mirror of
https://develop.openfoam.com/Development/openfoam.git
synced 2025-11-28 03:28:01 +00:00
reorganized locations of some primitives
This commit is contained in:
477
src/OpenFOAM/primitives/Tensor/tensor/tensor.C
Normal file
477
src/OpenFOAM/primitives/Tensor/tensor/tensor.C
Normal file
@ -0,0 +1,477 @@
|
||||
/*---------------------------------------------------------------------------*\
|
||||
========= |
|
||||
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
||||
\\ / O peration |
|
||||
\\ / A nd | Copyright (C) 1991-2009 OpenCFD Ltd.
|
||||
\\/ M anipulation |
|
||||
-------------------------------------------------------------------------------
|
||||
License
|
||||
This file is part of OpenFOAM.
|
||||
|
||||
OpenFOAM is free software; you can redistribute it and/or modify it
|
||||
under the terms of the GNU General Public License as published by the
|
||||
Free Software Foundation; either version 2 of the License, or (at your
|
||||
option) any later version.
|
||||
|
||||
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
||||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OpenFOAM; if not, write to the Free Software Foundation,
|
||||
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
#include "tensor.H"
|
||||
#include "mathematicalConstants.H"
|
||||
|
||||
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
||||
|
||||
namespace Foam
|
||||
{
|
||||
|
||||
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
|
||||
|
||||
template<>
|
||||
const char* const tensor::typeName = "tensor";
|
||||
|
||||
template<>
|
||||
const char* tensor::componentNames[] =
|
||||
{
|
||||
"xx", "xy", "xz",
|
||||
"yx", "yy", "yz",
|
||||
"zx", "zy", "zz"
|
||||
};
|
||||
|
||||
template<>
|
||||
const tensor tensor::zero
|
||||
(
|
||||
0, 0, 0,
|
||||
0, 0, 0,
|
||||
0, 0, 0
|
||||
);
|
||||
|
||||
template<>
|
||||
const tensor tensor::one
|
||||
(
|
||||
1, 1, 1,
|
||||
1, 1, 1,
|
||||
1, 1, 1
|
||||
);
|
||||
|
||||
template<>
|
||||
const tensor tensor::max
|
||||
(
|
||||
VGREAT, VGREAT, VGREAT,
|
||||
VGREAT, VGREAT, VGREAT,
|
||||
VGREAT, VGREAT, VGREAT
|
||||
);
|
||||
|
||||
template<>
|
||||
const tensor tensor::min
|
||||
(
|
||||
-VGREAT, -VGREAT, -VGREAT,
|
||||
-VGREAT, -VGREAT, -VGREAT,
|
||||
-VGREAT, -VGREAT, -VGREAT
|
||||
);
|
||||
|
||||
|
||||
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
||||
|
||||
// Return eigenvalues in ascending order of absolute values
|
||||
vector eigenValues(const tensor& t)
|
||||
{
|
||||
scalar i = 0;
|
||||
scalar ii = 0;
|
||||
scalar iii = 0;
|
||||
|
||||
if
|
||||
(
|
||||
(
|
||||
mag(t.xy()) + mag(t.xz()) + mag(t.yx())
|
||||
+ mag(t.yz()) + mag(t.zx()) + mag(t.zy())
|
||||
)
|
||||
< SMALL
|
||||
)
|
||||
{
|
||||
// diagonal matrix
|
||||
i = t.xx();
|
||||
ii = t.yy();
|
||||
iii = t.zz();
|
||||
}
|
||||
else
|
||||
{
|
||||
scalar a = -t.xx() - t.yy() - t.zz();
|
||||
|
||||
scalar b = t.xx()*t.yy() + t.xx()*t.zz() + t.yy()*t.zz()
|
||||
- t.xy()*t.yx() - t.xz()*t.zx() - t.yz()*t.zy();
|
||||
|
||||
scalar c = - t.xx()*t.yy()*t.zz() - t.xy()*t.yz()*t.zx()
|
||||
- t.xz()*t.yx()*t.zy() + t.xz()*t.yy()*t.zx()
|
||||
+ t.xy()*t.yx()*t.zz() + t.xx()*t.yz()*t.zy();
|
||||
|
||||
// If there is a zero root
|
||||
if (mag(c) < 1.0e-100)
|
||||
{
|
||||
scalar disc = sqr(a) - 4*b;
|
||||
|
||||
if (disc >= -SMALL)
|
||||
{
|
||||
scalar q = -0.5*sqrt(max(0.0, disc));
|
||||
|
||||
i = 0;
|
||||
ii = -0.5*a + q;
|
||||
iii = -0.5*a - q;
|
||||
}
|
||||
else
|
||||
{
|
||||
FatalErrorIn("eigenValues(const tensor&)")
|
||||
<< "zero and complex eigenvalues in tensor: " << t
|
||||
<< abort(FatalError);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
scalar Q = (a*a - 3*b)/9;
|
||||
scalar R = (2*a*a*a - 9*a*b + 27*c)/54;
|
||||
|
||||
scalar R2 = sqr(R);
|
||||
scalar Q3 = pow3(Q);
|
||||
|
||||
// Three different real roots
|
||||
if (R2 < Q3)
|
||||
{
|
||||
scalar sqrtQ = sqrt(Q);
|
||||
scalar theta = acos(R/(Q*sqrtQ));
|
||||
|
||||
scalar m2SqrtQ = -2*sqrtQ;
|
||||
scalar aBy3 = a/3;
|
||||
|
||||
i = m2SqrtQ*cos(theta/3) - aBy3;
|
||||
ii = m2SqrtQ*cos((theta + mathematicalConstant::twoPi)/3)
|
||||
- aBy3;
|
||||
iii = m2SqrtQ*cos((theta - mathematicalConstant::twoPi)/3)
|
||||
- aBy3;
|
||||
}
|
||||
else
|
||||
{
|
||||
scalar A = cbrt(R + sqrt(R2 - Q3));
|
||||
|
||||
// Three equal real roots
|
||||
if (A < SMALL)
|
||||
{
|
||||
scalar root = -a/3;
|
||||
return vector(root, root, root);
|
||||
}
|
||||
else
|
||||
{
|
||||
// Complex roots
|
||||
WarningIn("eigenValues(const tensor&)")
|
||||
<< "complex eigenvalues detected for tensor: " << t
|
||||
<< endl;
|
||||
|
||||
return vector::zero;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Sort the eigenvalues into ascending order
|
||||
if (mag(i) > mag(ii))
|
||||
{
|
||||
Swap(i, ii);
|
||||
}
|
||||
|
||||
if (mag(ii) > mag(iii))
|
||||
{
|
||||
Swap(ii, iii);
|
||||
}
|
||||
|
||||
if (mag(i) > mag(ii))
|
||||
{
|
||||
Swap(i, ii);
|
||||
}
|
||||
|
||||
return vector(i, ii, iii);
|
||||
}
|
||||
|
||||
|
||||
vector eigenVector(const tensor& t, const scalar lambda)
|
||||
{
|
||||
if (mag(lambda) < SMALL)
|
||||
{
|
||||
return vector::zero;
|
||||
}
|
||||
|
||||
// Construct the matrix for the eigenvector problem
|
||||
tensor A(t - lambda*I);
|
||||
|
||||
// Calculate the sub-determinants of the 3 components
|
||||
scalar sd0 = A.yy()*A.zz() - A.yz()*A.zy();
|
||||
scalar sd1 = A.xx()*A.zz() - A.xz()*A.zx();
|
||||
scalar sd2 = A.xx()*A.yy() - A.xy()*A.yx();
|
||||
|
||||
scalar magSd0 = mag(sd0);
|
||||
scalar magSd1 = mag(sd1);
|
||||
scalar magSd2 = mag(sd2);
|
||||
|
||||
// Evaluate the eigenvector using the largest sub-determinant
|
||||
if (magSd0 > magSd1 && magSd0 > magSd2 && magSd0 > SMALL)
|
||||
{
|
||||
vector ev
|
||||
(
|
||||
1,
|
||||
(A.yz()*A.zx() - A.zz()*A.yx())/sd0,
|
||||
(A.zy()*A.yx() - A.yy()*A.zx())/sd0
|
||||
);
|
||||
ev /= mag(ev);
|
||||
|
||||
return ev;
|
||||
}
|
||||
else if (magSd1 > magSd2 && magSd1 > SMALL)
|
||||
{
|
||||
vector ev
|
||||
(
|
||||
(A.xz()*A.zy() - A.zz()*A.xy())/sd1,
|
||||
1,
|
||||
(A.zx()*A.xy() - A.xx()*A.zy())/sd1
|
||||
);
|
||||
ev /= mag(ev);
|
||||
|
||||
return ev;
|
||||
}
|
||||
else if (magSd2 > SMALL)
|
||||
{
|
||||
vector ev
|
||||
(
|
||||
(A.xy()*A.yz() - A.yy()*A.xz())/sd2,
|
||||
(A.yx()*A.xz() - A.xx()*A.yz())/sd2,
|
||||
1
|
||||
);
|
||||
ev /= mag(ev);
|
||||
|
||||
return ev;
|
||||
}
|
||||
else
|
||||
{
|
||||
return vector::zero;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
tensor eigenVectors(const tensor& t)
|
||||
{
|
||||
vector evals(eigenValues(t));
|
||||
|
||||
tensor evs;
|
||||
evs.x() = eigenVector(t, evals.x());
|
||||
evs.y() = eigenVector(t, evals.y());
|
||||
evs.z() = eigenVector(t, evals.z());
|
||||
|
||||
return evs;
|
||||
}
|
||||
|
||||
|
||||
// Return eigenvalues in ascending order of absolute values
|
||||
vector eigenValues(const symmTensor& t)
|
||||
{
|
||||
scalar i = 0;
|
||||
scalar ii = 0;
|
||||
scalar iii = 0;
|
||||
|
||||
if
|
||||
(
|
||||
(
|
||||
mag(t.xy()) + mag(t.xz()) + mag(t.xy())
|
||||
+ mag(t.yz()) + mag(t.xz()) + mag(t.yz())
|
||||
)
|
||||
< SMALL
|
||||
)
|
||||
{
|
||||
// diagonal matrix
|
||||
i = t.xx();
|
||||
ii = t.yy();
|
||||
iii = t.zz();
|
||||
}
|
||||
else
|
||||
{
|
||||
scalar a = -t.xx() - t.yy() - t.zz();
|
||||
|
||||
scalar b = t.xx()*t.yy() + t.xx()*t.zz() + t.yy()*t.zz()
|
||||
- t.xy()*t.xy() - t.xz()*t.xz() - t.yz()*t.yz();
|
||||
|
||||
scalar c = - t.xx()*t.yy()*t.zz() - t.xy()*t.yz()*t.xz()
|
||||
- t.xz()*t.xy()*t.yz() + t.xz()*t.yy()*t.xz()
|
||||
+ t.xy()*t.xy()*t.zz() + t.xx()*t.yz()*t.yz();
|
||||
|
||||
// If there is a zero root
|
||||
if (mag(c) < 1.0e-100)
|
||||
{
|
||||
scalar disc = sqr(a) - 4*b;
|
||||
|
||||
if (disc >= -SMALL)
|
||||
{
|
||||
scalar q = -0.5*sqrt(max(0.0, disc));
|
||||
|
||||
i = 0;
|
||||
ii = -0.5*a + q;
|
||||
iii = -0.5*a - q;
|
||||
}
|
||||
else
|
||||
{
|
||||
FatalErrorIn("eigenValues(const tensor&)")
|
||||
<< "zero and complex eigenvalues in tensor: " << t
|
||||
<< abort(FatalError);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
scalar Q = (a*a - 3*b)/9;
|
||||
scalar R = (2*a*a*a - 9*a*b + 27*c)/54;
|
||||
|
||||
scalar R2 = sqr(R);
|
||||
scalar Q3 = pow3(Q);
|
||||
|
||||
// Three different real roots
|
||||
if (R2 < Q3)
|
||||
{
|
||||
scalar sqrtQ = sqrt(Q);
|
||||
scalar theta = acos(R/(Q*sqrtQ));
|
||||
|
||||
scalar m2SqrtQ = -2*sqrtQ;
|
||||
scalar aBy3 = a/3;
|
||||
|
||||
i = m2SqrtQ*cos(theta/3) - aBy3;
|
||||
ii = m2SqrtQ*cos((theta + mathematicalConstant::twoPi)/3)
|
||||
- aBy3;
|
||||
iii = m2SqrtQ*cos((theta - mathematicalConstant::twoPi)/3)
|
||||
- aBy3;
|
||||
}
|
||||
else
|
||||
{
|
||||
scalar A = cbrt(R + sqrt(R2 - Q3));
|
||||
|
||||
// Three equal real roots
|
||||
if (A < SMALL)
|
||||
{
|
||||
scalar root = -a/3;
|
||||
return vector(root, root, root);
|
||||
}
|
||||
else
|
||||
{
|
||||
// Complex roots
|
||||
WarningIn("eigenValues(const symmTensor&)")
|
||||
<< "complex eigenvalues detected for symmTensor: " << t
|
||||
<< endl;
|
||||
|
||||
return vector::zero;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Sort the eigenvalues into ascending order
|
||||
if (mag(i) > mag(ii))
|
||||
{
|
||||
Swap(i, ii);
|
||||
}
|
||||
|
||||
if (mag(ii) > mag(iii))
|
||||
{
|
||||
Swap(ii, iii);
|
||||
}
|
||||
|
||||
if (mag(i) > mag(ii))
|
||||
{
|
||||
Swap(i, ii);
|
||||
}
|
||||
|
||||
return vector(i, ii, iii);
|
||||
}
|
||||
|
||||
|
||||
vector eigenVector(const symmTensor& t, const scalar lambda)
|
||||
{
|
||||
if (mag(lambda) < SMALL)
|
||||
{
|
||||
return vector::zero;
|
||||
}
|
||||
|
||||
// Construct the matrix for the eigenvector problem
|
||||
symmTensor A(t - lambda*I);
|
||||
|
||||
// Calculate the sub-determinants of the 3 components
|
||||
scalar sd0 = A.yy()*A.zz() - A.yz()*A.yz();
|
||||
scalar sd1 = A.xx()*A.zz() - A.xz()*A.xz();
|
||||
scalar sd2 = A.xx()*A.yy() - A.xy()*A.xy();
|
||||
|
||||
scalar magSd0 = mag(sd0);
|
||||
scalar magSd1 = mag(sd1);
|
||||
scalar magSd2 = mag(sd2);
|
||||
|
||||
// Evaluate the eigenvector using the largest sub-determinant
|
||||
if (magSd0 > magSd1 && magSd0 > magSd2 && magSd0 > SMALL)
|
||||
{
|
||||
vector ev
|
||||
(
|
||||
1,
|
||||
(A.yz()*A.xz() - A.zz()*A.xy())/sd0,
|
||||
(A.yz()*A.xy() - A.yy()*A.xz())/sd0
|
||||
);
|
||||
ev /= mag(ev);
|
||||
|
||||
return ev;
|
||||
}
|
||||
else if (magSd1 > magSd2 && magSd1 > SMALL)
|
||||
{
|
||||
vector ev
|
||||
(
|
||||
(A.xz()*A.yz() - A.zz()*A.xy())/sd1,
|
||||
1,
|
||||
(A.xz()*A.xy() - A.xx()*A.yz())/sd1
|
||||
);
|
||||
ev /= mag(ev);
|
||||
|
||||
return ev;
|
||||
}
|
||||
else if (magSd2 > SMALL)
|
||||
{
|
||||
vector ev
|
||||
(
|
||||
(A.xy()*A.yz() - A.yy()*A.xz())/sd2,
|
||||
(A.xy()*A.xz() - A.xx()*A.yz())/sd2,
|
||||
1
|
||||
);
|
||||
ev /= mag(ev);
|
||||
|
||||
return ev;
|
||||
}
|
||||
else
|
||||
{
|
||||
return vector::zero;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
tensor eigenVectors(const symmTensor& t)
|
||||
{
|
||||
vector evals(eigenValues(t));
|
||||
|
||||
tensor evs;
|
||||
evs.x() = eigenVector(t, evals.x());
|
||||
evs.y() = eigenVector(t, evals.y());
|
||||
evs.z() = eigenVector(t, evals.z());
|
||||
|
||||
return evs;
|
||||
}
|
||||
|
||||
|
||||
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
||||
|
||||
} // End namespace Foam
|
||||
|
||||
// ************************************************************************* //
|
||||
Reference in New Issue
Block a user