ENH: added HashTable count, filter and generalized toc methods

- Generalized means over filtering table entries based on their keys,
  values, or both.  Either filter (retain), or optionally prune elements
  that satisfy the specified predicate.

  filterKeys and filterValues:
  - Take a unary predicate with the signature

        bool operator()(const Key& k);

  - filterEntries:
    Takes a binary predicate with the signature

        bool operator()(const Key& k, const T& v);

==

  The predicates can be normal class methods, or provide on-the-fly
  using a C++ lambda. For example,

      wordRes goodFields = ...;
      allFieldNames.filterKeys
      (
          [&goodFields](const word& k){ return goodFields.match(k); }
      );

  Note that all classes that can match a string (eg, regExp, keyType,
  wordRe, wordRes) or that are derived from a Foam::string (eg, fileName,
  word) are provided with a corresponding

      bool operator()(const std::string&)

  that either performs a regular expression or a literal match.
  This allows such objects to be used directly as a unary predicate
  when filtering any string hash keys.

  Note that HashSet and hashedWordList both have the proper
  operator() methods that also allow them to be used as a unary
  predicate.

- Similar predicate selection with the following:
    * tocKeys, tocValues, tocEntries
    * countKeys, countValues, countEntries

  except that instead of pruning, there is a simple logic inversion.
This commit is contained in:
Mark Olesen
2017-05-17 10:18:14 +02:00
parent 8d018e7950
commit cf889306d0
8 changed files with 525 additions and 42 deletions

View File

@ -234,6 +234,97 @@ int main()
Info<<"\ntable1: " << table1 << endl;
// Start again
HashTable<scalar> table1start
{
{"aaa", 1.0},
{"aba", 2.0},
{"a_ca", 3.0},
{"ada", 4.0},
{"aeq_", 5.0},
{"aaw", 6.0},
{"abs", 7.0},
{"a_cr", 8.0},
{"adx", 9.0},
{"ae_c", 10.0}
};
table1 = table1start;
Info<< "\ntable has keys: "
<< flatOutput(table1.sortedToc()) << nl;
wordRe matcher(".*_.*", wordRe::REGEX);
table1.filterKeys
(
[&matcher](const word& k){ return matcher.match(k); }
);
Info<< "retain things matching " << matcher << " => "
<< flatOutput(table1.sortedToc()) << nl;
table1 = table1start;
table1.filterKeys
(
[&matcher](const word& k){ return matcher.match(k); },
true
);
Info<< "prune things matching " << matcher << " => "
<< flatOutput(table1.sortedToc()) << nl;
// Same, without a lambda
table1 = table1start;
table1.filterKeys(matcher, true);
Info<< "prune things matching " << matcher << " => "
<< flatOutput(table1.sortedToc()) << nl;
// Same idea, but inverted logic inside the lambda
table1 = table1start;
table1.filterKeys
(
[&matcher](const word& k){ return !matcher.match(k); },
true
);
Info<< "prune things matching " << matcher << " => "
<< flatOutput(table1.sortedToc()) << nl;
table1 = table1start;
Info<< "\ntable:" << table1 << nl;
table1.filterValues
(
[](const scalar& v){ return (v >= 5); }
);
Info<< "\ntable with values >= 5:" << table1 << nl;
table1 = table1start;
Info<< "\ntable:" << table1 << nl;
table1.filterEntries
(
[&matcher](const word& k, const scalar& v)
{
return matcher(k) && (v >= 5);
}
);
Info<< "\ntable with values >= 5 and matching " << matcher
<< table1 << nl;
table1 = table1start;
Info<< "\ntable:" << table1 << nl;
Info<< "has "
<< table1.countValues([](const scalar& v) { return v >= 7; })
<< " values >= 7 with these keys: "
<< table1.tocValues([](const scalar& v) { return v >= 7; })
<< nl;
Info<< "\nDone\n";
return 0;