mirror of
https://develop.openfoam.com/Development/openfoam.git
synced 2025-11-28 03:28:01 +00:00
Moved buoyantSimpleRadiationFoam from tutorials to applications/solvers/heatTransfer
This commit is contained in:
@ -7,8 +7,6 @@ cases="hotRadiationRoom"
|
||||
tutorialPath=`dirname $0`/..
|
||||
. $tutorialPath/CleanFunctions
|
||||
|
||||
wclean $application
|
||||
|
||||
for case in $cases
|
||||
do
|
||||
cleanCase $case
|
||||
|
||||
@ -7,8 +7,6 @@ cases="hotRadiationRoom"
|
||||
tutorialPath=`dirname $0`/..
|
||||
. $tutorialPath/RunFunctions
|
||||
|
||||
compileApplication $currDir $application
|
||||
|
||||
for case in $cases
|
||||
do
|
||||
runApplication blockMesh $case
|
||||
|
||||
@ -1,4 +0,0 @@
|
||||
buoyantSimpleRadiationFoam.C
|
||||
|
||||
EXE = $(FOAM_USER_APPBIN)/buoyantSimpleRadiationFoam
|
||||
|
||||
@ -1,14 +0,0 @@
|
||||
EXE_INC = \
|
||||
-I$(LIB_SRC)/finiteVolume/cfdTools \
|
||||
-I$(LIB_SRC)/finiteVolume/lnInclude \
|
||||
-I$(LIB_SRC)/thermophysicalModels/basic/lnInclude \
|
||||
-I$(LIB_SRC)/thermophysicalModels/radiation/lnInclude \
|
||||
-I$(LIB_SRC)/turbulenceModels
|
||||
|
||||
EXE_LIBS = \
|
||||
-lfiniteVolume \
|
||||
-lmeshTools \
|
||||
-lbasicThermophysicalModels \
|
||||
-lspecie \
|
||||
-lradiation \
|
||||
-lcompressibleTurbulenceModels
|
||||
@ -1,12 +0,0 @@
|
||||
// Solve the Momentum equation
|
||||
|
||||
tmp<fvVectorMatrix> UEqn
|
||||
(
|
||||
fvm::div(phi, U)
|
||||
- fvm::Sp(fvc::div(phi), U)
|
||||
+ turbulence->divDevRhoReff(U)
|
||||
);
|
||||
|
||||
UEqn().relax();
|
||||
|
||||
solve(UEqn() == -fvc::grad(pd) - fvc::grad(rho)*gh);
|
||||
@ -1,89 +0,0 @@
|
||||
/*---------------------------------------------------------------------------*\
|
||||
========= |
|
||||
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
||||
\\ / O peration |
|
||||
\\ / A nd | Copyright (C) 1991-2007 OpenCFD Ltd.
|
||||
\\/ M anipulation |
|
||||
-------------------------------------------------------------------------------
|
||||
License
|
||||
This file is part of OpenFOAM.
|
||||
|
||||
OpenFOAM is free software; you can redistribute it and/or modify it
|
||||
under the terms of the GNU General Public License as published by the
|
||||
Free Software Foundation; either version 2 of the License, or (at your
|
||||
option) any later version.
|
||||
|
||||
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
||||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OpenFOAM; if not, write to the Free Software Foundation,
|
||||
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
|
||||
Application
|
||||
buoyantSimpleRadiationFoam
|
||||
|
||||
Description
|
||||
Steady-state solver for buoyant, turbulent flow of compressible fluids,
|
||||
including radiation, for ventilation and heat-transfer.
|
||||
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
#include "fvCFD.H"
|
||||
#include "basicThermo.H"
|
||||
#include "compressible/turbulenceModel/turbulenceModel.H"
|
||||
#include "fixedGradientFvPatchFields.H"
|
||||
#include "radiationModel.H"
|
||||
|
||||
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
|
||||
# include "setRootCase.H"
|
||||
# include "createTime.H"
|
||||
# include "createMesh.H"
|
||||
# include "readEnvironmentalProperties.H"
|
||||
# include "createFields.H"
|
||||
# include "initContinuityErrs.H"
|
||||
|
||||
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
||||
|
||||
Info<< "\nStarting time loop\n" << endl;
|
||||
|
||||
for (runTime++; !runTime.end(); runTime++)
|
||||
{
|
||||
Info<< "Time = " << runTime.timeName() << nl << endl;
|
||||
|
||||
# include "readSIMPLEControls.H"
|
||||
|
||||
pd.storePrevIter();
|
||||
rho.storePrevIter();
|
||||
|
||||
// Pressure-velocity SIMPLE corrector
|
||||
{
|
||||
# include "UEqn.H"
|
||||
|
||||
# include "hEqn.H"
|
||||
|
||||
# include "pEqn.H"
|
||||
}
|
||||
|
||||
turbulence->correct();
|
||||
|
||||
runTime.write();
|
||||
|
||||
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
|
||||
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
|
||||
<< nl << endl;
|
||||
}
|
||||
|
||||
Info<< "End\n" << endl;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
// ************************************************************************* //
|
||||
@ -1,93 +0,0 @@
|
||||
Info<< "Reading thermophysical properties\n" << endl;
|
||||
|
||||
autoPtr<basicThermo> thermo
|
||||
(
|
||||
basicThermo::New(mesh)
|
||||
);
|
||||
|
||||
volScalarField rho
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"rho",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::NO_READ,
|
||||
IOobject::NO_WRITE
|
||||
),
|
||||
thermo->rho()
|
||||
);
|
||||
|
||||
volScalarField& p = thermo->p();
|
||||
volScalarField& h = thermo->h();
|
||||
const volScalarField& T = thermo->T();
|
||||
|
||||
|
||||
Info<< "Reading field U\n" << endl;
|
||||
volVectorField U
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"U",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::MUST_READ,
|
||||
IOobject::AUTO_WRITE
|
||||
),
|
||||
mesh
|
||||
);
|
||||
|
||||
# include "compressibleCreatePhi.H"
|
||||
|
||||
|
||||
Info<< "Creating turbulence model\n" << endl;
|
||||
autoPtr<compressible::turbulenceModel> turbulence
|
||||
(
|
||||
compressible::turbulenceModel::New
|
||||
(
|
||||
rho,
|
||||
U,
|
||||
phi,
|
||||
thermo()
|
||||
)
|
||||
);
|
||||
|
||||
Info<< "Calculating field g.h\n" << endl;
|
||||
volScalarField gh("gh", g & mesh.C());
|
||||
|
||||
|
||||
dimensionedScalar pRef("pRef", p.dimensions(), 1.0e5);
|
||||
|
||||
Info<< "Creating field pd\n" << endl;
|
||||
volScalarField pd
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"pd",
|
||||
runTime.timeName(),
|
||||
mesh
|
||||
),
|
||||
p - rho*gh - pRef,
|
||||
p.boundaryField().types()
|
||||
);
|
||||
|
||||
|
||||
label pdRefCell = 0;
|
||||
scalar pdRefValue = 0.0;
|
||||
setRefCell
|
||||
(
|
||||
pd,
|
||||
mesh.solutionDict().subDict("SIMPLE"),
|
||||
pdRefCell,
|
||||
pdRefValue
|
||||
);
|
||||
|
||||
|
||||
Info<< "Creating radiation model\n" << endl;
|
||||
autoPtr<radiation::radiationModel> radiation
|
||||
(
|
||||
radiation::radiationModel::New(T)
|
||||
);
|
||||
|
||||
|
||||
dimensionedScalar initialMass = fvc::domainIntegrate(rho);
|
||||
@ -1,20 +0,0 @@
|
||||
{
|
||||
fvScalarMatrix hEqn
|
||||
(
|
||||
fvm::div(phi, h)
|
||||
- fvm::Sp(fvc::div(phi), h)
|
||||
- fvm::laplacian(turbulence->alphaEff(), h)
|
||||
==
|
||||
fvc::div(phi/fvc::interpolate(rho)*fvc::interpolate(p))
|
||||
- p*fvc::div(phi/fvc::interpolate(rho))
|
||||
+ radiation->Sh(thermo())
|
||||
);
|
||||
|
||||
hEqn.relax();
|
||||
|
||||
hEqn.solve();
|
||||
|
||||
thermo->correct();
|
||||
|
||||
radiation->correct();
|
||||
}
|
||||
@ -1,47 +0,0 @@
|
||||
pd.boundaryField() ==
|
||||
p.boundaryField() - rho.boundaryField()*gh.boundaryField() - pRef.value();
|
||||
|
||||
volScalarField rUA = 1.0/UEqn().A();
|
||||
U = rUA*UEqn().H();
|
||||
UEqn.clear();
|
||||
phi = fvc::interpolate(rho)*(fvc::interpolate(U) & mesh.Sf());
|
||||
bool closedVolume = adjustPhi(phi, U, p);
|
||||
phi -= fvc::interpolate(rho*gh*rUA)*fvc::snGrad(rho)*mesh.magSf();
|
||||
|
||||
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
|
||||
{
|
||||
fvScalarMatrix pdEqn
|
||||
(
|
||||
fvm::laplacian(rho*rUA, pd) == fvc::div(phi)
|
||||
);
|
||||
|
||||
pdEqn.setReference(pdRefCell, pdRefValue);
|
||||
pdEqn.solve();
|
||||
|
||||
if (nonOrth == nNonOrthCorr)
|
||||
{
|
||||
phi -= pdEqn.flux();
|
||||
}
|
||||
}
|
||||
|
||||
#include "continuityErrs.H"
|
||||
|
||||
// Explicitly relax pressure for momentum corrector
|
||||
pd.relax();
|
||||
|
||||
p = pd + rho*gh + pRef;
|
||||
|
||||
U -= rUA*(fvc::grad(pd) + fvc::grad(rho)*gh);
|
||||
U.correctBoundaryConditions();
|
||||
|
||||
// For closed-volume cases adjust the pressure and density levels
|
||||
// to obey overall mass continuity
|
||||
if (closedVolume)
|
||||
{
|
||||
p += (initialMass - fvc::domainIntegrate(thermo->psi()*p))
|
||||
/fvc::domainIntegrate(thermo->psi());
|
||||
}
|
||||
|
||||
rho = thermo->rho();
|
||||
rho.relax();
|
||||
Info<< "rho max/min : " << max(rho).value() << " " << min(rho).value() << endl;
|
||||
Reference in New Issue
Block a user