ENH: decomposePar,reconsturctPar: added -allRegions option

This commit is contained in:
mattijs
2012-09-26 12:08:43 +01:00
parent e29c0b1266
commit da17674f0f
9 changed files with 1399 additions and 1287 deletions

View File

@ -1,11 +1,13 @@
EXE_INC = \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/lagrangian/basic/lnInclude \
-I$(LIB_SRC)/parallel/reconstruct/reconstruct/lnInclude
-I$(LIB_SRC)/parallel/reconstruct/reconstruct/lnInclude \
-I$(LIB_SRC)/regionModels/regionModel/lnInclude
EXE_LIBS = \
-lfiniteVolume \
-lgenericPatchFields \
-llagrangian \
-lmeshTools \
-lreconstruct
-lreconstruct \
-lregionModels

View File

@ -25,7 +25,7 @@ Application
reconstructPar
Description
Reconstructs a mesh and fields of a case that is decomposed for parallel
Reconstructs fields of a case that is decomposed for parallel
execution of OpenFOAM.
\*---------------------------------------------------------------------------*/
@ -36,6 +36,7 @@ Description
#include "fvCFD.H"
#include "IOobjectList.H"
#include "processorMeshes.H"
#include "regionProperties.H"
#include "fvFieldReconstructor.H"
#include "pointFieldReconstructor.H"
#include "reconstructLagrangian.H"
@ -44,11 +45,21 @@ Description
int main(int argc, char *argv[])
{
argList::addNote
(
"Reconstruct fields of a parallel case"
);
// enable -constant ... if someone really wants it
// enable -zeroTime to prevent accidentally trashing the initial fields
timeSelector::addOptions(true, true);
argList::noParallel();
# include "addRegionOption.H"
argList::addBoolOption
(
"allRegions",
"operate on all regions in regionProperties"
);
argList::addOption
(
"fields",
@ -101,7 +112,8 @@ int main(int argc, char *argv[])
}
const bool newTimes = args.optionFound("newTimes");
const bool newTimes = args.optionFound("newTimes");
const bool allRegions = args.optionFound("allRegions");
// determine the processor count directly
@ -159,414 +171,487 @@ int main(int argc, char *argv[])
}
# include "createNamedMesh.H"
word regionDir = word::null;
if (regionName != fvMesh::defaultRegion)
{
regionDir = regionName;
}
// Set all times on processor meshes equal to reconstructed mesh
forAll(databases, procI)
{
databases[procI].setTime(runTime.timeName(), runTime.timeIndex());
}
// Read all meshes and addressing to reconstructed mesh
processorMeshes procMeshes(databases, regionName);
// check face addressing for meshes that have been decomposed
// with a very old foam version
# include "checkFaceAddressingComp.H"
// Loop over all times
forAll(timeDirs, timeI)
wordList regionNames;
wordList regionDirs;
if (allRegions)
{
if (newTimes)
Info<< "Reconstructing for all regions in regionProperties" << nl
<< endl;
regionProperties rp(runTime);
forAllConstIter(HashTable<wordList>, rp, iter)
{
// Compare on timeName, not value
bool foundTime = false;
forAll(masterTimeDirs, i)
const wordList& regions = iter();
forAll(regions, i)
{
if (masterTimeDirs[i].name() == timeDirs[timeI].name())
if (findIndex(regionNames, regions[i]) == -1)
{
foundTime = true;
break;
regionNames.append(regions[i]);
}
}
if (foundTime)
}
regionDirs = regionNames;
}
else
{
word regionName;
if (args.optionReadIfPresent("region", regionName))
{
regionNames = wordList(1, regionName);
regionDirs = regionNames;
}
else
{
regionNames = wordList(1, fvMesh::defaultRegion);
regionDirs = wordList(1, word::null);
}
}
forAll(regionNames, regionI)
{
const word& regionName = regionNames[regionI];
const word& regionDir = regionDirs[regionI];
Info<< "\n\nReconstructing fields for mesh " << regionName << nl
<< endl;
fvMesh mesh
(
IOobject
(
regionName,
runTime.timeName(),
runTime,
Foam::IOobject::MUST_READ
)
);
// Read all meshes and addressing to reconstructed mesh
processorMeshes procMeshes(databases, regionName);
// check face addressing for meshes that have been decomposed
// with a very old foam version
# include "checkFaceAddressingComp.H"
// Loop over all times
forAll(timeDirs, timeI)
{
if (newTimes)
{
Info<< "Skipping time " << timeDirs[timeI].name()
<< endl << endl;
continue;
}
}
// Set time for global database
runTime.setTime(timeDirs[timeI], timeI);
Info<< "Time = " << runTime.timeName() << endl << endl;
// Set time for all databases
forAll(databases, procI)
{
databases[procI].setTime(timeDirs[timeI], timeI);
}
// Check if any new meshes need to be read.
fvMesh::readUpdateState meshStat = mesh.readUpdate();
fvMesh::readUpdateState procStat = procMeshes.readUpdate();
if (procStat == fvMesh::POINTS_MOVED)
{
// Reconstruct the points for moving mesh cases and write them out
procMeshes.reconstructPoints(mesh);
}
else if (meshStat != procStat)
{
WarningIn(args.executable())
<< "readUpdate for the reconstructed mesh:" << meshStat << nl
<< "readUpdate for the processor meshes :" << procStat << nl
<< "These should be equal or your addressing"
<< " might be incorrect."
<< " Please check your time directories for any "
<< "mesh directories." << endl;
}
// Get list of objects from processor0 database
IOobjectList objects(procMeshes.meshes()[0], databases[0].timeName());
{
// If there are any FV fields, reconstruct them
Info<< "Reconstructing FV fields" << nl << endl;
fvFieldReconstructor fvReconstructor
(
mesh,
procMeshes.meshes(),
procMeshes.faceProcAddressing(),
procMeshes.cellProcAddressing(),
procMeshes.boundaryProcAddressing()
);
fvReconstructor.reconstructFvVolumeInternalFields<scalar>
(
objects,
selectedFields
);
fvReconstructor.reconstructFvVolumeInternalFields<vector>
(
objects,
selectedFields
);
fvReconstructor.reconstructFvVolumeInternalFields<sphericalTensor>
(
objects,
selectedFields
);
fvReconstructor.reconstructFvVolumeInternalFields<symmTensor>
(
objects,
selectedFields
);
fvReconstructor.reconstructFvVolumeInternalFields<tensor>
(
objects,
selectedFields
);
fvReconstructor.reconstructFvVolumeFields<scalar>
(
objects,
selectedFields
);
fvReconstructor.reconstructFvVolumeFields<vector>
(
objects,
selectedFields
);
fvReconstructor.reconstructFvVolumeFields<sphericalTensor>
(
objects,
selectedFields
);
fvReconstructor.reconstructFvVolumeFields<symmTensor>
(
objects,
selectedFields
);
fvReconstructor.reconstructFvVolumeFields<tensor>
(
objects,
selectedFields
);
fvReconstructor.reconstructFvSurfaceFields<scalar>
(
objects,
selectedFields
);
fvReconstructor.reconstructFvSurfaceFields<vector>
(
objects,
selectedFields
);
fvReconstructor.reconstructFvSurfaceFields<sphericalTensor>
(
objects,
selectedFields
);
fvReconstructor.reconstructFvSurfaceFields<symmTensor>
(
objects,
selectedFields
);
fvReconstructor.reconstructFvSurfaceFields<tensor>
(
objects,
selectedFields
);
if (fvReconstructor.nReconstructed() == 0)
{
Info<< "No FV fields" << nl << endl;
}
}
{
Info<< "Reconstructing point fields" << nl << endl;
const pointMesh& pMesh = pointMesh::New(mesh);
PtrList<pointMesh> pMeshes(procMeshes.meshes().size());
forAll(pMeshes, procI)
{
pMeshes.set(procI, new pointMesh(procMeshes.meshes()[procI]));
// Compare on timeName, not value
bool foundTime = false;
forAll(masterTimeDirs, i)
{
if (masterTimeDirs[i].name() == timeDirs[timeI].name())
{
foundTime = true;
break;
}
}
if (foundTime)
{
Info<< "Skipping time " << timeDirs[timeI].name()
<< endl << endl;
continue;
}
}
pointFieldReconstructor pointReconstructor
(
pMesh,
pMeshes,
procMeshes.pointProcAddressing(),
procMeshes.boundaryProcAddressing()
);
pointReconstructor.reconstructFields<scalar>
(
objects,
selectedFields
);
pointReconstructor.reconstructFields<vector>
(
objects,
selectedFields
);
pointReconstructor.reconstructFields<sphericalTensor>
(
objects,
selectedFields
);
pointReconstructor.reconstructFields<symmTensor>
(
objects,
selectedFields
);
pointReconstructor.reconstructFields<tensor>
(
objects,
selectedFields
);
// Set time for global database
runTime.setTime(timeDirs[timeI], timeI);
if (pointReconstructor.nReconstructed() == 0)
{
Info<< "No point fields" << nl << endl;
}
}
// If there are any clouds, reconstruct them.
// The problem is that a cloud of size zero will not get written so
// in pass 1 we determine the cloud names and per cloud name the
// fields. Note that the fields are stored as IOobjectList from
// the first processor that has them. They are in pass2 only used
// for name and type (scalar, vector etc).
if (!noLagrangian)
{
HashTable<IOobjectList> cloudObjects;
Info<< "Time = " << runTime.timeName() << endl << endl;
// Set time for all databases
forAll(databases, procI)
{
fileNameList cloudDirs
databases[procI].setTime(timeDirs[timeI], timeI);
}
// Check if any new meshes need to be read.
fvMesh::readUpdateState meshStat = mesh.readUpdate();
fvMesh::readUpdateState procStat = procMeshes.readUpdate();
if (procStat == fvMesh::POINTS_MOVED)
{
// Reconstruct the points for moving mesh cases and write
// them out
procMeshes.reconstructPoints(mesh);
}
else if (meshStat != procStat)
{
WarningIn(args.executable())
<< "readUpdate for the reconstructed mesh:"
<< meshStat << nl
<< "readUpdate for the processor meshes :"
<< procStat << nl
<< "These should be equal or your addressing"
<< " might be incorrect."
<< " Please check your time directories for any "
<< "mesh directories." << endl;
}
// Get list of objects from processor0 database
IOobjectList objects
(
procMeshes.meshes()[0],
databases[0].timeName()
);
{
// If there are any FV fields, reconstruct them
Info<< "Reconstructing FV fields" << nl << endl;
fvFieldReconstructor fvReconstructor
(
readDir
(
databases[procI].timePath() / regionDir / cloud::prefix,
fileName::DIRECTORY
)
mesh,
procMeshes.meshes(),
procMeshes.faceProcAddressing(),
procMeshes.cellProcAddressing(),
procMeshes.boundaryProcAddressing()
);
forAll(cloudDirs, i)
fvReconstructor.reconstructFvVolumeInternalFields<scalar>
(
objects,
selectedFields
);
fvReconstructor.reconstructFvVolumeInternalFields<vector>
(
objects,
selectedFields
);
fvReconstructor.reconstructFvVolumeInternalFields
<sphericalTensor>
(
objects,
selectedFields
);
fvReconstructor.reconstructFvVolumeInternalFields<symmTensor>
(
objects,
selectedFields
);
fvReconstructor.reconstructFvVolumeInternalFields<tensor>
(
objects,
selectedFields
);
fvReconstructor.reconstructFvVolumeFields<scalar>
(
objects,
selectedFields
);
fvReconstructor.reconstructFvVolumeFields<vector>
(
objects,
selectedFields
);
fvReconstructor.reconstructFvVolumeFields<sphericalTensor>
(
objects,
selectedFields
);
fvReconstructor.reconstructFvVolumeFields<symmTensor>
(
objects,
selectedFields
);
fvReconstructor.reconstructFvVolumeFields<tensor>
(
objects,
selectedFields
);
fvReconstructor.reconstructFvSurfaceFields<scalar>
(
objects,
selectedFields
);
fvReconstructor.reconstructFvSurfaceFields<vector>
(
objects,
selectedFields
);
fvReconstructor.reconstructFvSurfaceFields<sphericalTensor>
(
objects,
selectedFields
);
fvReconstructor.reconstructFvSurfaceFields<symmTensor>
(
objects,
selectedFields
);
fvReconstructor.reconstructFvSurfaceFields<tensor>
(
objects,
selectedFields
);
if (fvReconstructor.nReconstructed() == 0)
{
// Check if we already have cloud objects for this cloudname
HashTable<IOobjectList>::const_iterator iter =
cloudObjects.find(cloudDirs[i]);
Info<< "No FV fields" << nl << endl;
}
}
if (iter == cloudObjects.end())
{
// Do local scan for valid cloud objects
IOobjectList sprayObjs
{
Info<< "Reconstructing point fields" << nl << endl;
const pointMesh& pMesh = pointMesh::New(mesh);
PtrList<pointMesh> pMeshes(procMeshes.meshes().size());
forAll(pMeshes, procI)
{
pMeshes.set
(
procI,
new pointMesh(procMeshes.meshes()[procI])
);
}
pointFieldReconstructor pointReconstructor
(
pMesh,
pMeshes,
procMeshes.pointProcAddressing(),
procMeshes.boundaryProcAddressing()
);
pointReconstructor.reconstructFields<scalar>
(
objects,
selectedFields
);
pointReconstructor.reconstructFields<vector>
(
objects,
selectedFields
);
pointReconstructor.reconstructFields<sphericalTensor>
(
objects,
selectedFields
);
pointReconstructor.reconstructFields<symmTensor>
(
objects,
selectedFields
);
pointReconstructor.reconstructFields<tensor>
(
objects,
selectedFields
);
if (pointReconstructor.nReconstructed() == 0)
{
Info<< "No point fields" << nl << endl;
}
}
// If there are any clouds, reconstruct them.
// The problem is that a cloud of size zero will not get written so
// in pass 1 we determine the cloud names and per cloud name the
// fields. Note that the fields are stored as IOobjectList from
// the first processor that has them. They are in pass2 only used
// for name and type (scalar, vector etc).
if (!noLagrangian)
{
HashTable<IOobjectList> cloudObjects;
forAll(databases, procI)
{
fileNameList cloudDirs
(
readDir
(
procMeshes.meshes()[procI],
databases[procI].timeName(),
cloud::prefix/cloudDirs[i]
);
databases[procI].timePath()
/ regionDir
/ cloud::prefix,
fileName::DIRECTORY
)
);
IOobject* positionsPtr = sprayObjs.lookup("positions");
forAll(cloudDirs, i)
{
// Check if we already have cloud objects for this
// cloudname
HashTable<IOobjectList>::const_iterator iter =
cloudObjects.find(cloudDirs[i]);
if (positionsPtr)
if (iter == cloudObjects.end())
{
cloudObjects.insert(cloudDirs[i], sprayObjs);
// Do local scan for valid cloud objects
IOobjectList sprayObjs
(
procMeshes.meshes()[procI],
databases[procI].timeName(),
cloud::prefix/cloudDirs[i]
);
IOobject* positionsPtr = sprayObjs.lookup
(
"positions"
);
if (positionsPtr)
{
cloudObjects.insert(cloudDirs[i], sprayObjs);
}
}
}
}
}
if (cloudObjects.size())
{
// Pass2: reconstruct the cloud
forAllConstIter(HashTable<IOobjectList>, cloudObjects, iter)
if (cloudObjects.size())
{
const word cloudName = string::validate<word>(iter.key());
// Pass2: reconstruct the cloud
forAllConstIter(HashTable<IOobjectList>, cloudObjects, iter)
{
const word cloudName = string::validate<word>
(
iter.key()
);
// Objects (on arbitrary processor)
const IOobjectList& sprayObjs = iter();
// Objects (on arbitrary processor)
const IOobjectList& sprayObjs = iter();
Info<< "Reconstructing lagrangian fields for cloud "
<< cloudName << nl << endl;
Info<< "Reconstructing lagrangian fields for cloud "
<< cloudName << nl << endl;
reconstructLagrangianPositions
(
mesh,
cloudName,
procMeshes.meshes(),
procMeshes.faceProcAddressing(),
procMeshes.cellProcAddressing()
);
reconstructLagrangianFields<label>
(
cloudName,
mesh,
procMeshes.meshes(),
sprayObjs,
selectedLagrangianFields
);
reconstructLagrangianFieldFields<label>
(
cloudName,
mesh,
procMeshes.meshes(),
sprayObjs,
selectedLagrangianFields
);
reconstructLagrangianFields<scalar>
(
cloudName,
mesh,
procMeshes.meshes(),
sprayObjs,
selectedLagrangianFields
);
reconstructLagrangianFieldFields<scalar>
(
cloudName,
mesh,
procMeshes.meshes(),
sprayObjs,
selectedLagrangianFields
);
reconstructLagrangianFields<vector>
(
cloudName,
mesh,
procMeshes.meshes(),
sprayObjs,
selectedLagrangianFields
);
reconstructLagrangianFieldFields<vector>
(
cloudName,
mesh,
procMeshes.meshes(),
sprayObjs,
selectedLagrangianFields
);
reconstructLagrangianFields<sphericalTensor>
(
cloudName,
mesh,
procMeshes.meshes(),
sprayObjs,
selectedLagrangianFields
);
reconstructLagrangianFieldFields<sphericalTensor>
(
cloudName,
mesh,
procMeshes.meshes(),
sprayObjs,
selectedLagrangianFields
);
reconstructLagrangianFields<symmTensor>
(
cloudName,
mesh,
procMeshes.meshes(),
sprayObjs,
selectedLagrangianFields
);
reconstructLagrangianFieldFields<symmTensor>
(
cloudName,
mesh,
procMeshes.meshes(),
sprayObjs,
selectedLagrangianFields
);
reconstructLagrangianFields<tensor>
(
cloudName,
mesh,
procMeshes.meshes(),
sprayObjs,
selectedLagrangianFields
);
reconstructLagrangianFieldFields<tensor>
(
cloudName,
mesh,
procMeshes.meshes(),
sprayObjs,
selectedLagrangianFields
);
reconstructLagrangianPositions
(
mesh,
cloudName,
procMeshes.meshes(),
procMeshes.faceProcAddressing(),
procMeshes.cellProcAddressing()
);
reconstructLagrangianFields<label>
(
cloudName,
mesh,
procMeshes.meshes(),
sprayObjs,
selectedLagrangianFields
);
reconstructLagrangianFieldFields<label>
(
cloudName,
mesh,
procMeshes.meshes(),
sprayObjs,
selectedLagrangianFields
);
reconstructLagrangianFields<scalar>
(
cloudName,
mesh,
procMeshes.meshes(),
sprayObjs,
selectedLagrangianFields
);
reconstructLagrangianFieldFields<scalar>
(
cloudName,
mesh,
procMeshes.meshes(),
sprayObjs,
selectedLagrangianFields
);
reconstructLagrangianFields<vector>
(
cloudName,
mesh,
procMeshes.meshes(),
sprayObjs,
selectedLagrangianFields
);
reconstructLagrangianFieldFields<vector>
(
cloudName,
mesh,
procMeshes.meshes(),
sprayObjs,
selectedLagrangianFields
);
reconstructLagrangianFields<sphericalTensor>
(
cloudName,
mesh,
procMeshes.meshes(),
sprayObjs,
selectedLagrangianFields
);
reconstructLagrangianFieldFields<sphericalTensor>
(
cloudName,
mesh,
procMeshes.meshes(),
sprayObjs,
selectedLagrangianFields
);
reconstructLagrangianFields<symmTensor>
(
cloudName,
mesh,
procMeshes.meshes(),
sprayObjs,
selectedLagrangianFields
);
reconstructLagrangianFieldFields<symmTensor>
(
cloudName,
mesh,
procMeshes.meshes(),
sprayObjs,
selectedLagrangianFields
);
reconstructLagrangianFields<tensor>
(
cloudName,
mesh,
procMeshes.meshes(),
sprayObjs,
selectedLagrangianFields
);
reconstructLagrangianFieldFields<tensor>
(
cloudName,
mesh,
procMeshes.meshes(),
sprayObjs,
selectedLagrangianFields
);
}
}
else
{
Info<< "No lagrangian fields" << nl << endl;
}
}
else
{
Info<< "No lagrangian fields" << nl << endl;
}
}
}
// If there are any "uniform" directories copy them from
// the master processor
// If there are any "uniform" directories copy them from
// the master processor
forAll(timeDirs, timeI)
{
fileName uniformDir0 = databases[0].timePath()/"uniform";
if (isDir(uniformDir0))
{