DOC: DragForce: improve header file documentation

This commit is contained in:
Kutalmis Bercin
2021-11-02 16:52:11 +00:00
parent b7a1975ecd
commit eab0a11079
6 changed files with 547 additions and 29 deletions

View File

@ -6,6 +6,7 @@
\\/ M anipulation | \\/ M anipulation |
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
Copyright (C) 2014-2017 OpenFOAM Foundation Copyright (C) 2014-2017 OpenFOAM Foundation
Copyright (C) 2021 OpenCFD Ltd.
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
License License
This file is part of OpenFOAM. This file is part of OpenFOAM.
@ -30,16 +31,89 @@ Group
grpLagrangianIntermediateForceSubModels grpLagrangianIntermediateForceSubModels
Description Description
Drag model based on assumption of distorted spheres according to: Particle-drag model wherein drag forces (per unit carrier-fluid velocity)
are dynamically computed by using \c sphereDrag model; however, are
corrected for particle distortion by linearly varying the drag between of
a sphere (i.e. \c sphereDrag) and a value of 1.54 corresponding to a disk.
\f[
\mathrm{F}_\mathrm{D} =
\frac{3}{4}
\frac{\mu_c\,\mathrm{C}_\mathrm{D}\,\mathrm{Re}_p}{\rho_p \, d_p^2}
\f]
with
\f[
\mathrm{C}_\mathrm{D} =
\mathrm{C}_{\mathrm{D, sphere}} \left( 1 + 2.632 y \right)
\f]
where
\vartable
\mathrm{F}_\mathrm{D} | Drag force per carrier-fluid velocity [kg/s]
\mathrm{C}_\mathrm{D} | Particle drag coefficient
\mathrm{C}_{\mathrm{D, sphere}} | Sphere drag coefficient
\mathrm{Re}_p | Particle Reynolds number
\rho_p | Particle mass density
d_p | Particle diameter
y | Level of distortion determined by other models internally
\endvartable
Constraints:
- Applicable to particles with a spatially homogeneous distribution.
- \f$ 1 \geq y \geq 0 \f$
References:
\verbatim \verbatim
"Effects of Drop Drag and Breakup on Fuel Sprays" Standard model:
Liu, A.B., Mather, D., Reitz, R.D., Putnam, A. (1961).
SAE Paper 930072, Integratable form of droplet drag coefficient.
SAE Transactions, Vol. 102, Section 3, Journal of Engines, 1993, ARS Journal, 31(10), 1467-1468.
pp. 63-95
Standard model (tag:AOB):
Amsden, A. A., O'Rourke, P. J., & Butler, T. D. (1989).
KIVA-II: A computer program for chemically
reactive flows with sprays (No. LA-11560-MS).
Los Alamos National Lab.(LANL), Los Alamos, NM (United States).
DOI:10.2172/6228444
Expression correcting drag for particle distortion (tag:LMR):
Liu, A. B., Mather, D., & Reitz, R. D. (1993).
Modeling the effects of drop drag
and breakup on fuel sprays.
SAE Transactions, 83-95.
DOI:10.4271/930072
\endverbatim \endverbatim
Usage
Minimal example by using \c constant/\<CloudProperties\>:
\verbatim
subModels
{
particleForces
{
distortedSphereDrag;
}
}
\endverbatim
where the entries mean:
\table
Property | Description | Type | Reqd | Deflt
type | Type name: distortedSphereDrag | word | yes | -
\endtable
Note
- \f$\mathrm{F}_\mathrm{D}\f$ is weighted with the particle mass
at the stage of a function return, so that it can later be normalised
with the effective mass, if necessary (e.g. when using virtual-mass forces).
See also
- Foam::SphereDragForce
SourceFiles
DistortedSphereDragForce.C
\*---------------------------------------------------------------------------*/ \*---------------------------------------------------------------------------*/
#ifndef DistortedSphereDragForce_H #ifndef DistortedSphereDragForce_H

View File

@ -6,6 +6,7 @@
\\/ M anipulation | \\/ M anipulation |
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
Copyright (C) 2013-2017 OpenFOAM Foundation Copyright (C) 2013-2017 OpenFOAM Foundation
Copyright (C) 2021 OpenCFD Ltd.
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
License License
This file is part of OpenFOAM. This file is part of OpenFOAM.
@ -30,7 +31,112 @@ Group
grpLagrangianIntermediateForceSubModels grpLagrangianIntermediateForceSubModels
Description Description
Ergun-Wen-Yu drag model for solid spheres. Particle-drag model wherein drag forces (per unit carrier-fluid
velocity) are dynamically computed based on the Gidaspow drag model
which is a switch-like combination of the Wen-Yu and Ergun drag models.
\f[
\mathrm{F}_{\mathrm{D}, Wen-Yu} =
\frac{3}{4}
\frac{(1 - \alpha_c) \, \mu_c \, \alpha_c \, \mathrm{Re}_p }{d_p^2}
\mathrm{C}_\mathrm{D} \, \alpha_c^{-2.65}
\f]
\f[
\mathrm{F}_{\mathrm{D}, Ergun} =
\left(150 \frac{1-\alpha_c}{\alpha_c} + 1.75 \mathrm{Re}_p \right)
\frac{(1-\alpha_c) \, \mu_c}{d_p^2}
\f]
\f[
\mathrm{F}_\mathrm{D} = \mathrm{F}_{\mathrm{D}, Wen-Yu}
\quad \mathrm{if} \quad \alpha_c \geq 0.8
\f]
\f[
\mathrm{F}_\mathrm{D} = \mathrm{F}_{\mathrm{D}, Ergun}
\quad \mathrm{if} \quad \alpha_c < 0.8
\f]
with
\f[
\mathrm{Re}_p =
\frac{\rho_c \, | \mathbf{u}_\mathrm{rel} | \, d_p}{\mu_c}
\f]
where
\vartable
\mathrm{F}_\mathrm{D} | Drag force per carrier-fluid velocity [kg/s]
\mathrm{C}_\mathrm{D} | Particle drag coefficient
\mathrm{Re}_p | Particle Reynolds number
\mu_c | Dynamic viscosity of carrier at the cell occupying particle
d_p | Particle diameter
\rho_c | Density of carrier at the cell occupying particle
\mathbf{u}_\mathrm{rel} | Relative velocity between particle and carrier
\alpha_c | Volume fraction of carrier fluid
\endvartable
References:
\verbatim
Standard model (tag:G):
Gidaspow, D. (1994).
Multiphase flow and fluidization:
continuum and kinetic theory descriptions.
Academic press.
Drag-coefficient model:
Schiller, L., & Naumann, A. (1935).
Über die grundlegenden Berechnungen bei der Schwerkraftaufbereitung.
Z. Ver. Dtsch. Ing., 77: 318326.
Expressions (tags:ZZB, GLSLR), (Eq.16-18, Table 3):
Zhou, L., Zhang, L., Bai, L., Shi, W.,
Li, W., Wang, C., & Agarwal, R. (2017).
Experimental study and transient CFD/DEM simulation in
a fluidized bed based on different drag models.
RSC advances, 7(21), 12764-12774.
DOI:10.1039/C6RA28615A
Gao, X., Li, T., Sarkar, A., Lu, L., & Rogers, W. A. (2018).
Development and validation of an enhanced filtered drag model
for simulating gas-solid fluidization of Geldart A particles
in all flow regimes.
Chemical Engineering Science, 184, 33-51.
DOI:10.1016/j.ces.2018.03.038
\endverbatim
Usage
Minimal example by using \c constant/\<CloudProperties\>:
\verbatim
subModels
{
particleForces
{
ErgunWenYuDrag
{
alphac <alphacName>; // e.g. alpha.air
}
}
}
\endverbatim
where the entries mean:
\table
Property | Description | Type | Reqd | Deflt
type | Type name: ErgunWenYuDrag | word | yes | -
alphac | Name of carrier fluid | word | yes | -
\endtable
Note
- \f$\mathrm{F}_\mathrm{D}\f$ is weighted with the particle mass/density
at the stage of a function return, so that it can later be normalised
with the effective mass, if necessary (e.g. when using virtual-mass forces).
See also
- Foam::WenYuDragForce
SourceFiles
ErgunWenYuDragForce.C
\*---------------------------------------------------------------------------*/ \*---------------------------------------------------------------------------*/

View File

@ -6,6 +6,7 @@
\\/ M anipulation | \\/ M anipulation |
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
Copyright (C) 2011-2017 OpenFOAM Foundation Copyright (C) 2011-2017 OpenFOAM Foundation
Copyright (C) 2021 OpenCFD Ltd.
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
License License
This file is part of OpenFOAM. This file is part of OpenFOAM.
@ -30,35 +31,114 @@ Group
grpLagrangianIntermediateForceSubModels grpLagrangianIntermediateForceSubModels
Description Description
Drag model for non-spherical particles. Particle-drag model wherein drag forces (per unit carrier-fluid
velocity) are dynamically computed based on empirical expressions using
a four-parameter general drag correlation for non-spherical particles.
Takes the form of \f[
\mathrm{F}_\mathrm{D} =
\frac{3}{4}
\frac{\mu_c\,\mathrm{C}_\mathrm{D}\,\mathrm{Re}_p}{\rho_p \, d_p^2}
\f]
with
24.0/Re*(1.0 + a_*pow(Re, b_)) + Re*c_/(Re + d_); \f[
\mathrm{C}_\mathrm{D} =
\frac{24}{\mathrm{Re}_p} \left( 1 + A \, \mathrm{Re}_p^B \right)
+ \frac{C \, \mathrm{Re}_p}{D + \mathrm{Re}_p}
\f]
where
Where a(phi), b(phi), c(phi) and d(phi) are model coefficients, with phi \f[
defined as: A = \exp(2.3288 - 6.4581\phi + 2.4486 \phi^2)
\f]
area of sphere with same volume as particle \f[
phi = ------------------------------------------- B = 0.0964 + 0.5565\phi
actual particle area \f]
Equation used is Eqn (11) of reference below - good to within 2 to 4 % of \f[
RMS values from experiment. C = \exp(4.9050 - 13.8944\phi + 18.4222\phi^2 - 10.2599 \phi^3)
\f]
H and L also give a simplified model with greater error compared to \f[
results from experiment - Eqn 12 - but since phi is presumed D = \exp(1.4681 + 12.2584\phi - 20.7322\phi^2 + 15.8855\phi^3)
constant, it offers little benefit. \f]
Reference: \f[
\phi = \frac{A_p}{A_a}
\f]
\f[
\mathrm{Re}_p =
\frac{\rho_c \, | \mathbf{u}_\mathrm{rel} | \, d_p}{\mu_c}
\f]
where
\vartable
\mathrm{F}_\mathrm{D} | Drag force per carrier-fluid velocity [kg/s]
\mathrm{C}_\mathrm{D} | Particle drag coefficient
\mathrm{Re}_p | Particle Reynolds number
\rho_p | Particle mass density
\mu_c | Dynamic viscosity of carrier at the cell occupying particle
d_p | Particle diameter
\rho_c | Density of carrier at the cell occupying particle
\mathbf{u}_\mathrm{rel} | Relative velocity between particle and carrier
A_p | Surface area of sphere with the same volume as the particle
A_a | Actual surface area of the particle
\phi | Ratio of surface areas
\endvartable
Constraints:
- Applicable to particles with a spatially homogeneous distribution.
- \f$ 1 \geq \phi > 0 \f$
References:
\verbatim \verbatim
"Drag coefficient and terminal velocity of spherical and nonspherical Standard model (tag:HL), (Eq. 4,10-11):
particles" Haider, A., & Levenspiel, O. (1989).
A. Haider and O. Levenspiel, Drag coefficient and terminal velocity of
Powder Technology spherical and nonspherical particles.
Volume 58, Issue 1, May 1989, Pages 63-70 Powder technology, 58(1), 63-70.
DOI:10.1016/0032-5910(89)80008-7
\endverbatim \endverbatim
Usage
Minimal example by using \c constant/\<CloudProperties\>:
\verbatim
subModels
{
particleForces
{
nonSphereDrag
{
phi <phi>;
}
}
}
\endverbatim
where the entries mean:
\table
Property | Description | Type | Reqd | Deflt
type | Type name: nonSphereDrag | word | yes | -
phi | Ratio of surface area of sphere having same <!--
--> volume as particle to actual surface area of <!--
--> particle | scalar | yes | -
\endtable
Note
- The drag coefficient model in (HL:Eq. 11) is good to within
2 to 4 \% of RMS values from the corresponding experiment.
- (HL:Eq. 12) also give a simplified model with greater error
compared to results from the experiment, but since \c phi is
presumed constant, Eq. 12 offers little benefit.
- \f$\mathrm{F}_\mathrm{D}\f$ is weighted with the particle mass
at the stage of a function return, so that it can later be normalised
with the effective mass, if necessary (e.g. when using virtual-mass forces).
SourceFiles
NonSphereDragForce.C
\*---------------------------------------------------------------------------*/ \*---------------------------------------------------------------------------*/

View File

@ -31,7 +31,86 @@ Group
grpLagrangianIntermediateForceSubModels grpLagrangianIntermediateForceSubModels
Description Description
PlessisMasliyahDragForce drag model for solid spheres. Particle-drag model wherein drag forces (per unit carrier-fluid
velocity) are dynamically computed based on the Du Plessis-Masliyah
drag model.
\f[
\mathrm{F}_\mathrm{D} =
\left(\mathrm{A}\, (1-\alpha_c) + \mathrm{B}\, \mathrm{Re}\right)
\frac{(1-\alpha_c)\, \mu_c}{\alpha_c^2\, d_p^2}
\f]
with
\f[
A = \frac{26.8\, \alpha_c^2}
{
\alpha_p^{2/3}
(1 - \alpha_p^{1/3})
(1 - \alpha_p^{2/3})
}
\f]
\f[
\mathrm{B} = \frac{\alpha_c^2}{\left( 1 - \alpha_p^{2/3} \right)^2}
\f]
\f[
\mathrm{Re}_p =
\frac{\rho_c \, | \mathbf{u}_\mathrm{rel} | \, d_p}{\mu_c}
\f]
where
\vartable
\mathrm{F}_\mathrm{D} | Drag force per carrier-fluid velocity [kg/s]
\mathrm{Re}_p | Particle Reynolds number
\mu_c | Dynamic viscosity of carrier at the cell occupying particle
d_p | Particle diameter
\rho_c | Density of carrier at the cell occupying particle
\mathbf{u}_\mathrm{rel} | Relative velocity between particle and carrier
\alpha_c | Volume fraction of carrier fluid
\alpha_p | Volume fraction of particles
\endvartable
References:
\verbatim
Standard model (tag:P), (Eq. 34-36):
Du Plessis, J. P. (1994).
Analytical quantification of coefficients in the
Ergun equation for fluid friction in a packed bed.
Transport in porous media, 16(2), 189-207.
DOI:10.1007/BF00617551
\endverbatim
Usage
Minimal example by using \c constant/\<CloudProperties\>:
\verbatim
subModels
{
particleForces
{
PlessisMasliyahDrag
{
alphac <alphacName>; // e.g. alpha.air
}
}
}
\endverbatim
where the entries mean:
\table
Property | Description | Type | Reqd | Deflt
type | Type name: PlessisMasliyahDrag | word | yes | -
alphac | Name of carrier fluid | word | yes | -
\endtable
Note
- \f$\mathrm{F}_\mathrm{D}\f$ is weighted with the particle mass/density
at the stage of a function return, so that it can later be normalised
with the effective mass, if necessary (e.g. when using virtual-mass forces).
SourceFiles
PlessisMasliyahDragForce.C
\*---------------------------------------------------------------------------*/ \*---------------------------------------------------------------------------*/

View File

@ -6,6 +6,7 @@
\\/ M anipulation | \\/ M anipulation |
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
Copyright (C) 2011-2017 OpenFOAM Foundation Copyright (C) 2011-2017 OpenFOAM Foundation
Copyright (C) 2021 OpenCFD Ltd.
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
License License
This file is part of OpenFOAM. This file is part of OpenFOAM.
@ -30,7 +31,89 @@ Group
grpLagrangianIntermediateForceSubModels grpLagrangianIntermediateForceSubModels
Description Description
Drag model based on assumption of solid spheres Particle-drag model wherein drag forces (per unit carrier-fluid
velocity) are dynamically computed based on empirical expressions.
\f[
\mathrm{F}_\mathrm{D} =
\frac{3}{4}
\frac{\mu_c\,\mathrm{C}_\mathrm{D}\,\mathrm{Re}_p}{\rho_p \, d_p^2}
\f]
with
\f[
\mathrm{C}_\mathrm{D} =
\frac{24}{\mathrm{Re}_p}
\left(1 + \frac{1}{6}\mathrm{Re}_p^{2/3} \right)
\quad \mathrm{if} \quad \mathrm{Re}_p \leq 1000
\f]
\f[
\mathrm{C}_\mathrm{D} =
0.424 \quad \mathrm{if} \quad \mathrm{Re}_p > 1000
\f]
and
\f[
\mathrm{Re}_p =
\frac{\rho_c \, | \mathbf{u}_\mathrm{rel} | \, d_p}{\mu_c}
\f]
where
\vartable
\mathrm{F}_\mathrm{D} | Drag force per carrier-fluid velocity [kg/s]
\mathrm{C}_\mathrm{D} | Particle drag coefficient
\mathrm{Re}_p | Particle Reynolds number
\rho_p | Particle mass density
\mu_c | Dynamic viscosity of carrier at the cell occupying particle
d_p | Particle diameter
\rho_c | Density of carrier at the cell occupying particle
\mathbf{u}_\mathrm{rel} | Relative velocity between particle and carrier
\endvartable
Constraints:
- Particles remain spherical throughout the force
computation, hence no particle distortion.
- Applicable to particles with a spatially homogeneous distribution.
References:
\verbatim
Standard model:
Putnam, A. (1961).
Integratable form of droplet drag coefficient.
ARS Journal, 31(10), 1467-1468.
Expressions (tag:AOB), (Eq. 34-35):
Amsden, A. A., O'Rourke, P. J., & Butler, T. D. (1989).
KIVA-II: A computer program for chemically
reactive flows with sprays (No. LA-11560-MS).
Los Alamos National Lab.(LANL), Los Alamos, NM (United States).
DOI:10.2172/6228444
\endverbatim
Usage
Minimal example by using \c constant/\<CloudProperties\>:
\verbatim
subModels
{
particleForces
{
sphereDrag;
}
}
\endverbatim
where the entries mean:
\table
Property | Description | Type | Reqd | Deflt
type | Type name: sphereDrag | word | yes | -
\endtable
Note
- \f$\mathrm{F}_\mathrm{D}\f$ is weighted with the particle mass/density
at the stage of a function return, so that it can later be normalised
with the effective mass, if necessary (e.g. when using virtual-mass forces).
SourceFiles
SphereDragForce.C
\*---------------------------------------------------------------------------*/ \*---------------------------------------------------------------------------*/

View File

@ -6,6 +6,7 @@
\\/ M anipulation | \\/ M anipulation |
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
Copyright (C) 2013-2017 OpenFOAM Foundation Copyright (C) 2013-2017 OpenFOAM Foundation
Copyright (C) 2021 OpenCFD Ltd.
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
License License
This file is part of OpenFOAM. This file is part of OpenFOAM.
@ -30,7 +31,102 @@ Group
grpLagrangianIntermediateForceSubModels grpLagrangianIntermediateForceSubModels
Description Description
Wen-Yu drag model for solid spheres. Particle-drag model wherein drag forces (per unit carrier-fluid
velocity) are dynamically computed based on the Wen-Yu drag model.
\f[
\mathrm{F}_\mathrm{D} =
\frac{3}{4}
\frac{(1 - \alpha_c) \, \mu_c \, \alpha_c \, \mathrm{Re}_p }{d_p^2}
\mathrm{C}_\mathrm{D} \, \alpha_c^{-2.65}
\f]
with
\f[
\mathrm{C}_\mathrm{D} =
\frac{24}{\alpha_c \, \mathrm{Re}_p}
\left(1 + \frac{1}{6}(\alpha_c \, \mathrm{Re}_p)^{2/3} \right)
\quad \mathrm{if} \quad \alpha_c \, \mathrm{Re}_p < 1000
\f]
\f[
\mathrm{C}_\mathrm{D} =
0.44 \quad \mathrm{if} \quad \alpha_c \, \mathrm{Re}_p \geq 1000
\f]
and
\f[
\mathrm{Re}_p =
\frac{\rho_c \, | \mathbf{u}_\mathrm{rel} | \, d_p}{\mu_c}
\f]
where
\vartable
\mathrm{F}_\mathrm{D} | Drag force per carrier-fluid velocity [kg/s]
\mathrm{C}_\mathrm{D} | Particle drag coefficient
\mathrm{Re}_p | Particle Reynolds number
\mu_c | Dynamic viscosity of carrier at the cell occupying particle
d_p | Particle diameter
\rho_c | Density of carrier at the cell occupying particle
\mathbf{u}_\mathrm{rel} | Relative velocity between particle and carrier
\alpha_c | Volume fraction of the carrier fluid
\endvartable
References:
\verbatim
Standard model:
Wen, C. Y., & Yu, Y. H., (1966).
Mechanics of fluidization.
Chem. Eng. Prog. Symp. Ser. 62, 100-111.
Drag-coefficient model:
Schiller, L., & Naumann, A. (1935).
Über die grundlegenden Berechnungen bei der Schwerkraftaufbereitung.
Z. Ver. Dtsch. Ing., 77: 318326.
Expressions (tags:ZZB, GLSLR), (Eq.13-14, Table 3):
Zhou, L., Zhang, L., Bai, L., Shi, W.,
Li, W., Wang, C., & Agarwal, R. (2017).
Experimental study and transient CFD/DEM simulation in
a fluidized bed based on different drag models.
RSC advances, 7(21), 12764-12774.
DOI:10.1039/C6RA28615A
Gao, X., Li, T., Sarkar, A., Lu, L., & Rogers, W. A. (2018).
Development and validation of an enhanced filtered drag model
for simulating gas-solid fluidization of Geldart A particles
in all flow regimes.
Chemical Engineering Science, 184, 33-51.
DOI:10.1016/j.ces.2018.03.038
\endverbatim
Usage
Minimal example by using \c constant/\<CloudProperties\>:
\verbatim
subModels
{
particleForces
{
WenYuDrag
{
alphac <alphacName>; // e.g. alpha.air
}
}
}
\endverbatim
where the entries mean:
\table
Property | Description | Type | Reqd | Deflt
type | Type name: WenYuDrag | word | yes | -
alphac | Name of carrier fluid | word | yes | -
\endtable
Note
- \f$\mathrm{F}_\mathrm{D}\f$ is weighted with the particle mass/density
at the stage of a function return, so that it can later be normalised
with the effective mass, if necessary (e.g. when using virtual-mass forces).
SourceFiles
WenYuDragForce.C
\*---------------------------------------------------------------------------*/ \*---------------------------------------------------------------------------*/