorList.H"
#include "writer.H"
#include "indirectPrimitivePatch.H"
#include "interpolation.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
// Forward declaration of classes
class objectRegistry;
class dictionary;
class mapPolyMesh;
class meshSearch;
class sampledSet;
/*---------------------------------------------------------------------------*\
Class streamLineBase Declaration
\*---------------------------------------------------------------------------*/
class streamLineBase
:
public functionObjectState
{
protected:
//- Input dictionary
dictionary dict_;
//- Database this class is registered to
const objectRegistry& obr_;
//- Load fields from files (not from objectRegistry)
bool loadFromFiles_;
//- Switch to send output to Info as well as to file
Switch log_;
//- List of fields to sample
wordList fields_;
//- Field to transport particle with
word UName_;
//- Interpolation scheme to use
word interpolationScheme_;
//- Whether to use +u or -u
bool trackForward_;
//- Maximum lifetime (= number of cells) of particle
label lifeTime_;
//- Track length
scalar trackLength_;
//- Optional trimming of tracks
boundBox bounds_;
//- Optional specified name of particles
word cloudName_;
//- Type of seed
word seedSet_;
//- Names of scalar fields
wordList scalarNames_;
//- Names of vector fields
wordList vectorNames_;
// Demand driven
//- Mesh searching enigne
autoPtr<meshSearch> meshSearchPtr_;
//- Seed set engine
autoPtr<sampledSet> sampledSetPtr_;
//- Axis of the sampled points to output
word sampledSetAxis_;
//- File writer for scalar data
autoPtr<writer<scalar>> scalarFormatterPtr_;
//- File writer for vector data
autoPtr<writer<vector>> vectorFormatterPtr_;
// Generated data
//- All tracks. Per track the points it passed through
DynamicList<List<point>> allTracks_;
//- Per scalarField, per track, the sampled values
List<DynamicList<scalarList>> allScalars_;
//- Per vectorField, per track, the sampled values
List<DynamicList<vectorList>> allVectors_;
//- Construct patch out of all wall patch faces
autoPtr<indirectPrimitivePatch> wallPatch() const;
//- Initialise fields, interpolators and track storage
void initInterpolations
(
const label nSeeds,
label& UIndex,
PtrList<volScalarField>& vsFlds,
PtrList<interpolation<scalar>>& vsInterp,
PtrList<volVectorField>& vvFlds,
PtrList<interpolation<vector>>& vvInterp
);
//- Generate point and values by interpolating from existing values
void storePoint
(
const label trackI,
const scalar w,
const label leftI,
const label rightI,
DynamicList<point>& newTrack,
DynamicList<List<scalar>>& newScalars,
DynamicList<List<vector>>& newVectors
) const;
//- Trim and possibly split a track
void trimToBox
(
const treeBoundBox& bb,
const label trackI,
PtrList<DynamicList<point>>& newTracks,
PtrList<DynamicList<scalarList>>& newScalars,
PtrList<DynamicList<vectorList>>& newVectors
) const;
//- Trim tracks to bounding box
void trimToBox(const treeBoundBox& bb);
//- Do the actual tracking to fill the track data
virtual void track() = 0;
public:
//- Runtime type information
TypeName("streamLineBase");
// Constructors
//- Construct for given objectRegistry and dictionary.
// Allow the possibility to load fields from files
streamLineBase
(
const word& name,
const objectRegistry&,
const dictionary&,
const bool loadFromFiles = false
);
//- Destructor
virtual ~streamLineBase();
// Member Functions
//- Read the field average data
virtual void read(const dictionary&);
//- Execute the averaging
virtual void execute();
//- Execute the averaging at the final time-loop, currently does nothing
virtual void end();
//- Called when time was set at the end of the Time::operator++
virtual void timeSet();
//- Track and write
virtual void write();
//- Update for changes of mesh
virtual void updateMesh(const mapPolyMesh&);
//- Update for mesh point-motion
virtual void movePoints(const polyMesh&);
};
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#endif
// ************************************************************************* //

View File

@ -0,0 +1,507 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "streamLineParticle.H"
#include "vectorFieldIOField.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
// defineParticleTypeNameAndDebug(streamLineParticle, 0);
}
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
Foam::scalar Foam::streamLineParticle::calcSubCycleDeltaT
(
trackingData& td,
const scalar dt,
const vector& U
) const
{
particle testParticle(*this);
bool oldKeepParticle = td.keepParticle;
bool oldSwitchProcessor = td.switchProcessor;
scalar fraction = testParticle.trackToFace(position()+dt*U, td);
td.keepParticle = oldKeepParticle;
td.switchProcessor = oldSwitchProcessor;
// Adapt the dt to subdivide the trajectory into substeps.
return dt*fraction/td.nSubCycle_;
}
Foam::vector Foam::streamLineParticle::interpolateFields
(
const trackingData& td,
const point& position,
const label celli,
const label facei
)
{
if (celli == -1)
{
FatalErrorInFunction
<< "Cell:" << celli << abort(FatalError);
}
sampledScalars_.setSize(td.vsInterp_.size());
forAll(td.vsInterp_, scalarI)
{
sampledScalars_[scalarI].append
(
td.vsInterp_[scalarI].interpolate
(
position,
celli,
facei
)
);
}
sampledVectors_.setSize(td.vvInterp_.size());
forAll(td.vvInterp_, vectorI)
{
sampledVectors_[vectorI].append
(
td.vvInterp_[vectorI].interpolate
(
position,
celli,
facei
)
);
}
const DynamicList<vector>& U = sampledVectors_[td.UIndex_];
return U.last();
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::streamLineParticle::streamLineParticle
(
const polyMesh& mesh,
const vector& position,
const label celli,
const label lifeTime
)
:
particle(mesh, position, celli),
lifeTime_(lifeTime)
{}
Foam::streamLineParticle::streamLineParticle
(
const polyMesh& mesh,
Istream& is,
bool readFields
)
:
particle(mesh, is, readFields)
{
if (readFields)
{
//if (is.format() == IOstream::ASCII)
List<scalarList> sampledScalars;
List<vectorList> sampledVectors;
is >> lifeTime_ >> sampledPositions_ >> sampledScalars
>> sampledVectors;
sampledScalars_.setSize(sampledScalars.size());
forAll(sampledScalars, i)
{
sampledScalars_[i].transfer(sampledScalars[i]);
}
sampledVectors_.setSize(sampledVectors.size());
forAll(sampledVectors, i)
{
sampledVectors_[i].transfer(sampledVectors[i]);
}
}
// Check state of Istream
is.check
(
"streamLineParticle::streamLineParticle"
"(const Cloud<streamLineParticle>&, Istream&, bool)"
);
}
Foam::streamLineParticle::streamLineParticle
(
const streamLineParticle& p
)
:
particle(p),
lifeTime_(p.lifeTime_),
sampledPositions_(p.sampledPositions_),
sampledScalars_(p.sampledScalars_)
{}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
bool Foam::streamLineParticle::move
(
trackingData& td,
const scalar trackTime
)
{
streamLineParticle& p = static_cast<streamLineParticle&>(*this);
td.switchProcessor = false;
td.keepParticle = true;
scalar tEnd = (1.0 - stepFraction())*trackTime;
scalar maxDt = mesh_.bounds().mag();
while
(
td.keepParticle
&& !td.switchProcessor
&& lifeTime_ > 0
)
{
// set the lagrangian time-step
scalar dt = maxDt;
// Cross cell in steps:
// - at subiter 0 calculate dt to cross cell in nSubCycle steps
// - at the last subiter do all of the remaining track
for (label subIter = 0; subIter < td.nSubCycle_; subIter++)
{
--lifeTime_;
// Store current position and sampled velocity.
sampledPositions_.append(position());
vector U = interpolateFields(td, position(), cell(), face());
if (!td.trackForward_)
{
U = -U;
}
scalar magU = mag(U);
if (magU < SMALL)
{
// Stagnant particle. Might as well stop
lifeTime_ = 0;
break;
}
U /= magU;
if (td.trackLength_ < GREAT)
{
dt = td.trackLength_;
//Pout<< " subiteration " << subIter
// << " : fixed length: updated dt:" << dt << endl;
}
else if (subIter == 0 && td.nSubCycle_ > 1)
{
// Adapt dt to cross cell in a few steps
dt = calcSubCycleDeltaT(td, dt, U);
}
else if (subIter == td.nSubCycle_ - 1)
{
// Do full step on last subcycle
dt = maxDt;
}
scalar fraction = trackToFace(position() + dt*U, td);
dt *= fraction;
tEnd -= dt;
stepFraction() = 1.0 - tEnd/trackTime;
if (tEnd <= ROOTVSMALL)
{
// Force removal
lifeTime_ = 0;
}
if
(
face() != -1
|| !td.keepParticle
|| td.switchProcessor
|| lifeTime_ == 0
)
{
break;
}
}
}
if (!td.keepParticle || lifeTime_ == 0)
{
if (lifeTime_ == 0)
{
if (debug)
{
Pout<< "streamLineParticle : Removing stagnant particle:"
<< p.position()
<< " sampled positions:" << sampledPositions_.size()
<< endl;
}
td.keepParticle = false;
}
else
{
// Normal exit. Store last position and fields
sampledPositions_.append(position());
interpolateFields(td, position(), cell(), face());
if (debug)
{
Pout<< "streamLineParticle : Removing particle:"
<< p.position()
<< " sampled positions:" << sampledPositions_.size()
<< endl;
}
}
// Transfer particle data into trackingData.
//td.allPositions_.append(sampledPositions_);
td.allPositions_.append(vectorList());
vectorList& top = td.allPositions_.last();
top.transfer(sampledPositions_);
forAll(sampledScalars_, i)
{
//td.allScalars_[i].append(sampledScalars_[i]);
td.allScalars_[i].append(scalarList());
scalarList& top = td.allScalars_[i].last();
top.transfer(sampledScalars_[i]);
}
forAll(sampledVectors_, i)
{
//td.allVectors_[i].append(sampledVectors_[i]);
td.allVectors_[i].append(vectorList());
vectorList& top = td.allVectors_[i].last();
top.transfer(sampledVectors_[i]);
}
}
return td.keepParticle;
}
bool Foam::streamLineParticle::hitPatch
(
const polyPatch&,
trackingData& td,
const label patchi,
const scalar trackFraction,
const tetIndices& tetIs
)
{
// Disable generic patch interaction
return false;
}
void Foam::streamLineParticle::hitWedgePatch
(
const wedgePolyPatch& pp,
trackingData& td
)
{
// Remove particle
td.keepParticle = false;
}
void Foam::streamLineParticle::hitSymmetryPlanePatch
(
const symmetryPlanePolyPatch& pp,
trackingData& td
)
{
// Remove particle
td.keepParticle = false;
}
void Foam::streamLineParticle::hitSymmetryPatch
(
const symmetryPolyPatch& pp,
trackingData& td
)
{
// Remove particle
td.keepParticle = false;
}
void Foam::streamLineParticle::hitCyclicPatch
(
const cyclicPolyPatch& pp,
trackingData& td
)
{
// Remove particle
td.keepParticle = false;
}
void Foam::streamLineParticle::hitProcessorPatch
(
const processorPolyPatch&,
trackingData& td
)
{
// Switch particle
td.switchProcessor = true;
}
void Foam::streamLineParticle::hitWallPatch
(
const wallPolyPatch& wpp,
trackingData& td,
const tetIndices&
)
{
// Remove particle
td.keepParticle = false;
}
void Foam::streamLineParticle::hitPatch
(
const polyPatch& wpp,
trackingData& td
)
{
// Remove particle
td.keepParticle = false;
}
void Foam::streamLineParticle::readFields(Cloud<streamLineParticle>& c)
{
if (!c.size())
{
return;
}
particle::readFields(c);
IOField<label> lifeTime
(
c.fieldIOobject("lifeTime", IOobject::MUST_READ)
);
c.checkFieldIOobject(c, lifeTime);
vectorFieldIOField sampledPositions
(
c.fieldIOobject("sampledPositions", IOobject::MUST_READ)
);
c.checkFieldIOobject(c, sampledPositions);
// vectorFieldIOField sampleVelocity
// (
// c.fieldIOobject("sampleVelocity", IOobject::MUST_READ)
// );
// c.checkFieldIOobject(c, sampleVelocity);
label i = 0;
forAllIter(Cloud<streamLineParticle>, c, iter)
{
iter().lifeTime_ = lifeTime[i];
iter().sampledPositions_.transfer(sampledPositions[i]);
// iter().sampleVelocity_.transfer(sampleVelocity[i]);
i++;
}
}
void Foam::streamLineParticle::writeFields(const Cloud<streamLineParticle>& c)
{
particle::writeFields(c);
label np = c.size();
IOField<label> lifeTime
(
c.fieldIOobject("lifeTime", IOobject::NO_READ),
np
);
vectorFieldIOField sampledPositions
(
c.fieldIOobject("sampledPositions", IOobject::NO_READ),
np
);
// vectorFieldIOField sampleVelocity
// (
// c.fieldIOobject("sampleVelocity", IOobject::NO_READ),
// np
// );
label i = 0;
forAllConstIter(Cloud<streamLineParticle>, c, iter)
{
lifeTime[i] = iter().lifeTime_;
sampledPositions[i] = iter().sampledPositions_;
// sampleVelocity[i] = iter().sampleVelocity_;
i++;
}
lifeTime.write();
sampledPositions.write();
// sampleVelocity.write();
}
// * * * * * * * * * * * * * * * IOstream Operators * * * * * * * * * * * * //
Foam::Ostream& Foam::operator<<(Ostream& os, const streamLineParticle& p)
{
os << static_cast<const particle&>(p)
<< token::SPACE << p.lifeTime_
<< token::SPACE << p.sampledPositions_
<< token::SPACE << p.sampledScalars_
<< token::SPACE << p.sampledVectors_;
// Check state of Ostream
os.check("Ostream& operator<<(Ostream&, const streamLineParticle&)");
return os;
}
// ************************************************************************* //

View File

@ -0,0 +1,317 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Class
Foam::streamLineParticle
Description
Particle class that samples fields as it passes through. Used in streamline
calculation.
SourceFiles
streamLineParticle.C
\*---------------------------------------------------------------------------*/
#ifndef streamLineParticle_H
#define streamLineParticle_H
#include "particle.H"
#include "autoPtr.H"
#include "interpolation.H"
#include "vectorList.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
class streamLineParticleCloud;
// Forward declaration of friend functions and operators
class streamLineParticle;
Ostream& operator<<(Ostream&, const streamLineParticle&);
/*---------------------------------------------------------------------------*\
Class streamLineParticle Declaration
\*---------------------------------------------------------------------------*/
class streamLineParticle
:
public particle
{
public:
//- Class used to pass tracking data to the trackToFace function
class trackingData
:
public particle::TrackingData<Cloud<streamLineParticle>>
{
public:
const PtrList<interpolation<scalar>>& vsInterp_;
const PtrList<interpolation<vector>>& vvInterp_;
const label UIndex_;
const bool trackForward_;
const label nSubCycle_;
const scalar trackLength_;
DynamicList<vectorList>& allPositions_;
List<DynamicList<scalarList>>& allScalars_;
List<DynamicList<vectorList>>& allVectors_;
// Constructors
trackingData
(
Cloud<streamLineParticle>& cloud,
const PtrList<interpolation<scalar>>& vsInterp,
const PtrList<interpolation<vector>>& vvInterp,
const label UIndex,
const bool trackForward,
const label nSubCycle,
const scalar trackLength,
DynamicList<List<point>>& allPositions,
List<DynamicList<scalarList>>& allScalars,
List<DynamicList<vectorList>>& allVectors
)
:
particle::TrackingData<Cloud<streamLineParticle>>(cloud),
vsInterp_(vsInterp),
vvInterp_(vvInterp),
UIndex_(UIndex),
trackForward_(trackForward),
nSubCycle_(nSubCycle),
trackLength_(trackLength),
allPositions_(allPositions),
allScalars_(allScalars),
allVectors_(allVectors)
{}
};
private:
// Private data
//- Lifetime of particle. Particle dies when reaches 0.
label lifeTime_;
//- Sampled positions
DynamicList<point> sampledPositions_;
//- Sampled scalars
List<DynamicList<scalar>> sampledScalars_;
//- Sampled vectors
List<DynamicList<vector>> sampledVectors_;
// Private Member Functions
//- Estimate dt to cross from current face to next one in nSubCycle
// steps.
scalar calcSubCycleDeltaT
(
trackingData& td,
const scalar dt,
const vector& U
) const;
void constrainVelocity
(
trackingData& td,
const scalar dt,
vector& U
);
//- Interpolate all quantities; return interpolated velocity.
vector interpolateFields
(
const trackingData&,
const point&,
const label celli,
const label facei
);
public:
// Constructors
//- Construct from components
streamLineParticle
(
const polyMesh& c,
const vector& position,
const label celli,
const label lifeTime
);
//- Construct from Istream
streamLineParticle
(
const polyMesh& c,
Istream& is,
bool readFields = true
);
//- Construct copy
streamLineParticle(const streamLineParticle& p);
//- Construct and return a clone
autoPtr<particle> clone() const
{
return autoPtr<particle>(new streamLineParticle(*this));
}
//- Factory class to read-construct particles used for
// parallel transfer
class iNew
{
const polyMesh& mesh_;
public:
iNew(const polyMesh& mesh)
:
mesh_(mesh)
{}
autoPtr<streamLineParticle> operator()(Istream& is) const
{
return autoPtr<streamLineParticle>
(
new streamLineParticle(mesh_, is, true)
);
}
};
// Member Functions
// Tracking
//- Track all particles to their end point
bool move(trackingData&, const scalar trackTime);
//- Overridable function to handle the particle hitting a patch
// Executed before other patch-hitting functions
bool hitPatch
(
const polyPatch&,
trackingData& td,
const label patchi,
const scalar trackFraction,
const tetIndices& tetIs
);
//- Overridable function to handle the particle hitting a wedge
void hitWedgePatch
(
const wedgePolyPatch&,
trackingData& td
);
//- Overridable function to handle the particle hitting a
// symmetry plane
void hitSymmetryPlanePatch
(
const symmetryPlanePolyPatch&,
trackingData& td
);
//- Overridable function to handle the particle hitting a
// symmetry patch
void hitSymmetryPatch
(
const symmetryPolyPatch&,
trackingData& td
);
//- Overridable function to handle the particle hitting a cyclic
void hitCyclicPatch
(
const cyclicPolyPatch&,
trackingData& td
);
//- Overridable function to handle the particle hitting a
//- processorPatch
void hitProcessorPatch
(
const processorPolyPatch&,
trackingData& td
);
//- Overridable function to handle the particle hitting a wallPatch
void hitWallPatch
(
const wallPolyPatch&,
trackingData& td,
const tetIndices&
);
//- Overridable function to handle the particle hitting a polyPatch
void hitPatch
(
const polyPatch&,
trackingData& td
);
// I-O
//- Read
static void readFields(Cloud<streamLineParticle>&);
//- Write
static void writeFields(const Cloud<streamLineParticle>&);
// Ostream Operator
friend Ostream& operator<<(Ostream&, const streamLineParticle&);
};
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#endif
// ************************************************************************* //

View File

@ -0,0 +1,64 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "streamLineParticleCloud.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
defineTemplateTypeNameAndDebug(Cloud<streamLineParticle>, 0);
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::streamLineParticleCloud::streamLineParticleCloud
(
const polyMesh& mesh,
const word& cloudName,
bool readFields
)
:
Cloud<streamLineParticle>(mesh, cloudName, false)
{
if (readFields)
{
streamLineParticle::readFields(*this);
}
}
Foam::streamLineParticleCloud::streamLineParticleCloud
(
const polyMesh& mesh,
const word& cloudName,
const IDLList<streamLineParticle>& particles
)
:
Cloud<streamLineParticle>(mesh, cloudName, particles)
{}
// ************************************************************************* //

View File

@ -0,0 +1,96 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Class
Foam::streamLineParticleCloud
Description
A Cloud of streamLine particles
SourceFiles
streamLineCloud.C
\*---------------------------------------------------------------------------*/
#ifndef streamLineCloud_H
#define streamLineCloud_H
#include "Cloud.H"
#include "streamLineParticle.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
/*---------------------------------------------------------------------------*\
Class streamLineCloud Declaration
\*---------------------------------------------------------------------------*/
class streamLineParticleCloud
:
public Cloud<streamLineParticle>
{
// Private Member Functions
//- Disallow default bitwise copy construct
streamLineParticleCloud(const streamLineParticleCloud&);
//- Disallow default bitwise assignment
void operator=(const streamLineParticleCloud&);
public:
//- Type of parcel the cloud was instantiated for
typedef streamLineParticle parcelType;
// Constructors
//- Construct given mesh
streamLineParticleCloud
(
const polyMesh&,
const word& cloudName = "defaultCloud",
bool readFields = true
);
//- Construct from mesh, cloud name, and a list of particles
streamLineParticleCloud
(
const polyMesh& mesh,
const word& cloudName,
const IDLList<streamLineParticle>& particles
);
};
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#endif
// ************************************************************************* //