Merge branch 'master' of /home/noisy3/OpenFOAM/OpenFOAM-dev

This commit is contained in:
andy
2011-03-25 14:44:39 +00:00
100 changed files with 1509 additions and 159 deletions

View File

@ -3,6 +3,7 @@ cd ${0%/*} || exit 1 # run from this directory
set -x
wmake
wmake rhoLTSPimpleFoam
wmake rhoPorousMRFPimpleFoam
# ----------------------------------------------------------------- end-of-file

View File

@ -0,0 +1,3 @@
rhoLTSPimpleFoam.C
EXE = $(FOAM_APPBIN)/rhoLTSPimpleFoam

View File

@ -0,0 +1,15 @@
EXE_INC = \
-I.. \
-I$(LIB_SRC)/thermophysicalModels/basic/lnInclude \
-I$(LIB_SRC)/turbulenceModels/compressible/turbulenceModel \
-I$(LIB_SRC)/finiteVolume/cfdTools \
-I$(LIB_SRC)/finiteVolume/lnInclude
EXE_LIBS = \
-lbasicThermophysicalModels \
-lspecie \
-lcompressibleTurbulenceModel \
-lcompressibleRASModels \
-lcompressibleLESModels \
-lfiniteVolume \
-lmeshTools

View File

@ -0,0 +1,117 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2010-2011 OpenCFD Ltd.
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
rhoLTSPimpleFoam
Description
Transient solver for laminar or turbulent flow of compressible fluids
for HVAC and similar applications.
Uses the flexible PIMPLE (PISO-SIMPLE) solution for time-resolved and
pseudo-transient simulations with support for local time-stepping for
efficient steady-state solution.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "basicPsiThermo.H"
#include "turbulenceModel.H"
#include "fvcSmooth.H"
#include "bound.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
#include "setRootCase.H"
#include "createTime.H"
#include "createMesh.H"
#include "readPIMPLEControls.H"
#include "setInitialrDeltaT.H"
#include "createFields.H"
#include "initContinuityErrs.H"
Info<< "\nStarting time loop\n" << endl;
while (runTime.run())
{
#include "readTimeControls.H"
#include "readPIMPLEControls.H"
#include "compressibleCourantNo.H"
#include "setDeltaT.H"
runTime++;
Info<< "Time = " << runTime.timeName() << nl << endl;
#include "setrDeltaT.H"
#include "rhoEqn.H"
// --- Pressure-velocity PIMPLE corrector loop
for (int oCorr=0; oCorr<nOuterCorr; oCorr++)
{
bool finalIter = oCorr == nOuterCorr-1;
if (finalIter)
{
mesh.data::add("finalIteration", true);
}
if (nOuterCorr != 1)
{
p.storePrevIter();
rho.storePrevIter();
}
#include "UEqn.H"
#include "hEqn.H"
// --- PISO loop
for (int corr=0; corr<nCorr; corr++)
{
#include "pEqn.H"
}
turbulence->correct();
if (finalIter)
{
mesh.data::remove("finalIteration");
}
}
runTime.write();
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //

View File

@ -0,0 +1,19 @@
scalar maxDeltaT
(
pimple.lookupOrDefault<scalar>("maxDeltaT", GREAT)
);
volScalarField rDeltaT
(
IOobject
(
"rDeltaT",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
1/dimensionedScalar("maxDeltaT", dimTime, maxDeltaT),
zeroGradientFvPatchScalarField::typeName
);

View File

@ -0,0 +1,79 @@
{
scalar maxCo
(
pimple.lookupOrDefault<scalar>("maxCo", 0.8)
);
scalar rDeltaTSmoothingCoeff
(
pimple.lookupOrDefault<scalar>("rDeltaTSmoothingCoeff", 0.02)
);
scalar rDeltaTDampingCoeff
(
pimple.lookupOrDefault<scalar>("rDeltaTDampingCoeff", 1.0)
);
scalar maxDeltaT
(
pimple.lookupOrDefault<scalar>("maxDeltaT", GREAT)
);
volScalarField rDeltaT0 = rDeltaT;
// Set the reciprocal time-step from the local Courant number
rDeltaT.dimensionedInternalField() = max
(
1/dimensionedScalar("maxDeltaT", dimTime, maxDeltaT),
fvc::surfaceSum(mag(phi))().dimensionedInternalField()
/((2*maxCo)*mesh.V()*rho.dimensionedInternalField())
);
if (transonic)
{
surfaceScalarField phid
(
"phid",
fvc::interpolate(psi)*(fvc::interpolate(U) & mesh.Sf())
);
rDeltaT.dimensionedInternalField() = max
(
rDeltaT.dimensionedInternalField(),
fvc::surfaceSum(mag(phid))().dimensionedInternalField()
/((2*maxCo)*mesh.V()*psi.dimensionedInternalField())
);
}
// Update tho boundary values of the reciprocal time-step
rDeltaT.correctBoundaryConditions();
Info<< "Flow time scale min/max = "
<< gMin(1/rDeltaT.internalField())
<< ", " << gMax(1/rDeltaT.internalField()) << endl;
if (rDeltaTSmoothingCoeff < 1.0)
{
fvc::smooth(rDeltaT, rDeltaTSmoothingCoeff);
}
Info<< "Smoothed flow time scale min/max = "
<< gMin(1/rDeltaT.internalField())
<< ", " << gMax(1/rDeltaT.internalField()) << endl;
// Limit rate of change of time scale
// - reduce as much as required
// - only increase at a fraction of old time scale
if
(
rDeltaTDampingCoeff < 1.0
&& runTime.timeIndex() > runTime.startTimeIndex() + 1
)
{
rDeltaT = rDeltaT0*max(rDeltaT/rDeltaT0, 1.0 - rDeltaTDampingCoeff);
Info<< "Damped flow time scale min/max = "
<< gMin(1/rDeltaT.internalField())
<< ", " << gMax(1/rDeltaT.internalField()) << endl;
}
}