Surface conformation point pair insertions and polyMesh output (without patching) included.

This commit is contained in:
graham
2009-04-10 17:31:59 +01:00
parent 52cdb0863a
commit ce65125574
6 changed files with 993 additions and 35 deletions

View File

@ -66,7 +66,7 @@ bool Foam::conformalVoronoiMesh::dualCellSurfaceIntersection
point dE1 = topoint(dual(fit->first->neighbor(fit->second)));
// If other edge end is outside bounding box then edge cuts boundary
if (!!geometryToConformTo_.bounds().contains(dE1))
if (!geometryToConformTo_.bounds().contains(dE1))
{
return true;
}
@ -82,6 +82,655 @@ bool Foam::conformalVoronoiMesh::dualCellSurfaceIntersection
}
void Foam::conformalVoronoiMesh::calcDualMesh
(
pointField& points,
faceList& faces,
labelList& owner,
labelList& neighbour,
wordList& patchNames,
labelList& patchSizes,
labelList& patchStarts
)
{
// ~~~~~~~~~~~ removing short edges by indexing dual vertices ~~~~~~~~~~~~~~
for
(
Triangulation::Finite_cells_iterator cit = finite_cells_begin();
cit != finite_cells_end();
++cit
)
{
cit->cellIndex() = -1;
}
points.setSize(number_of_cells());
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Looking up details from a dictionary, in future the will be available
// from a controls class.
const dictionary& cvMeshDict( cvMeshControls_.cvMeshDict());
scalar defaultCellSize
(
readScalar
(
cvMeshDict.subDict("motionControl").lookup("defaultCellSize")
)
);
scalar minimumEdgeLengthCoeff
(
readScalar
(
cvMeshDict.subDict("polyMeshFiltering").lookup
(
"minimumEdgeLengthCoeff"
)
)
);
scalar minEdgeLenSqr = Foam::sqr(defaultCellSize*minimumEdgeLengthCoeff);
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
label dualVerti = 0;
// Scanning by number of short (dual) edges (nSE) attached to the
// circumcentre of each Delaunay tet. A Delaunay tet may only have four
// dual edges emanating from its circumcentre, assigning positions and
// indices to those with 4 short edges attached first, then >= 3, then >= 2
// etc.
for (label nSE = 4; nSE >= 0; nSE--)
{
Info<< nl << "Scanning for dual vertices with >= "
<< nSE
<< " short edges attached." << endl;
for
(
Triangulation::Finite_cells_iterator cit = finite_cells_begin();
cit != finite_cells_end();
++cit
)
{
// If the Delaunay tet has an index already then it has either
// evaluated itself and taken action or has had its index dictated
// by a neighbouring tet with more short edges attached.
if (cit->cellIndex() == -1)
{
point dualVertex = topoint(dual(cit));
label shortEdges = 0;
List<bool> edgeIsShort(4, false);
List<bool> neighbourAlreadyIndexed(4, false);
// Loop over the four facets of the Delaunay tet
for (label f = 0; f < 4; f++)
{
// Check that at least one of the vertices of the facet is
// an internal or boundary point
if
(
cit->vertex(vertex_triple_index(f, 0))->
internalOrBoundaryPoint()
|| cit->vertex(vertex_triple_index(f, 1))->
internalOrBoundaryPoint()
|| cit->vertex(vertex_triple_index(f, 2))->
internalOrBoundaryPoint()
)
{
point neighDualVertex;
label cNI = cit->neighbor(f)->cellIndex();
if (cNI == -1)
{
neighDualVertex = topoint(dual(cit->neighbor(f)));
}
else
{
neighDualVertex = points[cNI];
}
if
(
magSqr(dualVertex - neighDualVertex) < minEdgeLenSqr
)
{
edgeIsShort[f] = true;
if (cNI > -1)
{
neighbourAlreadyIndexed[f] = true;
}
shortEdges++;
}
}
}
if (nSE == 0 && shortEdges == 0)
{
// Final iteration and no short edges are found, index
// remaining dual vertices.
if
(
cit->vertex(0)->internalOrBoundaryPoint()
|| cit->vertex(1)->internalOrBoundaryPoint()
|| cit->vertex(2)->internalOrBoundaryPoint()
|| cit->vertex(3)->internalOrBoundaryPoint()
)
{
cit->cellIndex() = dualVerti;
points[dualVerti] = dualVertex;
dualVerti++;
}
}
else if
(
shortEdges >= nSE
)
{
// Info<< neighbourAlreadyIndexed << ' '
// << edgeIsShort << endl;
label numUnindexedNeighbours = 1;
for (label f = 0; f < 4; f++)
{
if (edgeIsShort[f] && !neighbourAlreadyIndexed[f])
{
dualVertex += topoint(dual(cit->neighbor(f)));
numUnindexedNeighbours++;
}
}
dualVertex /= numUnindexedNeighbours;
label nearestExistingIndex = -1;
point nearestIndexedNeighbourPos = vector::zero;
scalar minDistSqrToNearestIndexedNeighbour = VGREAT;
for (label f = 0; f < 4; f++)
{
if (edgeIsShort[f] && neighbourAlreadyIndexed[f])
{
label cNI = cit->neighbor(f)->cellIndex();
point indexedNeighbourPos = points[cNI];
if
(
magSqr(indexedNeighbourPos - dualVertex)
< minDistSqrToNearestIndexedNeighbour
)
{
nearestExistingIndex = cNI;
nearestIndexedNeighbourPos =
indexedNeighbourPos;
minDistSqrToNearestIndexedNeighbour =
magSqr(indexedNeighbourPos - dualVertex);
}
}
}
if
(
nearestExistingIndex > -1
&& minDistSqrToNearestIndexedNeighbour < minEdgeLenSqr
)
{
points[nearestExistingIndex] =
0.5*(dualVertex + nearestIndexedNeighbourPos);
for (label f = 0; f < 4; f++)
{
if (edgeIsShort[f] && !neighbourAlreadyIndexed[f])
{
cit->neighbor(f)->cellIndex() =
nearestExistingIndex;
}
}
cit->cellIndex() = nearestExistingIndex;
}
else
{
for (label f = 0; f < 4; f++)
{
if (edgeIsShort[f] && !neighbourAlreadyIndexed[f])
{
cit->neighbor(f)->cellIndex() = dualVerti;
}
}
cit->cellIndex() = dualVerti;
points[dualVerti] = dualVertex;
dualVerti++;
}
}
}
}
}
points.setSize(dualVerti);
// ~~~~~~~~~~~~~~~~~~~~~~~~~ dual cell indexing ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// assigns an index to the Delaunay vertices which will be the dual cell
// index used for owner neighbour assignment.
// The indices of the points are reset which destroys the point-pair
// matching, so the type of each vertex are reset to avoid any ambiguity.
label dualCelli = 0;
for
(
Triangulation::Finite_vertices_iterator vit = finite_vertices_begin();
vit != finite_vertices_end();
++vit
)
{
if (vit->internalOrBoundaryPoint())
{
vit->type() = Vb::INTERNAL_POINT;
vit->index() = dualCelli;
dualCelli++;
}
else
{
vit->type() = Vb::FAR_POINT;
vit->index() = -1;
}
}
// ~~~~~~~~~~~~ dual face and owner neighbour construction ~~~~~~~~~~~~~~~~~
//label nPatches = qSurf_.patches().size() + 1;
//label defaultPatchIndex = qSurf_.patches().size();
label nPatches = 1;
label defaultPatchIndex = 0;
patchNames.setSize(nPatches);
//const geometricSurfacePatchList& surfacePatches = qSurf_.patches();
// forAll(surfacePatches, sP)
// {
// patchNames[sP] = surfacePatches[sP].name();
// }
patchNames[defaultPatchIndex] = "cvMesh_defaultPatch";
patchSizes.setSize(nPatches);
patchStarts.setSize(nPatches);
List<DynamicList<face> > patchFaces(nPatches, DynamicList<face>(0));
List<DynamicList<label> > patchOwners(nPatches, DynamicList<label>(0));
faces.setSize(number_of_edges());
owner.setSize(number_of_edges());
neighbour.setSize(number_of_edges());
label dualFacei = 0;
for
(
Triangulation::Finite_edges_iterator eit = finite_edges_begin();
eit != finite_edges_end();
++eit
)
{
Cell_handle c = eit->first;
Vertex_handle vA = c->vertex(eit->second);
Vertex_handle vB = c->vertex(eit->third);
if
(
vA->internalOrBoundaryPoint()
|| vB->internalOrBoundaryPoint()
)
{
Cell_circulator ccStart = incident_cells(*eit);
Cell_circulator cc1 = ccStart;
Cell_circulator cc2 = cc1;
// Advance the second circulator so that it always stays on the next
// cell around the edge;
cc2++;
DynamicList<label> verticesOnFace;
do
{
label cc1I = cc1->cellIndex();
label cc2I = cc2->cellIndex();
if (cc1I < 0 || cc2I < 0)
{
FatalErrorIn("Foam::conformalVoronoiMesh::calcDualMesh")
<< "Dual face uses circumcenter defined by a "
<< "Delaunay tetrahedron with no internal "
<< "or boundary points. Defining Delaunay edge ends: "
<< topoint(vA->point()) << " "
<< topoint(vB->point()) << nl
<< exit(FatalError);
}
if (cc1I != cc2I)
{
verticesOnFace.append(cc1I);
}
cc1++;
cc2++;
} while (cc1 != ccStart);
verticesOnFace.shrink();
if (verticesOnFace.size() >= 3)
{
face newDualFace(verticesOnFace);
label dcA = vA->index();
if (!vA->internalOrBoundaryPoint())
{
dcA = -1;
}
label dcB = vB->index();
if (!vB->internalOrBoundaryPoint())
{
dcB = -1;
}
label dcOwn = -1;
label dcNei = -1;
if (dcA == -1 && dcB == -1)
{
FatalErrorIn("calcDualMesh")
<< "Attempting to create a face joining "
<< "two external dual cells "
<< exit(FatalError);
}
else if (dcA == -1 || dcB == -1)
{
// boundary face, find which is the owner
if (dcA == -1)
{
dcOwn = dcB;
// reverse face order to correctly orientate normal
reverse(newDualFace);
}
else
{
dcOwn = dcA;
}
// Find which patch this face is on by finding the
// intersection with the surface of the Delaunay edge
// generating the face and identify the region of the
// intersection.
point ptA = topoint(vA->point());
point ptB = topoint(vB->point());
//pointIndexHit pHit = qSurf_.tree().findLineAny(ptA, ptB);
//label patchIndex = qSurf_[pHit.index()].region();
label patchIndex = defaultPatchIndex;
if (patchIndex == -1)
{
patchIndex = defaultPatchIndex;
WarningIn("Foam::conformalVoronoiMesh::calcDualMesh")
<< "Dual face found that is not on a surface "
<< "patch. Adding to "
<< patchNames[defaultPatchIndex]
<< endl;
}
patchFaces[patchIndex].append(newDualFace);
patchOwners[patchIndex].append(dcOwn);
}
else
{
// internal face, find the lower cell to be the owner
if (dcB > dcA)
{
dcOwn = dcA;
dcNei = dcB;
}
else
{
dcOwn = dcB;
dcNei = dcA;
// reverse face order to correctly orientate normal
reverse(newDualFace);
}
faces[dualFacei] = newDualFace;
owner[dualFacei] = dcOwn;
neighbour[dualFacei] = dcNei;
dualFacei++;
}
}
// else
// {
// Info<< verticesOnFace.size()
// << " size face not created." << endl;
// }
}
}
label nInternalFaces = dualFacei;
faces.setSize(nInternalFaces);
owner.setSize(nInternalFaces);
neighbour.setSize(nInternalFaces);
// ~~~~~~~~ sort owner, reordinging neighbour and faces to match ~~~~~~~~~~~
// two stage sort for upper triangular order: sort by owner first, then for
// each block of owners sort by neighbour
labelList sortingIndices;
// Stage 1
{
SortableList<label> sortedOwner(owner);
sortingIndices = sortedOwner.indices();
}
{
labelList copyOwner(owner.size());
forAll(sortingIndices, sI)
{
copyOwner[sI] = owner[sortingIndices[sI]];
}
owner = copyOwner;
}
{
labelList copyNeighbour(neighbour.size());
forAll(sortingIndices, sI)
{
copyNeighbour[sI] = neighbour[sortingIndices[sI]];
}
neighbour = copyNeighbour;
}
{
faceList copyFaces(faces.size());
forAll(sortingIndices, sI)
{
copyFaces[sI] = faces[sortingIndices[sI]];
}
faces = copyFaces;
}
// Stage 2
sortingIndices = -1;
DynamicList<label> ownerCellJumps;
// Force first owner entry to be a jump
ownerCellJumps.append(0);
for (label o = 1; o < owner.size(); o++)
{
if (owner[o] > owner[o-1])
{
ownerCellJumps.append(o);
}
}
ownerCellJumps.shrink();
forAll(ownerCellJumps, oCJ)
{
label start = ownerCellJumps[oCJ];
label length;
if (oCJ == ownerCellJumps.size() - 1)
{
length = owner.size() - start;
}
else
{
length = ownerCellJumps[oCJ + 1] - start;
}
SubList<label> neighbourBlock(neighbour, length, start);
SortableList<label> sortedNeighbourBlock(neighbourBlock);
forAll(sortedNeighbourBlock, sNB)
{
sortingIndices[start + sNB] =
sortedNeighbourBlock.indices()[sNB] + start;
}
}
// Perform sort
{
labelList copyOwner(owner.size());
forAll(sortingIndices, sI)
{
copyOwner[sI] = owner[sortingIndices[sI]];
}
owner = copyOwner;
}
{
labelList copyNeighbour(neighbour.size());
forAll(sortingIndices, sI)
{
copyNeighbour[sI] = neighbour[sortingIndices[sI]];
}
neighbour = copyNeighbour;
}
{
faceList copyFaces(faces.size());
forAll(sortingIndices, sI)
{
copyFaces[sI] = faces[sortingIndices[sI]];
}
faces = copyFaces;
}
// ~~~~~~~~ add patch information ~~~~~~~~~~~
label nBoundaryFaces = 0;
forAll(patchFaces, p)
{
patchFaces[p].shrink();
patchOwners[p].shrink();
patchSizes[p] = patchFaces[p].size();
patchStarts[p] = nInternalFaces + nBoundaryFaces;
nBoundaryFaces += patchSizes[p];
}
faces.setSize(nInternalFaces + nBoundaryFaces);
owner.setSize(nInternalFaces + nBoundaryFaces);
forAll(patchFaces, p)
{
forAll(patchFaces[p], f)
{
faces[dualFacei] = patchFaces[p][f];
owner[dualFacei] = patchOwners[p][f];
dualFacei++;
}
}
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::conformalVoronoiMesh::conformalVoronoiMesh
@ -126,11 +775,18 @@ Foam::conformalVoronoiMesh::conformalVoronoiMesh
timeCheck();
insertFeaturePoints();
timeCheck();
insertInitialPoints();
timeCheck();
conformToSurface();
timeCheck();
writePoints("allPoints.obj", false);
timeCheck();
writeMesh();
timeCheck();
}
@ -145,7 +801,48 @@ Foam::conformalVoronoiMesh::~conformalVoronoiMesh()
void Foam::conformalVoronoiMesh::timeCheck() const
{
Info<< nl << "--- [ " << runTime_.elapsedCpuTime() << "s ] --- " << endl;
Info<< nl << "--- [ " << runTime_.elapsedCpuTime() << "s, delta "
<< runTime_.cpuTimeIncrement()<< "s ] --- " << endl;
}
void Foam::conformalVoronoiMesh::insertSurfacePointPairs
(
const List<scalar>& surfacePpDist,
const List<point>& surfacePoints,
const List<vector>& surfaceNormals,
const fileName fName
)
{
if
(
surfacePpDist.size() != surfacePoints.size()
|| surfacePpDist.size() != surfaceNormals.size()
)
{
FatalErrorIn("Foam::conformalVoronoiMesh::insertPointPairs")
<< "surfacePpDist, surfacePoints and surfaceNormals are not "
<< "the same size. Sizes"
<< surfacePpDist.size() << ' '
<< surfacePoints.size() << ' '
<< surfaceNormals.size()
<< exit(FatalError);
}
forAll(surfacePoints, p)
{
insertPointPair
(
surfacePpDist[p],
surfacePoints[p],
surfaceNormals[p]
);
}
if (fName != fileName::null)
{
writePoints(fName, surfacePoints);
}
}
@ -203,60 +900,112 @@ void Foam::conformalVoronoiMesh::insertInitialPoints()
void Foam::conformalVoronoiMesh::conformToSurface()
{
Info<< nl << "Conforming to surfaces" << endl;
startOfSurfacePointPairs_ = number_of_vertices();
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Looking up details from a dictionary, in future the will be available
// from a controls class.
const dictionary& cvMeshDict( cvMeshControls_.cvMeshDict());
scalar defaultCellSize
(
cvMeshDict.subDict("motionControl").lookup("defaultCellSize")
readScalar
(
cvMeshDict.subDict("motionControl").lookup("defaultCellSize")
)
);
scalar surfDepthCoeff
(
cvMeshDict.subDict("surfaceConformation").lookup
readScalar
(
"surfacePointSearchDepthCoeff"
cvMeshDict.subDict("surfaceConformation").lookup
(
"surfacePointSearchDepthCoeff"
)
)
);
DynamicList<point> surfacePoints;
DynamicList<point> surfaceNormals;
for
scalar ppDistCoeff
(
Triangulation::Finite_vertices_iterator vit = finite_vertices_begin();
vit != finite_vertices_end();
vit++
)
{
if (vit->internalPoint())
{
point vert(topoint(vit->point()));
// TODO Need to have a function to recover the local cell size, use
// the defaultCellSize for the moment
scalar searchDistanceSqr = sqr(defaultCellSize*surfDepthCoeff);
pointIndexHit pHit = geometryToConformTo_.findNearest
readScalar
(
cvMeshDict.subDict("surfaceConformation").lookup
(
vert,
searchDistanceSqr
);
"pointPairDistanceCoeff"
)
)
);
if (pHit.hit())
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
for(label iterationNo = 0; iterationNo < 1; iterationNo++)
{
DynamicList<scalar> surfacePpDist;
DynamicList<point> surfacePoints;
DynamicList<vector> surfaceNormals;
for
(
Triangulation::Finite_vertices_iterator vit =
finite_vertices_begin();
vit != finite_vertices_end();
vit++
)
{
if (vit->internalPoint())
{
vit->setNearBoundary();
point vert(topoint(vit->point()));
if (dualCellSurfaceIntersection(vit))
// TODO Need to have a function to recover the local cell size,
// use the defaultCellSize for the moment
scalar searchDistanceSqr = Foam::sqr
(
defaultCellSize*surfDepthCoeff
);
pointIndexHit pHit;
vector normal;
geometryToConformTo_.findNearestAndNormal
(
vert,
searchDistanceSqr,
pHit,
normal
);
if (pHit.hit())
{
allNearSurfacePoints.append(vert);
allSurfacePoints.append(pHit.hitPoint());
allSurfaceTris.append(pHit.index());
vit->setNearBoundary();
if (dualCellSurfaceIntersection(vit))
{
surfacePpDist.append(defaultCellSize*ppDistCoeff);
surfacePoints.append(pHit.hitPoint());
surfaceNormals.append(normal);
}
}
}
}
Info<< nl <<iterationNo << ": "
<< number_of_vertices() << ": "
<< surfacePoints.size() << endl;
insertSurfacePointPairs
(
surfacePpDist,
surfacePoints,
surfaceNormals,
fileName
(
"surfaceConformationLocations_" + name(iterationNo) + ".obj"
)
);
}
}

View File

@ -48,6 +48,7 @@ SourceFiles
#include "DynamicList.H"
#include "Time.H"
#include "polyMesh.H"
#include "SortableList.H"
#include "meshTools.H"
#include "triSurfaceTools.H"
#include "mathematicalConstants.H"
@ -122,6 +123,16 @@ class conformalVoronoiMesh
//- Insert a Vb (a typedef of CGAL::indexedVertex<K>)
inline void insertVb(const Vb& v);
//- Insert pairs of points on the surface with the given normals, at the
// specified spacing
void insertSurfacePointPairs
(
const List<scalar>& surfacePpDist,
const List<point>& surfacePoints,
const List<vector>& surfaceNormals,
const fileName fName = fileName::null
);
//- Insert point groups at the feature points.
void insertFeaturePoints();
@ -139,6 +150,18 @@ class conformalVoronoiMesh
const Triangulation::Finite_vertices_iterator& vit
) const;
//- Dual calculation
void calcDualMesh
(
pointField& points,
faceList& faces,
labelList& owner,
labelList& neighbour,
wordList& patchNames,
labelList& patchSizes,
labelList& patchStarts
);
//- Disallow default bitwise copy construct
conformalVoronoiMesh(const conformalVoronoiMesh&);
@ -201,6 +224,25 @@ public:
//- Write Delaunay points to .obj file
void writePoints(const fileName& fName, bool internalOnly) const;
//- Write list of points to file
void writePoints
(
const fileName& fName,
const List<point>& points
) const;
//- Write polyMesh
void writeMesh();
//- Write dual points and faces as .obj file
void writeDual
(
const pointField& points,
const faceList& faces,
const fileName& fName
) const;
};

View File

@ -55,4 +55,123 @@ void Foam::conformalVoronoiMesh::writePoints
}
void Foam::conformalVoronoiMesh::writePoints
(
const fileName& fName,
const List<point>& points
) const
{
Info<< nl << "Writing " << points.size() << " points from pointList to "
<< fName << endl;
OFstream str(fName);
forAll(points, p)
{
meshTools::writeOBJ(str, points[p]);
}
}
void Foam::conformalVoronoiMesh::writeMesh()
{
pointField points(0);
faceList faces(0);
labelList owner(0);
labelList neighbour(0);
wordList patchNames(0);
labelList patchSizes(0);
labelList patchStarts(0);
calcDualMesh
(
points,
faces,
owner,
neighbour,
patchNames,
patchSizes,
patchStarts
);
writeDual(points, faces, "dualMesh.obj");
IOobject io
(
Foam::polyMesh::defaultRegion,
runTime_.constant(),
runTime_,
IOobject::NO_READ,
IOobject::AUTO_WRITE
);
Info<< nl << "Writing polyMesh to constant." << endl;
polyMesh pMesh
(
io,
xferMove(points),
xferMove(faces),
xferMove(owner),
xferMove(neighbour)
);
List<polyPatch*> patches(patchStarts.size());
forAll (patches, p)
{
patches[p] = new polyPatch
(
patchNames[p],
patchSizes[p],
patchStarts[p],
p,
pMesh.boundaryMesh()
);
}
pMesh.addPatches(patches);
if (!pMesh.write())
{
FatalErrorIn("Foam::conformalVoronoiMesh::writeMesh()")
<< "Failed writing polyMesh."
<< exit(FatalError);
}
}
void Foam::conformalVoronoiMesh::writeDual
(
const pointField& points,
const faceList& faces,
const fileName& fName
) const
{
Info<< nl << "Writing dual points and faces to " << fName << endl;
OFstream str(fName);
forAll(points, p)
{
meshTools::writeOBJ(str, points[p]);
}
forAll (faces, f)
{
str<< 'f';
const face& fP = faces[f];
forAll(fP, p)
{
str<< ' ' << fP[p] + 1;
}
str<< nl;
}
}
// ************************************************************************* //

View File

@ -256,4 +256,42 @@ bool Foam::conformationSurfaces::findAnyIntersection
}
void Foam::conformationSurfaces::findNearestAndNormal
(
const point& sample,
scalar nearestDistSqr,
pointIndexHit& pHit,
vector& normal
) const
{
labelList hitSurfaces;
List<pointIndexHit> hitInfo;
searchableSurfacesQueries::findNearest
(
allGeometry_,
surfaces_,
pointField(1, sample),
scalarField(1, nearestDistSqr),
hitSurfaces,
hitInfo
);
pHit = hitInfo[0];
if (pHit.hit())
{
vectorField normals;
// hitSurfaces has returned the index of the entry in surfaces_ that was
// found, not the index of the surface in allGeometry_, translating this
// on access to allGeometry_ for the normal lookup.
allGeometry_[surfaces_[hitSurfaces[0]]].getNormal(hitInfo, normals);
normal = normals[0];
}
}
// ************************************************************************* //

View File

@ -40,6 +40,7 @@ SourceFiles
#include "searchableSurfaces.H"
#include "searchableSurfacesQueries.H"
#include "featureEdgeMesh.H"
#include "triSurface.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
@ -146,6 +147,16 @@ public:
// Finding if the line joining start and end intersects the surface
bool findAnyIntersection(point start, point end) const;
//- Find the nearest point to the sample and return it to the
// pointIndexHit, and the normal at the hit location, if found.
void findNearestAndNormal
(
const point& sample,
scalar nearestDistSqr,
pointIndexHit& pHit,
vector& normal
) const;
// Member Operators