mirror of
https://develop.openfoam.com/Development/openfoam.git
synced 2025-11-28 03:28:01 +00:00
GIT: Merge/resolve conflict
This commit is contained in:
@ -27,8 +27,8 @@ License
|
||||
#include "volFields.H"
|
||||
#include "regionSplit.H"
|
||||
#include "fvcVolumeIntegrate.H"
|
||||
#include "Histogram.H"
|
||||
#include "mathematicalConstants.H"
|
||||
#include "stringListOps.H"
|
||||
|
||||
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
|
||||
|
||||
@ -56,6 +56,281 @@ namespace Foam
|
||||
}
|
||||
|
||||
|
||||
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
|
||||
|
||||
void Foam::regionSizeDistribution::writeGraph
|
||||
(
|
||||
const coordSet& coords,
|
||||
const word& valueName,
|
||||
const scalarField& values
|
||||
) const
|
||||
{
|
||||
const fvMesh& mesh = refCast<const fvMesh>(obr_);
|
||||
|
||||
const wordList valNames(1, valueName);
|
||||
|
||||
fileName outputPath;
|
||||
if (Pstream::parRun())
|
||||
{
|
||||
outputPath = mesh.time().path()/".."/name_;
|
||||
}
|
||||
else
|
||||
{
|
||||
outputPath = mesh.time().path()/name_;
|
||||
}
|
||||
|
||||
if (mesh.name() != fvMesh::defaultRegion)
|
||||
{
|
||||
outputPath = outputPath/mesh.name();
|
||||
}
|
||||
|
||||
mkDir(outputPath/mesh.time().timeName());
|
||||
OFstream str
|
||||
(
|
||||
outputPath
|
||||
/ mesh.time().timeName()
|
||||
/ formatterPtr_().getFileName(coords, valNames)
|
||||
);
|
||||
Info<< "Writing distribution of " << valueName << " to " << str.name()
|
||||
<< endl;
|
||||
|
||||
List<const scalarField*> valPtrs(1);
|
||||
valPtrs[0] = &values;
|
||||
formatterPtr_().write(coords, valNames, valPtrs, str);
|
||||
}
|
||||
|
||||
|
||||
void Foam::regionSizeDistribution::writeAlphaFields
|
||||
(
|
||||
const regionSplit& regions,
|
||||
const Map<label>& patchRegions,
|
||||
const Map<scalar>& regionVolume,
|
||||
const volScalarField& alpha
|
||||
) const
|
||||
{
|
||||
const scalar maxDropletVol = 1.0/6.0*pow(maxDiam_, 3);
|
||||
|
||||
// Split alpha field
|
||||
// ~~~~~~~~~~~~~~~~~
|
||||
// Split into
|
||||
// - liquidCore : region connected to inlet patches
|
||||
// - per region a volume : for all other regions
|
||||
// - backgroundAlpha : remaining alpha
|
||||
|
||||
|
||||
// Construct field
|
||||
volScalarField liquidCore
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
alphaName_ + "_liquidCore",
|
||||
obr_.time().timeName(),
|
||||
obr_,
|
||||
IOobject::NO_READ
|
||||
),
|
||||
alpha,
|
||||
fvPatchField<scalar>::calculatedType()
|
||||
);
|
||||
|
||||
volScalarField backgroundAlpha
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
alphaName_ + "_background",
|
||||
obr_.time().timeName(),
|
||||
obr_,
|
||||
IOobject::NO_READ
|
||||
),
|
||||
alpha,
|
||||
fvPatchField<scalar>::calculatedType()
|
||||
);
|
||||
|
||||
|
||||
// Knock out any cell not in patchRegions
|
||||
forAll(liquidCore, cellI)
|
||||
{
|
||||
label regionI = regions[cellI];
|
||||
if (patchRegions.found(regionI))
|
||||
{
|
||||
backgroundAlpha[cellI] = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
liquidCore[cellI] = 0;
|
||||
|
||||
scalar regionVol = regionVolume[regionI];
|
||||
if (regionVol < maxDropletVol)
|
||||
{
|
||||
backgroundAlpha[cellI] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
liquidCore.correctBoundaryConditions();
|
||||
backgroundAlpha.correctBoundaryConditions();
|
||||
|
||||
Info<< "Volume of liquid-core = "
|
||||
<< fvc::domainIntegrate(liquidCore).value()
|
||||
<< endl;
|
||||
Info<< "Volume of background = "
|
||||
<< fvc::domainIntegrate(backgroundAlpha).value()
|
||||
<< endl;
|
||||
|
||||
Info<< "Writing liquid-core field to " << liquidCore.name() << endl;
|
||||
liquidCore.write();
|
||||
Info<< "Writing background field to " << backgroundAlpha.name() << endl;
|
||||
backgroundAlpha.write();
|
||||
}
|
||||
|
||||
|
||||
Foam::Map<Foam::label> Foam::regionSizeDistribution::findPatchRegions
|
||||
(
|
||||
const polyMesh& mesh,
|
||||
const regionSplit& regions
|
||||
) const
|
||||
{
|
||||
// Mark all regions starting at patches
|
||||
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
// Count number of patch faces (just for initial sizing)
|
||||
const labelHashSet patchIDs(mesh.boundaryMesh().patchSet(patchNames_));
|
||||
|
||||
label nPatchFaces = 0;
|
||||
forAllConstIter(labelHashSet, patchIDs, iter)
|
||||
{
|
||||
nPatchFaces += mesh.boundaryMesh()[iter.key()].size();
|
||||
}
|
||||
|
||||
|
||||
Map<label> patchRegions(nPatchFaces);
|
||||
forAllConstIter(labelHashSet, patchIDs, iter)
|
||||
{
|
||||
const polyPatch& pp = mesh.boundaryMesh()[iter.key()];
|
||||
|
||||
// Collect all regions on the patch
|
||||
const labelList& faceCells = pp.faceCells();
|
||||
|
||||
forAll(faceCells, i)
|
||||
{
|
||||
patchRegions.insert
|
||||
(
|
||||
regions[faceCells[i]],
|
||||
Pstream::myProcNo() // dummy value
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Make sure all the processors have the same set of regions
|
||||
Pstream::mapCombineGather(patchRegions, minEqOp<label>());
|
||||
Pstream::mapCombineScatter(patchRegions);
|
||||
|
||||
return patchRegions;
|
||||
}
|
||||
|
||||
|
||||
Foam::tmp<Foam::scalarField> Foam::regionSizeDistribution::divide
|
||||
(
|
||||
const scalarField& num,
|
||||
const scalarField& denom
|
||||
)
|
||||
{
|
||||
tmp<scalarField> tresult(new scalarField(num.size()));
|
||||
scalarField& result = tresult();
|
||||
|
||||
forAll(denom, i)
|
||||
{
|
||||
if (denom[i] != 0)
|
||||
{
|
||||
result[i] = num[i]/denom[i];
|
||||
}
|
||||
else
|
||||
{
|
||||
result[i] = 0.0;
|
||||
}
|
||||
}
|
||||
return tresult;
|
||||
}
|
||||
|
||||
|
||||
void Foam::regionSizeDistribution::writeGraphs
|
||||
(
|
||||
const word& fieldName, // name of field
|
||||
const labelList& indices, // index of bin for each region
|
||||
const scalarField& sortedField, // per region field data
|
||||
const scalarField& binCount, // per bin number of regions
|
||||
const coordSet& coords // graph data for bins
|
||||
) const
|
||||
{
|
||||
if (Pstream::master())
|
||||
{
|
||||
// Calculate per-bin average
|
||||
scalarField binSum(nBins_, 0.0);
|
||||
forAll(sortedField, i)
|
||||
{
|
||||
binSum[indices[i]] += sortedField[i];
|
||||
}
|
||||
|
||||
scalarField binAvg(divide(binSum, binCount));
|
||||
|
||||
// Per bin deviation
|
||||
scalarField binSqrSum(nBins_, 0.0);
|
||||
forAll(sortedField, i)
|
||||
{
|
||||
binSqrSum[indices[i]] += Foam::sqr(sortedField[i]);
|
||||
}
|
||||
scalarField binDev
|
||||
(
|
||||
sqrt(divide(binSqrSum, binCount) - Foam::sqr(binAvg))
|
||||
);
|
||||
|
||||
// Write average
|
||||
writeGraph(coords, fieldName + "_sum", binSum);
|
||||
// Write average
|
||||
writeGraph(coords, fieldName + "_avg", binAvg);
|
||||
// Write deviation
|
||||
writeGraph(coords, fieldName + "_dev", binDev);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void Foam::regionSizeDistribution::writeGraphs
|
||||
(
|
||||
const word& fieldName, // name of field
|
||||
const scalarField& cellField, // per cell field data
|
||||
const regionSplit& regions, // per cell the region(=droplet)
|
||||
const labelList& sortedRegions, // valid regions in sorted order
|
||||
const scalarField& sortedNormalisation,
|
||||
|
||||
const labelList& indices, // per region index of bin
|
||||
const scalarField& binCount, // per bin number of regions
|
||||
const coordSet& coords // graph data for bins
|
||||
) const
|
||||
{
|
||||
// Sum on a per-region basis. Parallel reduced.
|
||||
Map<scalar> regionField(regionSum(regions, cellField));
|
||||
|
||||
// Extract in region order
|
||||
scalarField sortedField
|
||||
(
|
||||
sortedNormalisation
|
||||
* extractData
|
||||
(
|
||||
sortedRegions,
|
||||
regionField
|
||||
)
|
||||
);
|
||||
|
||||
writeGraphs
|
||||
(
|
||||
fieldName, // name of field
|
||||
indices, // index of bin for each region
|
||||
sortedField, // per region field data
|
||||
binCount, // per bin number of regions
|
||||
coords // graph data for bins
|
||||
);
|
||||
}
|
||||
|
||||
|
||||
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
|
||||
|
||||
Foam::regionSizeDistribution::regionSizeDistribution
|
||||
@ -103,8 +378,11 @@ void Foam::regionSizeDistribution::read(const dictionary& dict)
|
||||
dict.lookup("field") >> alphaName_;
|
||||
dict.lookup("patches") >> patchNames_;
|
||||
dict.lookup("threshold") >> threshold_;
|
||||
dict.lookup("volFraction") >> volFraction_;
|
||||
dict.lookup("maxDiameter") >> maxDiam_;
|
||||
minDiam_ = 0.0;
|
||||
dict.readIfPresent("minDiameter", minDiam_);
|
||||
dict.lookup("nBins") >> nBins_;
|
||||
dict.lookup("fields") >> fields_;
|
||||
|
||||
word format(dict.lookup("setFormat"));
|
||||
formatterPtr_ = writer<scalar>::New(format);
|
||||
@ -163,14 +441,17 @@ void Foam::regionSizeDistribution::write()
|
||||
: obr_.lookupObject<volScalarField>(alphaName_)
|
||||
);
|
||||
|
||||
Info<< "Volume of alpha = "
|
||||
Info<< "Volume of alpha = "
|
||||
<< fvc::domainIntegrate(alpha).value()
|
||||
<< endl;
|
||||
|
||||
const scalar meshVol = gSum(mesh.V());
|
||||
Info<< "Mesh volume = " << meshVol << endl;
|
||||
Info<< "Background region volume limit = " << volFraction_*meshVol
|
||||
<< endl;
|
||||
const scalar maxDropletVol = 1.0/6.0*pow(maxDiam_, 3);
|
||||
const scalar delta = (maxDiam_-minDiam_)/nBins_;
|
||||
|
||||
Info<< "Mesh volume = " << meshVol << endl;
|
||||
Info<< "Maximum droplet diameter = " << maxDiam_ << endl;
|
||||
Info<< "Maximum droplet volume = " << maxDropletVol << endl;
|
||||
|
||||
|
||||
// Determine blocked faces
|
||||
@ -260,138 +541,115 @@ void Foam::regionSizeDistribution::write()
|
||||
}
|
||||
|
||||
|
||||
// Determine regions connected to supplied patches
|
||||
Map<label> patchRegions(findPatchRegions(mesh, regions));
|
||||
|
||||
|
||||
|
||||
// Sum all regions
|
||||
Map<Pair<scalar> > regionVolume(regions.nRegions()/Pstream::nProcs());
|
||||
forAll(alpha, cellI)
|
||||
{
|
||||
scalar cellVol = mesh.V()[cellI];
|
||||
scalar alphaVol = alpha[cellI]*cellVol;
|
||||
|
||||
label regionI = regions[cellI];
|
||||
|
||||
Map<Pair<scalar> >::iterator fnd = regionVolume.find(regionI);
|
||||
if (fnd == regionVolume.end())
|
||||
{
|
||||
regionVolume.insert
|
||||
(
|
||||
regionI,
|
||||
Pair<scalar>(cellVol, alphaVol)
|
||||
);
|
||||
}
|
||||
else
|
||||
{
|
||||
fnd().first() += cellVol;
|
||||
fnd().second() += alphaVol;
|
||||
}
|
||||
}
|
||||
Pstream::mapCombineGather(regionVolume, ListPlusEqOp<scalar, 2>());
|
||||
Pstream::mapCombineScatter(regionVolume);
|
||||
|
||||
const scalarField alphaVol(alpha.internalField()*mesh.V());
|
||||
Map<scalar> allRegionVolume(regionSum(regions, mesh.V()));
|
||||
Map<scalar> allRegionAlphaVolume(regionSum(regions, alphaVol));
|
||||
Map<label> allRegionNumCells
|
||||
(
|
||||
regionSum
|
||||
(
|
||||
regions,
|
||||
labelField(mesh.nCells(), 1.0)
|
||||
)
|
||||
);
|
||||
|
||||
if (debug)
|
||||
{
|
||||
Info<< token::TAB << "Region"
|
||||
<< token::TAB << "Volume(mesh)"
|
||||
<< token::TAB << "Volume(" << alpha.name() << "):"
|
||||
<< token::TAB << "nCells"
|
||||
<< endl;
|
||||
scalar meshSumVol = 0.0;
|
||||
scalar alphaSumVol = 0.0;
|
||||
label nCells = 0;
|
||||
|
||||
forAllConstIter(Map<Pair<scalar> >, regionVolume, iter)
|
||||
Map<scalar>::const_iterator vIter = allRegionVolume.begin();
|
||||
Map<scalar>::const_iterator aIter = allRegionAlphaVolume.begin();
|
||||
Map<label>::const_iterator numIter = allRegionNumCells.begin();
|
||||
for
|
||||
(
|
||||
;
|
||||
vIter != allRegionVolume.end()
|
||||
&& aIter != allRegionAlphaVolume.end();
|
||||
++vIter, ++aIter, ++numIter
|
||||
)
|
||||
{
|
||||
Info<< token::TAB << iter.key()
|
||||
<< token::TAB << iter().first()
|
||||
<< token::TAB << iter().second() << endl;
|
||||
Info<< token::TAB << vIter.key()
|
||||
<< token::TAB << vIter()
|
||||
<< token::TAB << aIter()
|
||||
<< token::TAB << numIter()
|
||||
<< endl;
|
||||
|
||||
meshSumVol += iter().first();
|
||||
alphaSumVol += iter().second();
|
||||
meshSumVol += vIter();
|
||||
alphaSumVol += aIter();
|
||||
nCells += numIter();
|
||||
}
|
||||
Info<< token::TAB << "Total:"
|
||||
<< token::TAB << meshSumVol
|
||||
<< token::TAB << alphaSumVol << endl;
|
||||
<< token::TAB << alphaSumVol
|
||||
<< token::TAB << nCells
|
||||
<< endl;
|
||||
Info<< endl;
|
||||
}
|
||||
|
||||
|
||||
|
||||
// Mark all regions starting at patches
|
||||
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
// Count number of patch faces (just for initial sizing)
|
||||
label nPatchFaces = 0;
|
||||
forAll(patchNames_, i)
|
||||
{
|
||||
const word& pName = patchNames_[i];
|
||||
label patchI = mesh.boundaryMesh().findPatchID(pName);
|
||||
if (patchI == -1)
|
||||
Info<< "Patch connected regions (liquid core):" << endl;
|
||||
Info<< token::TAB << "Region"
|
||||
<< token::TAB << "Volume(mesh)"
|
||||
<< token::TAB << "Volume(" << alpha.name() << "):"
|
||||
<< endl;
|
||||
forAllConstIter(Map<label>, patchRegions, iter)
|
||||
{
|
||||
WarningIn("regionSizeDistribution::write()")
|
||||
<< "Cannot find patch " << pName << ". Valid patches are "
|
||||
<< mesh.boundaryMesh().names()
|
||||
<< endl;
|
||||
}
|
||||
else
|
||||
{
|
||||
nPatchFaces += mesh.boundaryMesh()[patchI].size();
|
||||
label regionI = iter.key();
|
||||
Info<< token::TAB << iter.key()
|
||||
<< token::TAB << allRegionVolume[regionI]
|
||||
<< token::TAB << allRegionAlphaVolume[regionI] << endl;
|
||||
|
||||
}
|
||||
Info<< endl;
|
||||
}
|
||||
|
||||
Map<label> keepRegions(nPatchFaces);
|
||||
forAll(patchNames_, i)
|
||||
{
|
||||
const word& pName = patchNames_[i];
|
||||
Info<< "Background regions:" << endl;
|
||||
Info<< token::TAB << "Region"
|
||||
<< token::TAB << "Volume(mesh)"
|
||||
<< token::TAB << "Volume(" << alpha.name() << "):"
|
||||
<< endl;
|
||||
Map<scalar>::const_iterator vIter = allRegionVolume.begin();
|
||||
Map<scalar>::const_iterator aIter = allRegionAlphaVolume.begin();
|
||||
|
||||
label patchI = mesh.boundaryMesh().findPatchID(pName);
|
||||
if (patchI != -1)
|
||||
{
|
||||
const polyPatch& pp = mesh.boundaryMesh()[patchI];
|
||||
|
||||
// Collect all regions on the patch
|
||||
const labelList& faceCells = pp.faceCells();
|
||||
|
||||
forAll(faceCells, i)
|
||||
{
|
||||
keepRegions.insert
|
||||
(
|
||||
regions[faceCells[i]],
|
||||
Pstream::myProcNo()
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Make sure all the processors have the same set of regions
|
||||
Pstream::mapCombineGather(keepRegions, minEqOp<label>());
|
||||
Pstream::mapCombineScatter(keepRegions);
|
||||
|
||||
Info<< "Patch connected regions (liquid core):" << endl;
|
||||
forAllConstIter(Map<label>, keepRegions, iter)
|
||||
{
|
||||
label regionI = iter.key();
|
||||
Pair<scalar>& vols = regionVolume[regionI];
|
||||
Info<< token::TAB << iter.key()
|
||||
<< token::TAB << vols.first()
|
||||
<< token::TAB << vols.second() << endl;
|
||||
|
||||
}
|
||||
Info<< endl;
|
||||
|
||||
Info<< "Background regions:" << endl;
|
||||
forAllConstIter(Map<Pair<scalar> >, regionVolume, iter)
|
||||
{
|
||||
if
|
||||
for
|
||||
(
|
||||
!keepRegions.found(iter.key())
|
||||
&& iter().first() >= volFraction_*meshVol
|
||||
;
|
||||
vIter != allRegionVolume.end()
|
||||
&& aIter != allRegionAlphaVolume.end();
|
||||
++vIter, ++aIter
|
||||
)
|
||||
{
|
||||
Info<< token::TAB << iter.key()
|
||||
<< token::TAB << iter().first()
|
||||
<< token::TAB << iter().second() << endl;
|
||||
if
|
||||
(
|
||||
!patchRegions.found(vIter.key())
|
||||
&& vIter() >= maxDropletVol
|
||||
)
|
||||
{
|
||||
Info<< token::TAB << vIter.key()
|
||||
<< token::TAB << vIter()
|
||||
<< token::TAB << aIter() << endl;
|
||||
}
|
||||
}
|
||||
Info<< endl;
|
||||
}
|
||||
Info<< endl;
|
||||
|
||||
|
||||
|
||||
// Split alpha field
|
||||
@ -400,185 +658,197 @@ void Foam::regionSizeDistribution::write()
|
||||
// - liquidCore : region connected to inlet patches
|
||||
// - per region a volume : for all other regions
|
||||
// - backgroundAlpha : remaining alpha
|
||||
writeAlphaFields(regions, patchRegions, allRegionVolume, alpha);
|
||||
|
||||
|
||||
// Construct field
|
||||
volScalarField liquidCore
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
alphaName_ + "_liquidCore",
|
||||
obr_.time().timeName(),
|
||||
obr_,
|
||||
IOobject::NO_READ
|
||||
),
|
||||
alpha,
|
||||
fvPatchField<scalar>::calculatedType()
|
||||
);
|
||||
|
||||
volScalarField backgroundAlpha
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
alphaName_ + "_background",
|
||||
obr_.time().timeName(),
|
||||
obr_,
|
||||
IOobject::NO_READ
|
||||
),
|
||||
alpha,
|
||||
fvPatchField<scalar>::calculatedType()
|
||||
);
|
||||
|
||||
|
||||
// Knock out any cell not in keepRegions
|
||||
forAll(liquidCore, cellI)
|
||||
// Extract droplet-only allRegionVolume, i.e. delete liquid core
|
||||
// (patchRegions) and background regions from maps.
|
||||
// Note that we have to use mesh volume (allRegionVolume) and not
|
||||
// allRegionAlphaVolume since background might not have alpha in it.
|
||||
forAllIter(Map<scalar>, allRegionVolume, vIter)
|
||||
{
|
||||
label regionI = regions[cellI];
|
||||
if (keepRegions.found(regionI))
|
||||
label regionI = vIter.key();
|
||||
if
|
||||
(
|
||||
patchRegions.found(regionI)
|
||||
|| vIter() >= maxDropletVol
|
||||
)
|
||||
{
|
||||
backgroundAlpha[cellI] = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
liquidCore[cellI] = 0;
|
||||
|
||||
scalar regionVol = regionVolume[regionI].first();
|
||||
if (regionVol < volFraction_*meshVol)
|
||||
{
|
||||
backgroundAlpha[cellI] = 0;
|
||||
}
|
||||
allRegionVolume.erase(vIter);
|
||||
allRegionAlphaVolume.erase(regionI);
|
||||
allRegionNumCells.erase(regionI);
|
||||
}
|
||||
}
|
||||
liquidCore.correctBoundaryConditions();
|
||||
backgroundAlpha.correctBoundaryConditions();
|
||||
|
||||
Info<< "Volume of liquid-core = "
|
||||
<< fvc::domainIntegrate(liquidCore).value()
|
||||
<< endl;
|
||||
|
||||
Info<< "Writing liquid-core field to " << liquidCore.name() << endl;
|
||||
liquidCore.write();
|
||||
|
||||
Info<< "Volume of background = "
|
||||
<< fvc::domainIntegrate(backgroundAlpha).value()
|
||||
<< endl;
|
||||
|
||||
Info<< "Writing background field to " << backgroundAlpha.name() << endl;
|
||||
backgroundAlpha.write();
|
||||
|
||||
|
||||
|
||||
// Collect histogram
|
||||
if (Pstream::master())
|
||||
if (allRegionVolume.size())
|
||||
{
|
||||
DynamicList<scalar> diameters(regionVolume.size());
|
||||
forAllConstIter(Map<Pair<scalar> >, regionVolume, iter)
|
||||
// Construct mids of bins for plotting
|
||||
pointField xBin(nBins_);
|
||||
|
||||
scalar x = 0.5*delta;
|
||||
forAll(xBin, i)
|
||||
{
|
||||
if (!keepRegions.found(iter.key()))
|
||||
{
|
||||
if (iter().first() < volFraction_*meshVol)
|
||||
{
|
||||
scalar v = iter().second();
|
||||
//scalar diam = Foam::cbrt(v*6/mathematicalConstant::pi);
|
||||
scalar diam =
|
||||
Foam::cbrt(v*6/constant::mathematical::pi);
|
||||
diameters.append(diam);
|
||||
}
|
||||
}
|
||||
xBin[i] = point(x, 0, 0);
|
||||
x += delta;
|
||||
}
|
||||
|
||||
if (diameters.size())
|
||||
const coordSet coords("diameter", "x", xBin, mag(xBin));
|
||||
|
||||
|
||||
// Get in region order the alpha*volume and diameter
|
||||
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
const labelList sortedRegions = allRegionAlphaVolume.sortedToc();
|
||||
|
||||
scalarField sortedVols
|
||||
(
|
||||
extractData
|
||||
(
|
||||
sortedRegions,
|
||||
allRegionAlphaVolume
|
||||
)
|
||||
);
|
||||
|
||||
// Calculate the diameters
|
||||
scalarField sortedDiameters(sortedVols.size());
|
||||
forAll(sortedDiameters, i)
|
||||
{
|
||||
scalar maxDiam = max(diameters);
|
||||
scalar minDiam = 0.0;
|
||||
|
||||
Info<< "Maximum diameter:" << maxDiam << endl;
|
||||
|
||||
Histogram<List<scalar> > bins
|
||||
sortedDiameters[i] = Foam::cbrt
|
||||
(
|
||||
minDiam,
|
||||
maxDiam,
|
||||
nBins_,
|
||||
diameters
|
||||
sortedVols[i]
|
||||
*6/constant::mathematical::pi
|
||||
);
|
||||
}
|
||||
|
||||
/* 1.7.x
|
||||
scalarField xBin(nBins_);
|
||||
// Determine the bin index for all the diameters
|
||||
labelList indices(sortedDiameters.size());
|
||||
forAll(sortedDiameters, i)
|
||||
{
|
||||
indices[i] = (sortedDiameters[i]-minDiam_)/delta;
|
||||
}
|
||||
|
||||
scalar dx = (maxDiam-minDiam)/nBins_;
|
||||
scalar x = 0.5*dx;
|
||||
forAll(bins.counts(), i)
|
||||
// Calculate the counts per diameter bin
|
||||
scalarField binCount(nBins_, 0.0);
|
||||
forAll(sortedDiameters, i)
|
||||
{
|
||||
binCount[indices[i]] += 1.0;
|
||||
}
|
||||
|
||||
// Write counts
|
||||
if (Pstream::master())
|
||||
{
|
||||
writeGraph(coords, "count", binCount);
|
||||
}
|
||||
|
||||
// Write to screen
|
||||
{
|
||||
Info<< "Bins:" << endl;
|
||||
Info<< token::TAB << "Bin"
|
||||
<< token::TAB << "Min diameter"
|
||||
<< token::TAB << "Count:"
|
||||
<< endl;
|
||||
|
||||
scalar diam = 0.0;
|
||||
forAll(binCount, binI)
|
||||
{
|
||||
xBin[i] = x;
|
||||
x += dx;
|
||||
Info<< token::TAB << binI
|
||||
<< token::TAB << diam
|
||||
<< token::TAB << binCount[binI] << endl;
|
||||
diam += delta;
|
||||
}
|
||||
Info<< endl;
|
||||
}
|
||||
|
||||
scalarField normalisedCount(bins.counts().size());
|
||||
forAll(bins.counts(), i)
|
||||
|
||||
// Write average and deviation of droplet volume.
|
||||
writeGraphs
|
||||
(
|
||||
"volume", // name of field
|
||||
indices, // per region the bin index
|
||||
sortedVols, // per region field data
|
||||
binCount, // per bin number of regions
|
||||
coords // graph data for bins
|
||||
);
|
||||
|
||||
// Collect some more field
|
||||
{
|
||||
wordList scalarNames(obr_.names(volScalarField::typeName));
|
||||
labelList selected = findStrings(fields_, scalarNames);
|
||||
|
||||
forAll(selected, i)
|
||||
{
|
||||
normalisedCount[i] = 1.0*bins.counts()[i];
|
||||
const word& fldName = scalarNames[selected[i]];
|
||||
Info<< "Scalar field " << fldName << endl;
|
||||
|
||||
const scalarField& fld = obr_.lookupObject
|
||||
<
|
||||
volScalarField
|
||||
>(fldName).internalField();
|
||||
|
||||
writeGraphs
|
||||
(
|
||||
fldName, // name of field
|
||||
alphaVol*fld, // per cell field data
|
||||
|
||||
regions, // per cell the region(=droplet)
|
||||
sortedRegions, // valid regions in sorted order
|
||||
1.0/sortedVols, // per region normalisation
|
||||
|
||||
indices, // index of bin for each region
|
||||
binCount, // per bin number of regions
|
||||
coords // graph data for bins
|
||||
);
|
||||
}
|
||||
}
|
||||
{
|
||||
wordList vectorNames(obr_.names(volVectorField::typeName));
|
||||
labelList selected = findStrings(fields_, vectorNames);
|
||||
|
||||
const coordSet coords
|
||||
(
|
||||
"diameter",
|
||||
"x",
|
||||
xBin
|
||||
);
|
||||
*/
|
||||
|
||||
pointField xBin(nBins_);
|
||||
scalar dx = (maxDiam - minDiam)/nBins_;
|
||||
scalar x = 0.5*dx;
|
||||
forAll(bins.counts(), i)
|
||||
forAll(selected, i)
|
||||
{
|
||||
xBin[i] = point(x, 0, 0);
|
||||
x += dx;
|
||||
const word& fldName = vectorNames[selected[i]];
|
||||
Info<< "Vector field " << fldName << endl;
|
||||
|
||||
const vectorField& fld = obr_.lookupObject
|
||||
<
|
||||
volVectorField
|
||||
>(fldName).internalField();
|
||||
|
||||
|
||||
// Components
|
||||
|
||||
for (direction cmp = 0; cmp < vector::nComponents; cmp++)
|
||||
{
|
||||
writeGraphs
|
||||
(
|
||||
fldName + vector::componentNames[cmp],
|
||||
alphaVol*fld.component(cmp),// per cell field data
|
||||
|
||||
regions, // per cell the region(=droplet)
|
||||
sortedRegions, // valid regions in sorted order
|
||||
1.0/sortedVols, // per region normalisation
|
||||
|
||||
indices, // index of bin for each region
|
||||
binCount, // per bin number of regions
|
||||
coords // graph data for bins
|
||||
);
|
||||
}
|
||||
|
||||
// Magnitude
|
||||
writeGraphs
|
||||
(
|
||||
fldName + "mag", // name of field
|
||||
alphaVol*mag(fld), // per cell field data
|
||||
|
||||
regions, // per cell the region(=droplet)
|
||||
sortedRegions, // valid regions in sorted order
|
||||
1.0/sortedVols, // per region normalisation
|
||||
|
||||
indices, // index of bin for each region
|
||||
binCount, // per bin number of regions
|
||||
coords // graph data for bins
|
||||
);
|
||||
}
|
||||
|
||||
scalarField normalisedCount(bins.counts().size());
|
||||
forAll(bins.counts(), i)
|
||||
{
|
||||
normalisedCount[i] = 1.0*bins.counts()[i];
|
||||
}
|
||||
|
||||
const coordSet coords
|
||||
(
|
||||
"diameter",
|
||||
"x",
|
||||
xBin,
|
||||
mag(xBin)
|
||||
);
|
||||
const wordList valNames(1, "count");
|
||||
|
||||
|
||||
fileName outputPath;
|
||||
if (Pstream::parRun())
|
||||
{
|
||||
outputPath = mesh.time().path()/".."/name_;
|
||||
}
|
||||
else
|
||||
{
|
||||
outputPath = mesh.time().path()/name_;
|
||||
}
|
||||
|
||||
if (mesh.name() != fvMesh::defaultRegion)
|
||||
{
|
||||
outputPath = outputPath/mesh.name();
|
||||
}
|
||||
|
||||
mkDir(outputPath/mesh.time().timeName());
|
||||
OFstream str
|
||||
(
|
||||
outputPath
|
||||
/ mesh.time().timeName()
|
||||
/ formatterPtr_().getFileName(coords, valNames)
|
||||
);
|
||||
Info<< "Writing distribution to " << str.name() << endl;
|
||||
|
||||
List<const scalarField*> valPtrs(1);
|
||||
valPtrs[0] = &normalisedCount;
|
||||
formatterPtr_().write(coords, valNames, valPtrs, str);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -28,11 +28,67 @@ Group
|
||||
grpFieldFunctionObjects
|
||||
|
||||
Description
|
||||
Looks up a field, interpolates it to the faces and determines a connected
|
||||
region from a patch where the field is above a certain value.
|
||||
- Writes a field containing all regions starting at given patch
|
||||
('liquid core')
|
||||
- All other regions are summed for volume and a histogram is calculated.
|
||||
Droplet size distribution calculation.
|
||||
|
||||
Looks up a void-fraction (alpha) field and splits the mesh into regions
|
||||
based on where the field is below the threshold value. These
|
||||
regions ("droplets") can now be analysed.
|
||||
|
||||
Regions:
|
||||
- (debug) write regions as a volScalarField
|
||||
- (debug) print for all regions the sum of volume and alpha*volume
|
||||
- print the regions connected to a user-defined set of patches.
|
||||
(in spray calculation these form the liquid core)
|
||||
- print the regions with too large volume. These are the 'background'
|
||||
regions.
|
||||
|
||||
Fields:
|
||||
- write volScalarField alpha_liquidCore : alpha with outside liquid core
|
||||
set to 0.
|
||||
alpha_background : alpha with outside background
|
||||
set to 0.
|
||||
|
||||
Histogram:
|
||||
- determine histogram of diameter (given minDiameter, maxDiameter, nBins)
|
||||
- write graph of number of droplets per bin
|
||||
- write graph of sum, average and deviation of droplet volume per bin
|
||||
- write graph of sum, average and deviation of user-defined fields. For
|
||||
volVectorFields these are those of the 3 components and the magnitude.
|
||||
|
||||
Sample input:
|
||||
|
||||
functions
|
||||
{
|
||||
regionSizeDistribution
|
||||
{
|
||||
type regionSizeDistribution;
|
||||
|
||||
outputControl timeStep;
|
||||
outputInterval 1;
|
||||
|
||||
// Field to determine regions from
|
||||
field alpha;
|
||||
// Patches that provide the liquid core
|
||||
patches (inlet);
|
||||
// Delimit alpha regions
|
||||
threshold 0.4;
|
||||
|
||||
// Fields to sample (no need to include alpha)
|
||||
fields (p U);
|
||||
|
||||
// Number of bins for histogram
|
||||
nBins 100;
|
||||
// Max droplet diameter
|
||||
maxDiameter 0.5e-4;
|
||||
//// Min droplet diameter (default is 0)
|
||||
//minDiameter 0;
|
||||
|
||||
// Writing format
|
||||
setFormat gnuplot;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
SourceFiles
|
||||
regionSizeDistribution.C
|
||||
@ -44,6 +100,9 @@ SourceFiles
|
||||
|
||||
#include "pointFieldFwd.H"
|
||||
#include "writer.H"
|
||||
#include "Map.H"
|
||||
#include "volFieldsFwd.H"
|
||||
#include "wordReList.H"
|
||||
|
||||
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
||||
|
||||
@ -54,6 +113,8 @@ namespace Foam
|
||||
class objectRegistry;
|
||||
class dictionary;
|
||||
class mapPolyMesh;
|
||||
class regionSplit;
|
||||
class polyMesh;
|
||||
|
||||
/*---------------------------------------------------------------------------*\
|
||||
Class regionSizeDistribution Declaration
|
||||
@ -75,23 +136,85 @@ class regionSizeDistribution
|
||||
word alphaName_;
|
||||
|
||||
//- Patches to walk from
|
||||
wordList patchNames_;
|
||||
wordReList patchNames_;
|
||||
|
||||
//- Clip value
|
||||
scalar threshold_;
|
||||
|
||||
//- Background region volFraction
|
||||
scalar volFraction_;
|
||||
//- Maximum droplet diameter
|
||||
scalar maxDiam_;
|
||||
|
||||
//- Minimum droplet diameter
|
||||
scalar minDiam_;
|
||||
|
||||
//- Mumber of bins
|
||||
label nBins_;
|
||||
|
||||
//- Names of fields to sample on regions
|
||||
wordReList fields_;
|
||||
|
||||
//- Output formatter to write
|
||||
autoPtr<writer<scalar> > formatterPtr_;
|
||||
|
||||
|
||||
// Private Member Functions
|
||||
|
||||
template<class Type>
|
||||
Map<Type> regionSum(const regionSplit&, const Field<Type>&) const;
|
||||
|
||||
//- Get data in order
|
||||
template<class Type>
|
||||
List<Type> extractData(const UList<label>& keys, const Map<Type>&)
|
||||
const;
|
||||
|
||||
void writeGraph
|
||||
(
|
||||
const coordSet& coords,
|
||||
const word& valueName,
|
||||
const scalarField& values
|
||||
) const;
|
||||
|
||||
//- Write volfields with the parts of alpha which are not
|
||||
// droplets (liquidCore, backGround)
|
||||
void writeAlphaFields
|
||||
(
|
||||
const regionSplit& regions,
|
||||
const Map<label>& keepRegions,
|
||||
const Map<scalar>& regionVolume,
|
||||
const volScalarField& alpha
|
||||
) const;
|
||||
|
||||
//- Mark all regions starting at patches
|
||||
Map<label> findPatchRegions(const polyMesh&, const regionSplit&) const;
|
||||
|
||||
//- Helper: divide if denom != 0
|
||||
static tmp<scalarField> divide(const scalarField&, const scalarField&);
|
||||
|
||||
//- Given per-region data calculate per-bin average/deviation and graph
|
||||
void writeGraphs
|
||||
(
|
||||
const word& fieldName, // name of field
|
||||
const labelList& indices, // index of bin for each region
|
||||
const scalarField& sortedField, // per region field data
|
||||
const scalarField& binCount, // per bin number of regions
|
||||
const coordSet& coords // graph data for bins
|
||||
) const;
|
||||
|
||||
//- Given per-cell data calculate per-bin average/deviation and graph
|
||||
void writeGraphs
|
||||
(
|
||||
const word& fieldName, // name of field
|
||||
const scalarField& cellField, // per cell field data
|
||||
|
||||
const regionSplit& regions, // per cell the region(=droplet)
|
||||
const labelList& sortedRegions, // valid regions in sorted order
|
||||
const scalarField& sortedNormalisation,
|
||||
|
||||
const labelList& indices, // index of bin for each region
|
||||
const scalarField& binCount, // per bin number of regions
|
||||
const coordSet& coords // graph data for bins
|
||||
) const;
|
||||
|
||||
//- Disallow default bitwise copy construct
|
||||
regionSizeDistribution(const regionSizeDistribution&);
|
||||
|
||||
@ -159,6 +282,12 @@ public:
|
||||
|
||||
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
||||
|
||||
#ifdef NoRepository
|
||||
# include "regionSizeDistributionTemplates.C"
|
||||
#endif
|
||||
|
||||
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
||||
|
||||
#endif
|
||||
|
||||
// ************************************************************************* //
|
||||
|
||||
@ -0,0 +1,81 @@
|
||||
/*---------------------------------------------------------------------------*\
|
||||
========= |
|
||||
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
||||
\\ / O peration |
|
||||
\\ / A nd | Copyright (C) 2012 OpenFOAM Foundation
|
||||
\\/ M anipulation |
|
||||
-------------------------------------------------------------------------------
|
||||
License
|
||||
This file is part of OpenFOAM.
|
||||
|
||||
OpenFOAM is free software: you can redistribute it and/or modify it
|
||||
under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
||||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
#include "regionSizeDistribution.H"
|
||||
#include "regionSplit.H"
|
||||
#include "volFields.H"
|
||||
|
||||
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
|
||||
|
||||
template<class Type>
|
||||
Foam::Map<Type> Foam::regionSizeDistribution::regionSum
|
||||
(
|
||||
const regionSplit& regions,
|
||||
const Field<Type>& fld
|
||||
) const
|
||||
{
|
||||
// Per region the sum of fld
|
||||
Map<Type> regionToSum(regions.nRegions()/Pstream::nProcs());
|
||||
|
||||
forAll(fld, cellI)
|
||||
{
|
||||
label regionI = regions[cellI];
|
||||
|
||||
typename Map<Type>::iterator fnd = regionToSum.find(regionI);
|
||||
if (fnd == regionToSum.end())
|
||||
{
|
||||
regionToSum.insert(regionI, fld[cellI]);
|
||||
}
|
||||
else
|
||||
{
|
||||
fnd() += fld[cellI];
|
||||
}
|
||||
}
|
||||
Pstream::mapCombineGather(regionToSum, plusEqOp<Type>());
|
||||
Pstream::mapCombineScatter(regionToSum);
|
||||
|
||||
return regionToSum;
|
||||
}
|
||||
|
||||
|
||||
// Get data in sortedToc order
|
||||
template<class Type>
|
||||
Foam::List<Type> Foam::regionSizeDistribution::extractData
|
||||
(
|
||||
const UList<label>& keys,
|
||||
const Map<Type>& regionData
|
||||
) const
|
||||
{
|
||||
List<Type> sortedData(keys.size());
|
||||
|
||||
forAll(keys, i)
|
||||
{
|
||||
sortedData[i] = regionData[keys[i]];
|
||||
}
|
||||
return sortedData;
|
||||
}
|
||||
|
||||
|
||||
// ************************************************************************* //
|
||||
Reference in New Issue
Block a user