ENH: applyBoundaryLayer - added option -compressible for application to compressible flows

This commit is contained in:
mattijs
2015-11-27 14:13:51 +00:00
parent e8d4378425
commit c0f4f1e68c
2 changed files with 281 additions and 107 deletions

View File

@ -1,7 +1,10 @@
EXE_INC = \
-I$(LIB_SRC)/TurbulenceModels/turbulenceModels/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/incompressible/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/compressible/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/basic/lnInclude \
-I$(LIB_SRC)/transportModels \
-I$(LIB_SRC)/transportModels/compressible/lnInclude \
-I$(LIB_SRC)/transportModels/incompressible/singlePhaseTransportModel \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude
@ -9,7 +12,9 @@ EXE_INC = \
EXE_LIBS = \
-lturbulenceModels \
-lincompressibleTurbulenceModels \
-lcompressibleTurbulenceModels \
-lincompressibleTransportModels \
-lcompressibleTransportModels \
-lgenericPatchFields \
-lfiniteVolume \
-lmeshTools

View File

@ -38,7 +38,9 @@ Description
#include "fvCFD.H"
#include "singlePhaseTransportModel.H"
#include "turbulentTransportModel.H"
#include "turbulentFluidThermoModel.H"
#include "wallDist.H"
#include "processorFvPatchField.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
@ -46,6 +48,266 @@ Description
static const scalar Cmu(0.09);
static const scalar kappa(0.41);
void correctProcessorPatches(volScalarField& vf)
{
if (!Pstream::parRun())
{
return;
}
// Not possible to use correctBoundaryConditions on fields as they may
// use local info as opposed to the constraint values employed here,
// but still need to update processor patches
volScalarField::GeometricBoundaryField& bf = vf.boundaryField();
forAll(bf, patchI)
{
if (isA<processorFvPatchField<scalar> >(bf[patchI]))
{
bf[patchI].initEvaluate();
}
}
forAll(bf, patchI)
{
if (isA<processorFvPatchField<scalar> >(bf[patchI]))
{
bf[patchI].evaluate();
}
}
}
template<class TurbulenceModel>
Foam::tmp<Foam::volScalarField> calcK
(
TurbulenceModel& turbulence,
const volScalarField& mask,
const volScalarField& nut,
const volScalarField& y,
const dimensionedScalar& ybl,
const scalar Cmu,
const scalar kappa
)
{
// Turbulence k
tmp<volScalarField> tk = turbulence->k();
volScalarField& k = tk();
scalar ck0 = pow025(Cmu)*kappa;
k = (1 - mask)*k + mask*sqr(nut/(ck0*min(y, ybl)));
// Do not correct BC
// - operation may use inconsistent fields wrt these local manipulations
// k.correctBoundaryConditions();
correctProcessorPatches(k);
Info<< "Writing k\n" << endl;
k.write();
return tk;
}
template<class TurbulenceModel>
Foam::tmp<Foam::volScalarField> calcEpsilon
(
TurbulenceModel& turbulence,
const volScalarField& mask,
const volScalarField& k,
const volScalarField& y,
const dimensionedScalar& ybl,
const scalar Cmu,
const scalar kappa
)
{
// Turbulence epsilon
tmp<volScalarField> tepsilon = turbulence->epsilon();
volScalarField& epsilon = tepsilon();
scalar ce0 = ::pow(Cmu, 0.75)/kappa;
epsilon = (1 - mask)*epsilon + mask*ce0*k*sqrt(k)/min(y, ybl);
epsilon.max(SMALL);
// Do not correct BC
// - operation may use inconsistent fields wrt these local manipulations
// epsilon.correctBoundaryConditions();
correctProcessorPatches(epsilon);
Info<< "Writing epsilon\n" << endl;
epsilon.write();
return tepsilon;
}
void calcOmega
(
const fvMesh& mesh,
const volScalarField& mask,
const volScalarField& k,
const volScalarField& epsilon
)
{
// Turbulence omega
IOobject omegaHeader
(
"omega",
mesh.time().timeName(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE,
false
);
if (omegaHeader.headerOk())
{
volScalarField omega(omegaHeader, mesh);
dimensionedScalar k0("SMALL", k.dimensions(), SMALL);
omega = (1 - mask)*omega + mask*epsilon/(Cmu*k + k0);
omega.max(SMALL);
// Do not correct BC
// - operation may use inconsistent fields wrt these local
// manipulations
// omega.correctBoundaryConditions();
correctProcessorPatches(omega);
Info<< "Writing omega\n" << endl;
omega.write();
}
}
void setField
(
const fvMesh& mesh,
const word& fieldName,
const volScalarField& value
)
{
IOobject fldHeader
(
fieldName,
mesh.time().timeName(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE,
false
);
if (fldHeader.headerOk())
{
volScalarField fld(fldHeader, mesh);
fld = value;
// Do not correct BC
// - operation may use inconsistent fields wrt these local
// manipulations
// fld.correctBoundaryConditions();
correctProcessorPatches(fld);
Info<< "Writing " << fieldName << nl << endl;
fld.write();
}
}
void calcCompressible
(
const fvMesh& mesh,
const volScalarField& mask,
const volVectorField& U,
const volScalarField& y,
const dimensionedScalar& ybl
)
{
const Time& runTime = mesh.time();
autoPtr<fluidThermo> pThermo(fluidThermo::New(mesh));
fluidThermo& thermo = pThermo();
volScalarField rho(thermo.rho());
// Update/re-write phi
#include "compressibleCreatePhi.H"
phi.write();
autoPtr<compressible::turbulenceModel> turbulence
(
compressible::turbulenceModel::New
(
rho,
U,
phi,
thermo
)
);
// Calculate nut - reference nut is calculated by the turbulence model
// on its construction
tmp<volScalarField> tnut = turbulence->nut();
volScalarField& nut = tnut();
volScalarField S(mag(dev(symm(fvc::grad(U)))));
nut = (1 - mask)*nut + mask*sqr(kappa*min(y, ybl))*::sqrt(2)*S;
// Do not correct BC - wall functions will 'undo' manipulation above
// by using nut from turbulence model
correctProcessorPatches(nut);
nut.write();
tmp<volScalarField> k =
calcK(turbulence, mask, nut, y, ybl, Cmu, kappa);
tmp<volScalarField> epsilon =
calcEpsilon(turbulence, mask, k, y, ybl, Cmu, kappa);
calcOmega(mesh, mask, k, epsilon);
setField(mesh, "nuTilda", nut);
}
void calcIncompressible
(
const fvMesh& mesh,
const volScalarField& mask,
const volVectorField& U,
const volScalarField& y,
const dimensionedScalar& ybl
)
{
const Time& runTime = mesh.time();
// Update/re-write phi
#include "createPhi.H"
phi.write();
singlePhaseTransportModel laminarTransport(U, phi);
autoPtr<incompressible::turbulenceModel> turbulence
(
incompressible::turbulenceModel::New(U, phi, laminarTransport)
);
tmp<volScalarField> tnut = turbulence->nut();
// Calculate nut - reference nut is calculated by the turbulence model
// on its construction
volScalarField& nut = tnut();
volScalarField S(mag(dev(symm(fvc::grad(U)))));
nut = (1 - mask)*nut + mask*sqr(kappa*min(y, ybl))*::sqrt(2)*S;
// Do not correct BC - wall functions will 'undo' manipulation above
// by using nut from turbulence model
correctProcessorPatches(nut);
nut.write();
tmp<volScalarField> k =
calcK(turbulence, mask, nut, y, ybl, Cmu, kappa);
tmp<volScalarField> epsilon =
calcEpsilon(turbulence, mask, k, y, ybl, Cmu, kappa);
calcOmega(mesh, mask, k, epsilon);
setField(mesh, "nuTilda", nut);
}
int main(int argc, char *argv[])
{
@ -55,6 +317,8 @@ int main(int argc, char *argv[])
"turbulence fields based on the 1/7th power-law."
);
#include "addRegionOption.H"
argList::addOption
(
"ybl",
@ -69,8 +333,8 @@ int main(int argc, char *argv[])
);
argList::addBoolOption
(
"writenut",
"write nut field"
"compressible",
"apply to compressible case"
);
#include "setRootCase.H"
@ -93,9 +357,11 @@ int main(int argc, char *argv[])
}
#include "createTime.H"
#include "createMesh.H"
#include "createNamedMesh.H"
#include "createFields.H"
const bool compressible = args.optionFound("compressible");
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
// Modify velocity by applying a 1/7th power law boundary-layer
@ -117,113 +383,16 @@ int main(int argc, char *argv[])
Info<< "Writing U\n" << endl;
U.write();
// Update/re-write phi
#include "createPhi.H"
phi.write();
singlePhaseTransportModel laminarTransport(U, phi);
autoPtr<incompressible::turbulenceModel> turbulence
(
incompressible::turbulenceModel::New(U, phi, laminarTransport)
);
if (isA<incompressible::RASModel>(turbulence()))
if (compressible)
{
// Calculate nut - reference nut is calculated by the turbulence model
// on its construction
tmp<volScalarField> tnut = turbulence->nut();
volScalarField& nut = tnut();
volScalarField S(mag(dev(symm(fvc::grad(U)))));
nut = (1 - mask)*nut + mask*sqr(kappa*min(y, ybl))*::sqrt(2)*S;
// do not correct BC - wall functions will 'undo' manipulation above
// by using nut from turbulence model
if (args.optionFound("writenut"))
{
Info<< "Writing nut" << endl;
nut.write();
}
//--- Read and modify turbulence fields
// Turbulence k
tmp<volScalarField> tk = turbulence->k();
volScalarField& k = tk();
scalar ck0 = pow025(Cmu)*kappa;
k = (1 - mask)*k + mask*sqr(nut/(ck0*min(y, ybl)));
// do not correct BC - operation may use inconsistent fields wrt these
// local manipulations
// k.correctBoundaryConditions();
Info<< "Writing k\n" << endl;
k.write();
// Turbulence epsilon
tmp<volScalarField> tepsilon = turbulence->epsilon();
volScalarField& epsilon = tepsilon();
scalar ce0 = ::pow(Cmu, 0.75)/kappa;
epsilon = (1 - mask)*epsilon + mask*ce0*k*sqrt(k)/min(y, ybl);
// do not correct BC - wall functions will use non-updated k from
// turbulence model
// epsilon.correctBoundaryConditions();
Info<< "Writing epsilon\n" << endl;
epsilon.write();
// Turbulence omega
IOobject omegaHeader
(
"omega",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE,
false
);
if (omegaHeader.headerOk())
{
volScalarField omega(omegaHeader, mesh);
dimensionedScalar k0("VSMALL", k.dimensions(), VSMALL);
omega = (1 - mask)*omega + mask*epsilon/(Cmu*k + k0);
// do not correct BC - wall functions will use non-updated k from
// turbulence model
// omega.correctBoundaryConditions();
Info<< "Writing omega\n" << endl;
omega.write();
}
// Turbulence nuTilda
IOobject nuTildaHeader
(
"nuTilda",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE,
false
);
if (nuTildaHeader.headerOk())
{
volScalarField nuTilda(nuTildaHeader, mesh);
nuTilda = nut;
// do not correct BC
// nuTilda.correctBoundaryConditions();
Info<< "Writing nuTilda\n" << endl;
nuTilda.write();
}
calcCompressible(mesh, mask, U, y, ybl);
}
else
{
calcIncompressible(mesh, mask, U, y, ybl);
}
Info<< nl << "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"