Merge branch 'master' of /home/dm4/OpenFOAM/OpenFOAM-dev

This commit is contained in:
mattijs
2012-03-28 18:59:46 +01:00
34 changed files with 2064 additions and 882 deletions

View File

@ -20,7 +20,8 @@ EXE_LIBS = \
$(CGAL_LIBS) \ $(CGAL_LIBS) \
-lconformalVoronoiMesh \ -lconformalVoronoiMesh \
-lmeshTools \ -lmeshTools \
-ldecompositionMethods -L$(FOAM_LIBBIN)/dummy -lscotchDecomp \ -ldecompositionMethods \
-L$(FOAM_LIBBIN)/dummy -lptscotchDecomp \
-ledgeMesh \ -ledgeMesh \
-ltriSurface \ -ltriSurface \
-ldynamicMesh -ldynamicMesh

View File

@ -19,7 +19,6 @@ EXE_INC = \
EXE_LIBS = \ EXE_LIBS = \
-lmeshTools \ -lmeshTools \
-ldecompositionMethods -L$(FOAM_LIBBIN)/dummy -lscotchDecomp \
-ledgeMesh \ -ledgeMesh \
-ltriSurface \ -ltriSurface \
-ldynamicMesh -ldynamicMesh

View File

@ -63,7 +63,7 @@ Foam::fieldFromFile::fieldFromFile
Foam::triSurfaceScalarField Foam::fieldFromFile::load() Foam::triSurfaceScalarField Foam::fieldFromFile::load()
{ {
Info<< "Loading: " << fileName_ << endl; Info<< indent << "Loading: " << fileName_ << endl;
triSurfaceScalarField surfaceCellSize triSurfaceScalarField surfaceCellSize
( (

View File

@ -46,7 +46,10 @@ Foam::surfaceCellSizeFunction::surfaceCellSizeFunction
dictionary(surfaceCellSizeFunctionDict), dictionary(surfaceCellSizeFunctionDict),
surface_(surface), surface_(surface),
coeffsDict_(subDict(type + "Coeffs")), coeffsDict_(subDict(type + "Coeffs")),
refinementFactor_(readScalar(lookup("refinementFactor"))) refinementFactor_
(
lookupOrDefault<scalar>("refinementFactor", 1.0)
)
{} {}

View File

@ -44,6 +44,142 @@ const Foam::scalar Foam::conformalVoronoiMesh::tolParallel = 1e-3;
// * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * * // // * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * * //
Foam::scalar Foam::conformalVoronoiMesh::requiredSize
(
const Foam::point& pt
) const
{
pointIndexHit surfHit;
label hitSurface;
DynamicList<scalar> cellSizeHits;
geometryToConformTo_.findSurfaceNearest
(
pt,
sqr(GREAT),
surfHit,
hitSurface
);
if (!surfHit.hit())
{
FatalErrorIn
(
"Foam::tensor Foam::conformalVoronoiMesh::requiredAlignment"
)
<< "findSurfaceNearest did not find a hit across the surfaces."
<< exit(FatalError) << endl;
}
cellSizeHits.append(cellSizeControl().cellSize(pt));
// Primary alignment
vectorField norm(1);
allGeometry_[hitSurface].getNormal
(
List<pointIndexHit>(1, surfHit),
norm
);
const vector np = norm[0];
// Generate equally spaced 'spokes' in a circle normal to the
// direction from the vertex to the closest point on the surface
// and look for a secondary intersection.
const vector d = surfHit.hitPoint() - pt;
const tensor Rp = rotationTensor(vector(0,0,1), np);
const label s = cvMeshControls().alignmentSearchSpokes();
const scalar spanMag = geometryToConformTo_.globalBounds().mag();
scalar totalDist = 0;
for (label i = 0; i < s; i++)
{
vector spoke
(
Foam::cos(i*constant::mathematical::twoPi/s),
Foam::sin(i*constant::mathematical::twoPi/s),
0
);
spoke *= spanMag;
spoke = Rp & spoke;
pointIndexHit spokeHit;
label spokeSurface = -1;
// internal spoke
geometryToConformTo_.findSurfaceNearestIntersection
(
pt,
pt + spoke,
spokeHit,
spokeSurface
);
if (spokeHit.hit())
{
const Foam::point& hitPt = spokeHit.hitPoint();
scalar spokeHitDistance = mag(hitPt - pt);
cellSizeHits.append
(
cellSizeControl().cellSize(hitPt)
);
totalDist += spokeHitDistance;
}
//external spoke
Foam::point mirrorPt = pt + 2*d;
geometryToConformTo_.findSurfaceNearestIntersection
(
mirrorPt,
mirrorPt + spoke,
spokeHit,
spokeSurface
);
if (spokeHit.hit())
{
const Foam::point& hitPt = spokeHit.hitPoint();
scalar spokeHitDistance = mag(hitPt - mirrorPt);
cellSizeHits.append
(
cellSizeControl().cellSize(hitPt)
);
totalDist += spokeHitDistance;
}
}
scalar cellSize = 0;
forAll(cellSizeHits, hitI)
{
cellSize += cellSizeHits[hitI];
}
return cellSize/cellSizeHits.size();
//return cellSizeControl().cellSize(pt);
}
Foam::tensor Foam::conformalVoronoiMesh::requiredAlignment Foam::tensor Foam::conformalVoronoiMesh::requiredAlignment
( (
const Foam::point& pt const Foam::point& pt
@ -828,10 +964,7 @@ void Foam::conformalVoronoiMesh::storeSizesAndAlignments
{ {
sizeAndAlignmentLocations_[i] = topoint(*pit); sizeAndAlignmentLocations_[i] = topoint(*pit);
storedSizes_[i] = cellSizeControl().cellSize storedSizes_[i] = requiredSize(sizeAndAlignmentLocations_[i]);
(
sizeAndAlignmentLocations_[i]
);
storedAlignments_[i] = requiredAlignment(sizeAndAlignmentLocations_[i]); storedAlignments_[i] = requiredAlignment(sizeAndAlignmentLocations_[i]);

View File

@ -268,6 +268,9 @@ private:
//- Return the local maximum surface protrusion distance //- Return the local maximum surface protrusion distance
inline scalar maxSurfaceProtrusion(const Foam::point& pt) const; inline scalar maxSurfaceProtrusion(const Foam::point& pt) const;
//- Return the required cell size at the given location
scalar requiredSize(const Foam::point& pt) const;
//- Return the required alignment directions at the given location //- Return the required alignment directions at the given location
tensor requiredAlignment(const Foam::point& pt) const; tensor requiredAlignment(const Foam::point& pt) const;
@ -533,6 +536,11 @@ private:
const Delaunay::Finite_edges_iterator& eit const Delaunay::Finite_edges_iterator& eit
) const; ) const;
boolList dualFaceBoundaryPoints
(
const Delaunay::Finite_edges_iterator& eit
) const;
//- Finds the maximum filterCount of the dual vertices //- Finds the maximum filterCount of the dual vertices
// (Delaunay cells) that form the dual face produced by the // (Delaunay cells) that form the dual face produced by the
// supplied edge // supplied edge
@ -839,6 +847,13 @@ private:
const Delaunay::Finite_facets_iterator& fit const Delaunay::Finite_facets_iterator& fit
) const; ) const;
//- Merge adjacent edges that are not attached to other faces
label mergeNearlyParallelEdges
(
const pointField& pts,
const scalar maxCosAngle
);
//- Merge vertices that are very close together //- Merge vertices that are very close together
void mergeCloseDualVertices void mergeCloseDualVertices
( (

View File

@ -212,6 +212,20 @@ void Foam::conformalVoronoiMesh::calcDualMesh
Info<< nl << "Collapsing unnecessary faces" << endl; Info<< nl << "Collapsing unnecessary faces" << endl;
collapseFaces(points, boundaryPts, deferredCollapseFaces); collapseFaces(points, boundaryPts, deferredCollapseFaces);
const scalar maxCosAngle
= cos(degToRad(cvMeshControls().edgeMergeAngle()));
Info<< nl << "Merging adjacent edges which have an angle "
<< "of greater than "
<< cvMeshControls().edgeMergeAngle() << ": " << endl;
label nRemovedEdges =
mergeNearlyParallelEdges(points, maxCosAngle);
reduce(nRemovedEdges, sumOp<label>());
Info<< " Merged " << nRemovedEdges << " edges" << endl;
} }
labelHashSet wrongFaces = checkPolyMeshQuality(points); labelHashSet wrongFaces = checkPolyMeshQuality(points);
@ -652,6 +666,113 @@ Foam::label Foam::conformalVoronoiMesh::mergeCloseDualVertices
} }
Foam::label Foam::conformalVoronoiMesh::mergeNearlyParallelEdges
(
const pointField& pts,
const scalar maxCosAngle
)
{
List<HashSet<label> > pointFaceCount(number_of_cells());
labelList pointNeighbour(number_of_cells(), -1);
Map<label> dualPtIndexMap;
for
(
Delaunay::Finite_edges_iterator eit = finite_edges_begin();
eit != finite_edges_end();
++eit
)
{
Cell_handle c = eit->first;
Vertex_handle vA = c->vertex(eit->second);
Vertex_handle vB = c->vertex(eit->third);
if (isBoundaryDualFace(eit))
{
const face f = buildDualFace(eit);
forAll(f, pI)
{
const label pIndex = f[pI];
const label prevPointI = f.prevLabel(pI);
const label nextPointI = f.nextLabel(pI);
pointFaceCount[pIndex].insert(prevPointI);
pointFaceCount[pIndex].insert(nextPointI);
pointNeighbour[pIndex] = nextPointI;
}
}
else if
(
vA->internalOrBoundaryPoint()
|| vB->internalOrBoundaryPoint()
)
{
const face f = buildDualFace(eit);
const boolList faceBoundaryPoints = dualFaceBoundaryPoints(eit);
forAll(f, pI)
{
const label pIndex = f[pI];
const label prevPointI = f.prevLabel(pI);
const label nextPointI = f.nextLabel(pI);
pointFaceCount[pIndex].insert(prevPointI);
pointFaceCount[pIndex].insert(nextPointI);
if (faceBoundaryPoints[pI] == false)
{
pointNeighbour[pIndex] = nextPointI;
}
else
{
if (faceBoundaryPoints[prevPointI] == true)
{
pointNeighbour[pIndex] = prevPointI;
}
else if (faceBoundaryPoints[nextPointI] == true)
{
pointNeighbour[pIndex] = nextPointI;
}
else
{
pointNeighbour[pIndex] = pIndex;
}
}
}
}
}
forAll(pointFaceCount, pI)
{
if (pointFaceCount[pI].size() == 2)
{
List<vector> edges(2, vector(0, 0, 0));
label count = 0;
forAllConstIter(HashSet<label>, pointFaceCount[pI], iter)
{
edges[count] = pts[pI] - pts[iter.key()];
edges[count] /= mag(edges[count]) + VSMALL;
count++;
}
if (mag(edges[0] & edges[1]) > maxCosAngle)
{
dualPtIndexMap.insert(pI, pointNeighbour[pI]);
}
}
}
reindexDualVertices(dualPtIndexMap);
return dualPtIndexMap.size();
}
void Foam::conformalVoronoiMesh::smoothSurface void Foam::conformalVoronoiMesh::smoothSurface
( (
pointField& pts, pointField& pts,
@ -696,7 +817,6 @@ void Foam::conformalVoronoiMesh::smoothSurface
} while (nCollapsedFaces > 0); } while (nCollapsedFaces > 0);
// Force all points of boundary faces to be on the surface // Force all points of boundary faces to be on the surface
for for
( (
Delaunay::Finite_cells_iterator cit = finite_cells_begin(); Delaunay::Finite_cells_iterator cit = finite_cells_begin();
@ -917,6 +1037,7 @@ void Foam::conformalVoronoiMesh::collapseFaces
mergeCloseDualVertices(pts, boundaryPts); mergeCloseDualVertices(pts, boundaryPts);
if (nCollapsedFaces > 0) if (nCollapsedFaces > 0)
{ {
Info<< " Collapsed " << nCollapsedFaces << " faces" << endl; Info<< " Collapsed " << nCollapsedFaces << " faces" << endl;
@ -932,6 +1053,7 @@ void Foam::conformalVoronoiMesh::collapseFaces
} }
} while (nCollapsedFaces > 0); } while (nCollapsedFaces > 0);
} }
@ -1064,6 +1186,25 @@ Foam::conformalVoronoiMesh::collapseFace
bool allowEarlyCollapseToPoint = true; bool allowEarlyCollapseToPoint = true;
// // Quick exit
// label smallEdges = 0;
// const edgeList& fEdges = f.edges();
// forAll(fEdges, eI)
// {
// const edge& e = fEdges[eI];
//
// if (e.mag(pts) < 0.2*targetFaceSize)
// {
// smallEdges++;
// }
// }
// if (smallEdges == 0)
// {
// return fcmNone;
// }
// if (maxFC > cvMeshControls().filterCountSkipThreshold() - 3) // if (maxFC > cvMeshControls().filterCountSkipThreshold() - 3)
// { // {
// limitToQuadsOrTris = true; // limitToQuadsOrTris = true;
@ -1071,6 +1212,7 @@ Foam::conformalVoronoiMesh::collapseFace
// allowEarlyCollapseToPoint = false; // allowEarlyCollapseToPoint = false;
// } // }
collapseSizeLimitCoeff *= pow collapseSizeLimitCoeff *= pow
( (
cvMeshControls().filterErrorReductionCoeff(), cvMeshControls().filterErrorReductionCoeff(),
@ -1158,6 +1300,91 @@ Foam::conformalVoronoiMesh::collapseFace
} }
} }
scalar maxDist = 0;
scalar minDist = GREAT;
//
// if (f.size() <= 3)
// {
// const edgeList& fEdges = f.edges();
//
// forAll(fEdges, eI)
// {
// const edge& e = fEdges[eI];
// const scalar d = e.mag(pts);
//
// if (d > maxDist)
// {
// maxDist = d;
// collapseAxis = e.vec(pts);
// }
// else if (d < minDist && d != 0)
// {
// minDist = d;
// }
// }
// }
// else
// {
// forAll(f, pI)
// {
// for (label i = pI + 1; i < f.size(); ++i)
// {
// if
// (
// f[i] != f.nextLabel(pI)
// && f[i] != f.prevLabel(pI)
// )
// {
// scalar d = mag(pts[f[pI]] - pts[f[i]]);
//
// if (d > maxDist)
// {
// maxDist = d;
// collapseAxis = pts[f[pI]] - pts[f[i]];
// }
// else if (d < minDist && d != 0)
// {
// minDist = d;
// }
// }
// }
// }
// }
//
// const edgeList& fEdges = f.edges();
//
// scalar perimeter = 0;
//
// forAll(fEdges, eI)
// {
// const edge& e = fEdges[eI];
// const scalar d = e.mag(pts);
//
// perimeter += d;
//
//// collapseAxis += e.vec(pts);
//
// if (d > maxDist)
// {
// collapseAxis = e.vec(pts);
// maxDist = d;
// }
// else if (d < minDist && d != 0)
// {
// minDist = d;
// }
// }
//
// collapseAxis /= mag(collapseAxis);
//
//// Info<< f.size() << " " << minDist << " " << maxDist << " | "
//// << collapseAxis << endl;
//
// aspectRatio = maxDist/minDist;
//
// aspectRatio = min(aspectRatio, sqr(perimeter)/(16.0*fA));
if (magSqr(collapseAxis) < VSMALL) if (magSqr(collapseAxis) < VSMALL)
{ {
WarningIn WarningIn
@ -1170,9 +1397,9 @@ Foam::conformalVoronoiMesh::collapseFace
// Output face and collapse axis for visualisation // Output face and collapse axis for visualisation
Pout<< "# Aspect ratio = " << aspectRatio << nl Pout<< "# Aspect ratio = " << aspectRatio << nl
<< "# inertia = " << J << nl // << "# inertia = " << J << nl
<< "# determinant = " << detJ << nl // << "# determinant = " << detJ << nl
<< "# eigenvalues = " << eigenValues(J) << nl // << "# eigenvalues = " << eigenValues(J) << nl
<< "# collapseAxis = " << collapseAxis << nl << "# collapseAxis = " << collapseAxis << nl
<< "# facePts = " << facePts << nl << "# facePts = " << facePts << nl
<< endl; << endl;
@ -1280,8 +1507,6 @@ Foam::conformalVoronoiMesh::collapseFace
{ {
scalar guardFraction = cvMeshControls().edgeCollapseGuardFraction(); scalar guardFraction = cvMeshControls().edgeCollapseGuardFraction();
cvMeshControls().maxCollapseFaceToPointSideLengthCoeff();
if if
( (
allowEarlyCollapseToPoint allowEarlyCollapseToPoint
@ -1337,6 +1562,8 @@ Foam::conformalVoronoiMesh::collapseFace
Foam::point collapseToPt = Foam::point collapseToPt =
collapseAxis*(sum(dNeg)/dNeg.size() - dShift) + fC; collapseAxis*(sum(dNeg)/dNeg.size() - dShift) + fC;
// DynamicList<label> faceBoundaryPts(f.size());
forAll(facePtsNeg, fPtI) forAll(facePtsNeg, fPtI)
{ {
if (boundaryPts[facePtsNeg[fPtI]] == true) if (boundaryPts[facePtsNeg[fPtI]] == true)
@ -1351,9 +1578,36 @@ Foam::conformalVoronoiMesh::collapseFace
collapseToPt = pts[collapseToPtI]; collapseToPt = pts[collapseToPtI];
break; break;
// faceBoundaryPts.append(facePtsNeg[fPtI]);
} }
} }
// if (!faceBoundaryPts.empty())
// {
// if (faceBoundaryPts.size() == 2)
// {
// collapseToPtI = faceBoundaryPts[0];
//
// collapseToPt =
// 0.5
// *(
// pts[faceBoundaryPts[0]]
// + pts[faceBoundaryPts[1]]
// );
// }
// else if (faceBoundaryPts.size() < f.size())
// {
// face bFace(faceBoundaryPts);
//
// collapseToPtI = faceBoundaryPts.first();
//
// collapseToPt = bFace.centre(pts);
// }
// }
//
// faceBoundaryPts.clear();
// ...otherwise arbitrarily choosing the most distant // ...otherwise arbitrarily choosing the most distant
// point as the index to collapse to. // point as the index to collapse to.
@ -1384,9 +1638,34 @@ Foam::conformalVoronoiMesh::collapseFace
collapseToPt = pts[collapseToPtI]; collapseToPt = pts[collapseToPtI];
break; break;
// faceBoundaryPts.append(facePtsNeg[fPtI]);
} }
} }
// if (!faceBoundaryPts.empty())
// {
// if (faceBoundaryPts.size() == 2)
// {
// collapseToPtI = faceBoundaryPts[0];
//
// collapseToPt =
// 0.5
// *(
// pts[faceBoundaryPts[0]]
// + pts[faceBoundaryPts[1]]
// );
// }
// else if (faceBoundaryPts.size() < f.size())
// {
// face bFace(faceBoundaryPts);
//
// collapseToPtI = faceBoundaryPts.first();
//
// collapseToPt = bFace.centre(pts);
// }
// }
// ...otherwise arbitrarily choosing the most distant // ...otherwise arbitrarily choosing the most distant
// point as the index to collapse to. // point as the index to collapse to.
@ -1406,6 +1685,8 @@ Foam::conformalVoronoiMesh::collapseFace
Foam::point collapseToPt = fC; Foam::point collapseToPt = fC;
DynamicList<label> faceBoundaryPts(f.size());
forAll(facePts, fPtI) forAll(facePts, fPtI)
{ {
if (boundaryPts[facePts[fPtI]] == true) if (boundaryPts[facePts[fPtI]] == true)
@ -1415,11 +1696,32 @@ Foam::conformalVoronoiMesh::collapseFace
// use the first boundary point encountered if // use the first boundary point encountered if
// there are multiple boundary points. // there are multiple boundary points.
collapseToPtI = facePts[fPtI]; // collapseToPtI = facePts[fPtI];
//
// collapseToPt = pts[collapseToPtI];
//
// break;
collapseToPt = pts[collapseToPtI]; faceBoundaryPts.append(facePts[fPtI]);
}
}
break; if (!faceBoundaryPts.empty())
{
if (faceBoundaryPts.size() == 2)
{
collapseToPtI = faceBoundaryPts[0];
collapseToPt =
0.5*(pts[faceBoundaryPts[0]] + pts[faceBoundaryPts[1]]);
}
else if (faceBoundaryPts.size() < f.size())
{
face bFace(faceBoundaryPts);
collapseToPtI = faceBoundaryPts.first();
collapseToPt = bFace.centre(pts);
} }
} }
@ -1791,9 +2093,9 @@ void Foam::conformalVoronoiMesh::checkCellSizing()
} }
Info<< " Automatically re-sizing " << cellsToResize.size() Info<< " Automatically re-sizing " << cellsToResize.size()
<< " cells that are attached to the bad faces: DISABLED" << endl; << " cells that are attached to the bad faces: " << endl;
//cellSizeControl_.setCellSizes(cellsToResize); cellSizeControl_.setCellSizes(cellsToResize);
} }
timeCheck("End of Cell Sizing"); timeCheck("End of Cell Sizing");
@ -1858,7 +2160,10 @@ Foam::labelHashSet Foam::conformalVoronoiMesh::findOffsetPatchFaces
} }
} }
if (cvMeshControls().objOutput())
{
offsetBoundaryCells.write(); offsetBoundaryCells.write();
}
return offsetBoundaryCells; return offsetBoundaryCells;
} }
@ -2092,13 +2397,7 @@ void Foam::conformalVoronoiMesh::indexDualVertices
pts[dualVertI] = cit->dual(); pts[dualVertI] = cit->dual();
if if (cit->boundaryDualVertex())
(
!cit->vertex(0)->internalOrBoundaryPoint()
|| !cit->vertex(1)->internalOrBoundaryPoint()
|| !cit->vertex(2)->internalOrBoundaryPoint()
|| !cit->vertex(3)->internalOrBoundaryPoint()
)
{ {
// This is a boundary dual vertex // This is a boundary dual vertex
boundaryPts[dualVertI] = true; boundaryPts[dualVertI] = true;

View File

@ -719,12 +719,15 @@ bool Foam::conformalVoronoiMesh::dualCellSurfaceAllIntersections
const Foam::point& p = infoList[hitI].hitPoint(); const Foam::point& p = infoList[hitI].hitPoint();
const scalar separationDistance const scalar separationDistance =
= mag(p - info.hitPoint()); mag(p - info.hitPoint());
const scalar minSepDist const scalar minSepDist =
= sqr(cvMeshControls().removalDistCoeff() sqr
*targetCellSize(p)); (
cvMeshControls().removalDistCoeff()
*targetCellSize(p)
);
// Reject the point if it is too close to another // Reject the point if it is too close to another
// surface point. // surface point.

View File

@ -366,6 +366,49 @@ inline bool Foam::conformalVoronoiMesh::isBoundaryDualFace
} }
inline Foam::List<bool> Foam::conformalVoronoiMesh::dualFaceBoundaryPoints
(
const Delaunay::Finite_edges_iterator& eit
) const
{
Cell_circulator ccStart = incident_cells(*eit);
Cell_circulator cc1 = ccStart;
Cell_circulator cc2 = cc1;
// Advance the second circulator so that it always stays on the next
// cell around the edge;
cc2++;
DynamicList<bool> tmpFaceBoundaryPoints;
do
{
label cc1I = cc1->cellIndex();
label cc2I = cc2->cellIndex();
if (cc1I != cc2I)
{
if (cc1->boundaryDualVertex())
{
tmpFaceBoundaryPoints.append(true);
}
else
{
tmpFaceBoundaryPoints.append(false);
}
}
cc1++;
cc2++;
} while (cc1 != ccStart);
return tmpFaceBoundaryPoints;
}
inline Foam::List<Foam::label> Foam::conformalVoronoiMesh::processorsAttached inline Foam::List<Foam::label> Foam::conformalVoronoiMesh::processorsAttached
( (
const Delaunay::Finite_facets_iterator& fit const Delaunay::Finite_facets_iterator& fit

View File

@ -291,6 +291,11 @@ Foam::cvControls::cvControls
filteringDict.lookup("mergeClosenessCoeff") filteringDict.lookup("mergeClosenessCoeff")
); );
edgeMergeAngle_ = readScalar
(
filteringDict.lookup("edgeMergeAngle")
);
continueFilteringOnBadInitialPolyMesh_ = Switch continueFilteringOnBadInitialPolyMesh_ = Switch
( (
filteringDict.lookupOrDefault<Switch> filteringDict.lookupOrDefault<Switch>

View File

@ -234,6 +234,11 @@ class cvControls
// being merged, fraction of the local target cell size // being merged, fraction of the local target cell size
scalar mergeClosenessCoeff_; scalar mergeClosenessCoeff_;
//- If the angle between two dual edges that are connected by a single
// point is less than this angle, then the edges will be merged into a
// single edge.
scalar edgeMergeAngle_;
//- If the mesh quality criteria cannot be satisfied, continue //- If the mesh quality criteria cannot be satisfied, continue
// with filtering anyway? // with filtering anyway?
Switch continueFilteringOnBadInitialPolyMesh_; Switch continueFilteringOnBadInitialPolyMesh_;
@ -405,6 +410,9 @@ public:
//- Return the mergeClosenessCoeff //- Return the mergeClosenessCoeff
inline scalar mergeClosenessCoeff() const; inline scalar mergeClosenessCoeff() const;
//- Return the edgeMergeAngle
inline scalar edgeMergeAngle() const;
//- Return the continueFilteringOnBadInitialPolyMesh Switch //- Return the continueFilteringOnBadInitialPolyMesh Switch
inline Switch continueFilteringOnBadInitialPolyMesh() const; inline Switch continueFilteringOnBadInitialPolyMesh() const;

View File

@ -166,6 +166,12 @@ inline Foam::scalar Foam::cvControls::mergeClosenessCoeff() const
} }
inline Foam::scalar Foam::cvControls::edgeMergeAngle() const
{
return edgeMergeAngle_;
}
inline Foam::Switch inline Foam::Switch
Foam::cvControls::continueFilteringOnBadInitialPolyMesh() const Foam::cvControls::continueFilteringOnBadInitialPolyMesh() const
{ {

View File

@ -3,30 +3,25 @@ cd ${0%/*} || exit 1 # run from this directory
set -x set -x
if [ ! -e "Make/files" ] || [ ! -e "Make/options" ]
then
mkdir -p Make
if [ -n "$CGAL_ARCH_PATH" ] if [ -n "$CGAL_ARCH_PATH" ]
then then
cp -r MakeWithCGAL/* Make
echo echo
echo Compiling surfaceFeatureExtract with CGAL support for curvature echo "Compiling surfaceFeatureExtract with CGAL curvature support"
echo
wmake "ENABLE_CURVATURE=-DENABLE_CURVATURE \
EXE_FROUNDING_MATH=-frounding-math \
USE_F2C=-DCGAL_USE_F2C \
CGAL_LIBDIR=-L$CGAL_ARCH_PATH/lib \
LAPACK_LIB=-llapack \
BLAS_LIB=-lblas \
CGAL_LIB=-lCGAL"
else
echo
echo "Compiling surfaceFeatureExtract without CGAL curvature support"
echo echo
wmake wmake
else
cp -r MakeWithoutCGAL/* Make
echo
echo Compiling surfaceFeatureExtract without CGAL support for curvature
echo
wmake
fi
else
echo surfaceFeatureExtract already has a Make folder
fi fi

View File

@ -80,18 +80,56 @@ public:
// Constructors // Constructors
//- Construct with reference to triSurface //- Construct with reference to triSurface
buildCGALPolyhedron(const triSurface& surf); explicit buildCGALPolyhedron(const triSurface& surf)
:
CGAL::Modifier_base<HalfedgeDS>(),
surf_(surf)
{}
//- Destructor //- Destructor
~buildCGALPolyhedron(); ~buildCGALPolyhedron(){}
// Member Operators // Member Operators
//- operator() of this `modifier' called by delegate function of //- operator() of this `modifier' called by delegate function of
// Polyhedron // Polyhedron
void operator()(HalfedgeDS& hds); void operator()(HalfedgeDS& hds)
{
typedef HalfedgeDS::Traits Traits;
typedef Traits::Point_3 Point;
// Postcondition: `hds' is a valid polyhedral surface.
CGAL::Polyhedron_incremental_builder_3<HalfedgeDS> B(hds, false);
B.begin_surface
(
surf_.points().size(), // n points
surf_.size(), // n facets
2*surf_.edges().size() // n halfedges
);
forAll(surf_.points(), pI)
{
const Foam::point& p = surf_.points()[pI];
B.add_vertex(Point(p.x(), p.y(), p.z()));
}
forAll(surf_, fI)
{
B.begin_facet();
B.add_vertex_to_facet(surf_[fI][0]);
B.add_vertex_to_facet(surf_[fI][1]);
B.add_vertex_to_facet(surf_[fI][2]);
B.end_facet();
}
B.end_surface();
}
}; };

View File

@ -1,4 +1,11 @@
include $(GENERAL_RULES)/CGAL
EXE_INC = \ EXE_INC = \
${ENABLE_CURVATURE}\
${EXE_FROUNDING_MATH} \
${USE_F2C} \
${CGAL_INC} \
-ICGALPolyhedron \
-I$(LIB_SRC)/finiteVolume/lnInclude \ -I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \ -I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/edgeMesh/lnInclude \ -I$(LIB_SRC)/edgeMesh/lnInclude \
@ -7,6 +14,11 @@ EXE_INC = \
-I$(LIB_SRC)/sampling/lnInclude -I$(LIB_SRC)/sampling/lnInclude
EXE_LIBS = \ EXE_LIBS = \
$(CGAL_LIBS) \
${CGAL_LIBDIR} \
${LAPACK_LIB} \
${BLAS_LIB} \
${CGAL_LIB} \
-lmeshTools \ -lmeshTools \
-ledgeMesh \ -ledgeMesh \
-ltriSurface \ -ltriSurface \

View File

@ -1,4 +0,0 @@
surfaceFeatureExtract.C
CGALPolyhedron/buildCGALPolyhedron.C
EXE = $(FOAM_APPBIN)/surfaceFeatureExtract

View File

@ -1,29 +0,0 @@
EXE_FROUNDING_MATH = -frounding-math
EXE_NDEBUG = -DNDEBUG
USE_F2C = -DCGAL_USE_F2C
include $(GENERAL_RULES)/CGAL
EXE_INC = \
-DENABLE_CURVATURE \
${EXE_FROUNDING_MATH} \
${EXE_NDEBUG} \
${USE_F2C} \
${CGAL_INC} \
-ICGALPolyhedron \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/edgeMesh/lnInclude \
-I$(LIB_SRC)/triSurface/lnInclude \
-I$(LIB_SRC)/surfMesh/lnInclude \
-I$(LIB_SRC)/sampling/lnInclude
EXE_LIBS = \
$(CGAL_LIBS) \
-L$(CGAL_ARCH_PATH)/lib \
-llapack \
-lblas \
-lCGAL \
-lmeshTools \
-ledgeMesh \
-ltriSurface \
-lsampling

View File

@ -1,3 +0,0 @@
surfaceFeatureExtract.C
EXE = $(FOAM_APPBIN)/surfaceFeatureExtract

View File

@ -1,13 +0,0 @@
EXE_INC = \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/edgeMesh/lnInclude \
-I$(LIB_SRC)/triSurface/lnInclude \
-I$(LIB_SRC)/surfMesh/lnInclude \
-I$(LIB_SRC)/sampling/lnInclude
EXE_LIBS = \
-lmeshTools \
-ledgeMesh \
-ltriSurface \
-lsampling

View File

@ -74,30 +74,6 @@ scalarField calcCurvature(const triSurface& surf)
// The rest of this function adapted from // The rest of this function adapted from
// CGAL-3.7/examples/Jet_fitting_3/Mesh_estimation.cpp // CGAL-3.7/examples/Jet_fitting_3/Mesh_estimation.cpp
// Licensed under CGAL-3.7/LICENSE.FREE_USE
// Copyright (c) 1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007
// Utrecht University (The Netherlands), ETH Zurich (Switzerland), Freie
// Universitaet Berlin (Germany), INRIA Sophia-Antipolis (France),
// Martin-Luther-University Halle-Wittenberg (Germany), Max-Planck-Institute
// Saarbruecken (Germany), RISC Linz (Austria), and Tel-Aviv University
// (Israel). All rights reserved.
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to permit
// persons to whom the Software is furnished to do so, subject to the
// following conditions:
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
// IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
// CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT
// OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR
// THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//Vertex property map, with std::map //Vertex property map, with std::map
typedef std::map<Vertex*, int> Vertex2int_map_type; typedef std::map<Vertex*, int> Vertex2int_map_type;
@ -181,8 +157,8 @@ scalarField calcCurvature(const triSurface& surf)
// << monge_fit.condition_number() << nl << std::endl; // << monge_fit.condition_number() << nl << std::endl;
// Use the maximum curvature to give smaller cell sizes later. // Use the maximum curvature to give smaller cell sizes later.
k[vertI++] k[vertI++] =
= max max
( (
mag(monge_form.principal_curvatures(0)), mag(monge_form.principal_curvatures(0)),
mag(monge_form.principal_curvatures(1)) mag(monge_form.principal_curvatures(1))
@ -198,8 +174,10 @@ bool edgesConnected(const edge& e1, const edge& e2)
{ {
if if
( (
e1.start() == e2.start() || e1.start() == e2.end() e1.start() == e2.start()
|| e1.end() == e2.start() || e1.end() == e2.end() || e1.start() == e2.end()
|| e1.end() == e2.start()
|| e1.end() == e2.end()
) )
{ {
return true; return true;
@ -289,8 +267,8 @@ scalar calcProximityOfFeatureEdges
// Don't refine if the edges are connected to each other // Don't refine if the edges are connected to each other
if (!edgesConnected(e1, e2)) if (!edgesConnected(e1, e2))
{ {
scalar curDist scalar curDist =
= mag(pHit1.hitPoint() - pHit2.hitPoint()); mag(pHit1.hitPoint() - pHit2.hitPoint());
minDist = min(curDist, minDist); minDist = min(curDist, minDist);
} }
@ -503,96 +481,77 @@ int main(int argc, char *argv[])
"extract and write surface features to file" "extract and write surface features to file"
); );
argList::noParallel(); argList::noParallel();
argList::validArgs.append("surface");
argList::validArgs.append("output set");
argList::addOption argList::addOption
( (
"includedAngle", "dict",
"degrees", "word",
"construct feature set from included angle [0..180]" "name of dictionary to provide feature extraction information"
); );
argList::addOption
(
"set",
"name",
"use existing feature set from file"
);
argList::addOption
(
"minLen",
"scalar",
"remove features shorter than the specified cumulative length"
);
argList::addOption
(
"minElem",
"int",
"remove features with fewer than the specified number of edges"
);
argList::addOption
(
"subsetBox",
"((x0 y0 z0)(x1 y1 z1))",
"remove edges outside specified bounding box"
);
argList::addOption
(
"deleteBox",
"((x0 y0 z0)(x1 y1 z1))",
"remove edges within specified bounding box"
);
argList::addBoolOption
(
"writeObj",
"write extendedFeatureEdgeMesh obj files"
);
argList::addBoolOption
(
"writeVTK",
"write extendedFeatureEdgeMesh vtk files"
);
argList::addBoolOption
(
"closeness",
"span to look for surface closeness"
);
argList::addOption
(
"featureProximity",
"scalar",
"distance to look for close features"
);
argList::addBoolOption
(
"manifoldEdgesOnly",
"remove any non-manifold (open or more than two connected faces) edges"
);
argList::addOption
(
"plane",
"(nx ny nz)(z0 y0 z0)",
"use a plane to create feature edges for 2D meshing"
);
# ifdef ENABLE_CURVATURE
argList::addBoolOption
(
"curvature",
"calculate curvature and closeness fields"
);
# endif
# include "setRootCase.H" # include "setRootCase.H"
# include "createTime.H" # include "createTime.H"
bool writeVTK = args.optionFound("writeVTK"); word dictName
(
args.optionLookupOrDefault<word>("dict", "surfaceFeatureExtractDict")
);
bool writeObj = args.optionFound("writeObj"); Info<< "Reading " << dictName << nl << endl;
bool curvature = args.optionFound("curvature"); IOdictionary dict
(
IOobject
(
dictName,
runTime.system(),
runTime,
IOobject::MUST_READ,
IOobject::NO_WRITE,
false
)
);
forAllConstIter(dictionary, dict, iter)
{
dictionary surfaceDict = dict.subDict(iter().keyword());
const fileName surfFileName = iter().keyword();
const fileName sFeatFileName = surfFileName.lessExt().name();
Info<< "Surface : " << surfFileName << nl << endl;
const Switch writeVTK =
surfaceDict.lookupOrAddDefault<Switch>("writeVTK", "off");
const Switch writeObj =
surfaceDict.lookupOrAddDefault<Switch>("writeObj", "off");
const Switch writeFeatureEdgeMesh =
surfaceDict.lookupOrAddDefault<Switch>
(
"writeFeatureEdgeMesh",
"off"
);
const Switch curvature =
surfaceDict.lookupOrAddDefault<Switch>("curvature", "off");
const Switch featureProximity =
surfaceDict.lookupOrAddDefault<Switch>("featureProximity", "off");
const Switch closeness =
surfaceDict.lookupOrAddDefault<Switch>("closeness", "off");
const word extractionMethod = surfaceDict.lookup("extractionMethod");
#ifndef ENABLE_CURVATURE
if (curvature)
{
WarningIn(args.executable())
<< "Curvature calculation has been requested but "
<< args.executable() << " has not " << nl
<< " been compiled with CGAL. "
<< "Skipping the curvature calculation." << endl;
}
#else
if (curvature && env("FOAM_SIGFPE")) if (curvature && env("FOAM_SIGFPE"))
{ {
WarningIn(args.executable()) WarningIn(args.executable())
@ -602,25 +561,16 @@ int main(int argc, char *argv[])
<< " (infinite curvature)" << nl << " (infinite curvature)" << nl
<< " Switch it off in case of problems." << endl; << " Switch it off in case of problems." << endl;
} }
#endif
Info<< "Feature line extraction is only valid on closed manifold surfaces." Info<< nl << "Feature line extraction is only valid on closed manifold "
<< endl; << "surfaces." << endl;
const fileName surfFileName = args[1];
const fileName outFileName = args[2];
Info<< "Surface : " << surfFileName << nl
<< "Output feature set : " << outFileName << nl
<< endl;
fileName sFeatFileName = surfFileName.lessExt().name();
// Read // Read
// ~~~~ // ~~~~
triSurface surf(surfFileName); triSurface surf("constant/triSurface/" + surfFileName);
Info<< "Statistics:" << endl; Info<< "Statistics:" << endl;
surf.writeStats(Info); surf.writeStats(Info);
@ -633,38 +583,52 @@ int main(int argc, char *argv[])
faces[fI] = surf[fI].triFaceFace(); faces[fI] = surf[fI].triFaceFace();
} }
// Either construct features from surface&featureangle or read set.
// Either construct features from surface & featureAngle or read set.
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
surfaceFeatures set(surf); surfaceFeatures set(surf);
if (args.optionFound("set")) if (extractionMethod == "extractFromFile")
{ {
const fileName setName = args["set"]; const fileName featureEdgeFile =
surfaceDict.subDict("extractFromFile").lookup
(
"featureEdgeFile"
);
Info<< "Reading existing feature set from file " << setName << endl; edgeMesh eMesh(featureEdgeFile);
set = surfaceFeatures(surf, setName); // Sometimes duplicate edges are present. Remove them.
eMesh.mergeEdges();
Info<< nl << "Reading existing feature edges from file "
<< featureEdgeFile << endl;
set = surfaceFeatures(surf, eMesh.points(), eMesh.edges());
} }
else if (args.optionFound("includedAngle")) else if (extractionMethod == "extractFromSurface")
{ {
const scalar includedAngle = args.optionRead<scalar>("includedAngle"); const scalar includedAngle =
readScalar
(
surfaceDict.subDict("extractFromSurface").lookup
(
"includedAngle"
)
);
Info<< "Constructing feature set from included angle " << includedAngle Info<< nl << "Constructing feature set from included angle "
<< endl; << includedAngle << endl;
set = surfaceFeatures(surf, includedAngle); set = surfaceFeatures(surf, includedAngle);
// Info<< nl << "Writing initial features" << endl;
// set.write("initial.fSet");
// set.writeObj("initial");
} }
else else
{ {
FatalErrorIn(args.executable()) FatalErrorIn(args.executable())
<< "No initial feature set. Provide either one" << "No initial feature set. Provide either one"
<< " of -set (to read existing set)" << nl << " of extractFromFile (to read existing set)" << nl
<< " or -includedAngle (to new set construct from angle)" << " or extractFromSurface (to construct new set from angle)"
<< exit(FatalError); << exit(FatalError);
} }
@ -682,23 +646,25 @@ int main(int argc, char *argv[])
// Trim set // Trim set
// ~~~~~~~~ // ~~~~~~~~
scalar minLen = -GREAT; if (surfaceDict.isDict("trimFeatures"))
if (args.optionReadIfPresent("minLen", minLen))
{ {
Info<< "Removing features of length < " << minLen << endl; dictionary trimDict = surfaceDict.subDict("trimFeatures");
}
label minElem = 0; scalar minLen =
if (args.optionReadIfPresent("minElem", minElem)) trimDict.lookupOrAddDefault<scalar>("minLen", -GREAT);
{
Info<< "Removing features with number of edges < " << minElem << endl; label minElem = trimDict.lookupOrAddDefault<label>("minElem", 0);
}
// Trim away small groups of features // Trim away small groups of features
if (minElem > 0 || minLen > 0) if (minElem > 0 || minLen > 0)
{ {
Info<< "Removing features of length < "
<< minLen << endl;
Info<< "Removing features with number of edges < "
<< minElem << endl;
set.trimFeatures(minLen, minElem); set.trimFeatures(minLen, minElem);
Info<< endl << "Removed small features" << endl; }
} }
@ -708,12 +674,13 @@ int main(int argc, char *argv[])
// Convert to marked edges, points // Convert to marked edges, points
List<surfaceFeatures::edgeStatus> edgeStat(set.toStatus()); List<surfaceFeatures::edgeStatus> edgeStat(set.toStatus());
if (args.optionFound("subsetBox")) if (surfaceDict.isDict("subsetFeatures"))
{ {
treeBoundBox bb dictionary subsetDict = surfaceDict.subDict("subsetFeatures");
(
args.optionLookup("subsetBox")() if (subsetDict.found("insideBox"))
); {
treeBoundBox bb(subsetDict.lookup("insideBox")());
Info<< "Removing all edges outside bb " << bb << endl; Info<< "Removing all edges outside bb " << bb << endl;
dumpBox(bb, "subsetBox.obj"); dumpBox(bb, "subsetBox.obj");
@ -726,12 +693,9 @@ int main(int argc, char *argv[])
edgeStat edgeStat
); );
} }
else if (args.optionFound("deleteBox")) else if (subsetDict.found("outsideBox"))
{ {
treeBoundBox bb treeBoundBox bb(subsetDict.lookup("outsideBox")());
(
args.optionLookup("deleteBox")()
);
Info<< "Removing all edges inside bb " << bb << endl; Info<< "Removing all edges inside bb " << bb << endl;
dumpBox(bb, "deleteBox.obj"); dumpBox(bb, "deleteBox.obj");
@ -745,7 +709,10 @@ int main(int argc, char *argv[])
); );
} }
if (args.optionFound("manifoldEdgesOnly")) const Switch manifoldEdges =
subsetDict.lookupOrAddDefault<Switch>("manifoldEdges", "no");
if (manifoldEdges)
{ {
Info<< "Removing all non-manifold edges" << endl; Info<< "Removing all non-manifold edges" << endl;
@ -758,9 +725,9 @@ int main(int argc, char *argv[])
} }
} }
if (args.optionFound("plane")) if (subsetDict.found("plane"))
{ {
plane cutPlane(args.optionLookup("plane")()); plane cutPlane(subsetDict.lookup("plane")());
deleteEdges deleteEdges
( (
@ -770,22 +737,23 @@ int main(int argc, char *argv[])
); );
Info<< "Only edges that intersect the plane with normal " Info<< "Only edges that intersect the plane with normal "
<< cutPlane.normal() << " and base point " << cutPlane.refPoint() << cutPlane.normal()
<< " and base point " << cutPlane.refPoint()
<< " will be included as feature edges."<< endl; << " will be included as feature edges."<< endl;
} }
}
surfaceFeatures newSet(surf); surfaceFeatures newSet(surf);
newSet.setFromStatus(edgeStat); newSet.setFromStatus(edgeStat);
//Info<< endl << "Writing trimmed features to " << outFileName << endl; if (writeObj)
//newSet.write(outFileName); {
newSet.writeObj("final");
// Info<< endl << "Writing edge objs." << endl; }
// newSet.writeObj("final");
Info<< nl Info<< nl
<< "Final feature set:" << nl << "Final feature set after trimming and subsetting:" << nl
<< " feature points : " << newSet.featurePoints().size() << nl << " feature points : " << newSet.featurePoints().size() << nl
<< " feature edges : " << newSet.featureEdges().size() << nl << " feature edges : " << newSet.featureEdges().size() << nl
<< " of which" << nl << " of which" << nl
@ -802,8 +770,8 @@ int main(int argc, char *argv[])
sFeatFileName + ".extendedFeatureEdgeMesh" sFeatFileName + ".extendedFeatureEdgeMesh"
); );
Info<< nl << "Writing extendedFeatureEdgeMesh to " << feMesh.objectPath() Info<< nl << "Writing extendedFeatureEdgeMesh to "
<< endl; << feMesh.objectPath() << endl;
if (writeObj) if (writeObj)
{ {
@ -813,6 +781,7 @@ int main(int argc, char *argv[])
feMesh.write(); feMesh.write();
// Write a featureEdgeMesh for backwards compatibility // Write a featureEdgeMesh for backwards compatibility
if (writeFeatureEdgeMesh)
{ {
featureEdgeMesh bfeMesh featureEdgeMesh bfeMesh
( (
@ -917,10 +886,10 @@ int main(int argc, char *argv[])
// ) // )
// ); // );
if (args.optionFound("closeness")) if (closeness)
{ {
Info<< nl << "Extracting internal and external closeness of surface." Info<< nl << "Extracting internal and external closeness of "
<< endl; << "surface." << endl;
// Internal and external closeness // Internal and external closeness
@ -930,21 +899,22 @@ int main(int argc, char *argv[])
scalar span = searchSurf.bounds().mag(); scalar span = searchSurf.bounds().mag();
//args.optionReadIfPresent("closeness", span);
scalar externalAngleTolerance = 10; scalar externalAngleTolerance = 10;
scalar externalToleranceCosAngle = Foam::cos scalar externalToleranceCosAngle =
Foam::cos
( (
degToRad(180 - externalAngleTolerance) degToRad(180 - externalAngleTolerance)
); );
scalar internalAngleTolerance = 45; scalar internalAngleTolerance = 45;
scalar internalToleranceCosAngle = Foam::cos scalar internalToleranceCosAngle =
Foam::cos
( (
degToRad(180 - internalAngleTolerance) degToRad(180 - internalAngleTolerance)
); );
Info<< "externalToleranceCosAngle: " << externalToleranceCosAngle << nl Info<< "externalToleranceCosAngle: " << externalToleranceCosAngle
<< nl
<< "internalToleranceCosAngle: " << internalToleranceCosAngle << "internalToleranceCosAngle: " << internalToleranceCosAngle
<< endl; << endl;
@ -984,7 +954,15 @@ int main(int argc, char *argv[])
} }
else if (hitInfo[0].index() != fI) else if (hitInfo[0].index() != fI)
{ {
drawHitProblem(fI, surf, start, faceCentres, end, hitInfo); drawHitProblem
(
fI,
surf,
start,
faceCentres,
end,
hitInfo
);
// FatalErrorIn(args.executable()) // FatalErrorIn(args.executable())
// << "findLineAll did not hit its own face." // << "findLineAll did not hit its own face."
@ -1009,7 +987,15 @@ int main(int argc, char *argv[])
if (ownHitI < 0) if (ownHitI < 0)
{ {
drawHitProblem(fI, surf, start, faceCentres, end, hitInfo); drawHitProblem
(
fI,
surf,
start,
faceCentres,
end,
hitInfo
);
// FatalErrorIn(args.executable()) // FatalErrorIn(args.executable())
// << "findLineAll did not hit its own face." // << "findLineAll did not hit its own face."
@ -1017,35 +1003,45 @@ int main(int argc, char *argv[])
} }
else if (ownHitI == 0) else if (ownHitI == 0)
{ {
// There are no internal hits, the first hit is the closest // There are no internal hits, the first hit is the
// external hit // closest external hit
if if
( (
(normals[fI] & normals[hitInfo[ownHitI + 1].index()]) (
normals[fI]
& normals[hitInfo[ownHitI + 1].index()]
)
< externalToleranceCosAngle < externalToleranceCosAngle
) )
{ {
externalCloseness[fI] = mag externalCloseness[fI] =
mag
( (
faceCentres[fI] - hitInfo[ownHitI + 1].hitPoint() faceCentres[fI]
- hitInfo[ownHitI + 1].hitPoint()
); );
} }
} }
else if (ownHitI == hitInfo.size() - 1) else if (ownHitI == hitInfo.size() - 1)
{ {
// There are no external hits, the last but one hit is the // There are no external hits, the last but one hit is
// closest internal hit // the closest internal hit
if if
( (
(normals[fI] & normals[hitInfo[ownHitI - 1].index()]) (
normals[fI]
& normals[hitInfo[ownHitI - 1].index()]
)
< internalToleranceCosAngle < internalToleranceCosAngle
) )
{ {
internalCloseness[fI] = mag internalCloseness[fI] =
mag
( (
faceCentres[fI] - hitInfo[ownHitI - 1].hitPoint() faceCentres[fI]
- hitInfo[ownHitI - 1].hitPoint()
); );
} }
} }
@ -1053,25 +1049,35 @@ int main(int argc, char *argv[])
{ {
if if
( (
(normals[fI] & normals[hitInfo[ownHitI + 1].index()]) (
normals[fI]
& normals[hitInfo[ownHitI + 1].index()]
)
< externalToleranceCosAngle < externalToleranceCosAngle
) )
{ {
externalCloseness[fI] = mag externalCloseness[fI] =
mag
( (
faceCentres[fI] - hitInfo[ownHitI + 1].hitPoint() faceCentres[fI]
- hitInfo[ownHitI + 1].hitPoint()
); );
} }
if if
( (
(normals[fI] & normals[hitInfo[ownHitI - 1].index()]) (
normals[fI]
& normals[hitInfo[ownHitI - 1].index()]
)
< internalToleranceCosAngle < internalToleranceCosAngle
) )
{ {
internalCloseness[fI] = mag internalCloseness[fI] =
mag
( (
faceCentres[fI] - hitInfo[ownHitI - 1].hitPoint() faceCentres[fI]
- hitInfo[ownHitI - 1].hitPoint()
); );
} }
} }
@ -1144,9 +1150,10 @@ int main(int argc, char *argv[])
#ifdef ENABLE_CURVATURE #ifdef ENABLE_CURVATURE
if (args.optionFound("curvature")) if (curvature)
{ {
Info<< nl << "Extracting curvature of surface at the points." << endl; Info<< nl << "Extracting curvature of surface at the points."
<< endl;
scalarField k = calcCurvature(surf); scalarField k = calcCurvature(surf);
@ -1196,13 +1203,13 @@ int main(int argc, char *argv[])
#endif #endif
if (args.optionFound("featureProximity")) if (featureProximity)
{ {
Info<< nl << "Extracting proximity of close feature points and edges " Info<< nl << "Extracting proximity of close feature points and "
<< "to the surface" << endl; << "edges to the surface" << endl;
const scalar searchDistance = const scalar searchDistance =
args.optionRead<scalar>("featureProximity"); readScalar(surfaceDict.lookup("maxFeatureProximity"));
const scalar radiusSqr = sqr(searchDistance); const scalar radiusSqr = sqr(searchDistance);
@ -1269,6 +1276,9 @@ int main(int argc, char *argv[])
} }
} }
Info<< endl;
}
Info<< "End\n" << endl; Info<< "End\n" << endl;
return 0; return 0;

View File

@ -0,0 +1,86 @@
/*--------------------------------*- C++ -*----------------------------------*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: dev |
| \\ / A nd | Web: www.OpenFOAM.org |
| \\/ M anipulation | |
\*---------------------------------------------------------------------------*/
FoamFile
{
version 2.0;
format ascii;
class dictionary;
object surfaceFeatureExtractDict;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
surface1.stl
{
// extractFromFile || extractFromSurface
extractionMethod extractFromFile;
extractFromFile
{
// Load from an existing feature edge file
featureEdgeFile "constant/triSurface/featureEdges.nas";
}
trimFeatures
{
// Remove features with fewer than the specified number of edges
minElem 0;
// Remove features shorter than the specified cumulative length
minLen 0.0;
}
subsetFeatures
{
// Use a plane to select feature edges
// (normal)(basePoint)
plane (1 0 0)(0 0 0);
// Select feature edges using a box
// (minPt)(maxPt)
insideBox (0 0 0)(1 1 1);
outsideBox (0 0 0)(1 1 1);
// Remove any non-manifold (open or > 2 connected faces) edges
manifoldEdges no;
}
// Output the curvature of the surface
curvature no;
// Output the proximity of feature points and edges to each other
featureProximity no;
// The maximum search distance to use when looking for other feature
// points and edges
maxFeatureProximity 1;
// Out put the closeness of surface elements to other surface elements.
closeness no;
// Write options
writeVTK no;
writeObj yes;
writeFeatureEdgeMesh no;
}
surface2.nas
{
extractionMethod extractFromSurface;
extractFromSurface
{
// Mark edges whose adjacent surface normals are at an angle less
// than includedAngle as features
// - 0 : selects no edges
// - 180: selects all edges
includedAngle 120;
}
}
// ************************************************************************* //

View File

@ -2832,7 +2832,7 @@ Foam::pointIndexHit Foam::indexedOctree<Type>::findNearest
) const ) const
{ {
label nearestShapeI = -1; label nearestShapeI = -1;
point nearestPoint; point nearestPoint = vector::zero;
if (nodes_.size()) if (nodes_.size())
{ {
@ -2847,10 +2847,6 @@ Foam::pointIndexHit Foam::indexedOctree<Type>::findNearest
nearestPoint nearestPoint
); );
} }
else
{
nearestPoint = vector::zero;
}
return pointIndexHit(nearestShapeI != -1, nearestPoint, nearestShapeI); return pointIndexHit(nearestShapeI != -1, nearestPoint, nearestShapeI);
} }

View File

@ -113,6 +113,17 @@ bool Foam::fileFormats::NASedgeFormat::read
// discard groupID // discard groupID
dynEdges.append(e); dynEdges.append(e);
} }
else if (cmd == "PLOTEL")
{
edge e;
// label groupId = readLabel(IStringStream(line.substr(16,8))());
e[0] = readLabel(IStringStream(line.substr(16,8))());
e[1] = readLabel(IStringStream(line.substr(24,8))());
// discard groupID
dynEdges.append(e);
}
else if (cmd == "GRID") else if (cmd == "GRID")
{ {
label index = readLabel(IStringStream(line.substr(8,8))()); label index = readLabel(IStringStream(line.substr(8,8))());

View File

@ -28,6 +28,7 @@ License
#include "addToRunTimeSelectionTable.H" #include "addToRunTimeSelectionTable.H"
#include "addToMemberFunctionSelectionTable.H" #include "addToMemberFunctionSelectionTable.H"
#include "ListOps.H" #include "ListOps.H"
#include "EdgeMap.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * // // * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
@ -327,10 +328,7 @@ void Foam::edgeMesh::mergePoints(const scalar mergeDist)
} }
// Compact using a hashtable and commutative hash of edge. // Compact using a hashtable and commutative hash of edge.
HashTable<label, edge, Hash<edge> > edgeToLabel EdgeMap<label> edgeToLabel(2*edges_.size());
(
2*edges_.size()
);
label newEdgeI = 0; label newEdgeI = 0;
@ -349,13 +347,7 @@ void Foam::edgeMesh::mergePoints(const scalar mergeDist)
edges_.setSize(newEdgeI); edges_.setSize(newEdgeI);
for forAllConstIter(EdgeMap<label>, edgeToLabel, iter)
(
HashTable<label, edge, Hash<edge> >::const_iterator iter =
edgeToLabel.begin();
iter != edgeToLabel.end();
++iter
)
{ {
edges_[iter()] = iter.key(); edges_[iter()] = iter.key();
} }
@ -363,4 +355,35 @@ void Foam::edgeMesh::mergePoints(const scalar mergeDist)
} }
void Foam::edgeMesh::mergeEdges()
{
EdgeMap<label> existingEdges(2*edges_.size());
label curEdgeI = 0;
forAll(edges_, edgeI)
{
const edge& e = edges_[edgeI];
if (existingEdges.insert(e, curEdgeI))
{
curEdgeI++;
}
}
if (debug)
{
Info<< "Merging duplicate edges: "
<< edges_.size() - existingEdges.size()
<< " edges will be deleted." << endl;
}
edges_.setSize(existingEdges.size());
forAllConstIter(EdgeMap<label>, existingEdges, iter)
{
edges_[iter()] = iter.key();
}
}
// ************************************************************************* // // ************************************************************************* //

View File

@ -246,6 +246,9 @@ public:
//- Merge common points (points within mergeDist) //- Merge common points (points within mergeDist)
void mergePoints(const scalar mergeDist); void mergePoints(const scalar mergeDist);
//- Merge similar edges
void mergeEdges();
// Write // Write

View File

@ -124,6 +124,7 @@ $(derivedFvPatchFields)/mappedFixedPushedInternalValue/mappedFixedPushedInternal
$(derivedFvPatchFields)/mappedFixedValue/mappedFixedValueFvPatchFields.C $(derivedFvPatchFields)/mappedFixedValue/mappedFixedValueFvPatchFields.C
$(derivedFvPatchFields)/mappedVelocityFluxFixedValue/mappedVelocityFluxFixedValueFvPatchField.C $(derivedFvPatchFields)/mappedVelocityFluxFixedValue/mappedVelocityFluxFixedValueFvPatchField.C
$(derivedFvPatchFields)/mappedFlowRate/mappedFlowRateFvPatchVectorField.C $(derivedFvPatchFields)/mappedFlowRate/mappedFlowRateFvPatchVectorField.C
$(derivedFvPatchFields)/fixedMean/fixedMeanFvPatchFields.C
$(derivedFvPatchFields)/fan/fanFvPatchFields.C $(derivedFvPatchFields)/fan/fanFvPatchFields.C
$(derivedFvPatchFields)/fanPressure/fanPressureFvPatchScalarField.C $(derivedFvPatchFields)/fanPressure/fanPressureFvPatchScalarField.C
$(derivedFvPatchFields)/buoyantPressure/buoyantPressureFvPatchScalarField.C $(derivedFvPatchFields)/buoyantPressure/buoyantPressureFvPatchScalarField.C

View File

@ -0,0 +1,142 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2012 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "fixedMeanFvPatchField.H"
#include "volFields.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
template<class Type>
fixedMeanFvPatchField<Type>::fixedMeanFvPatchField
(
const fvPatch& p,
const DimensionedField<Type, volMesh>& iF
)
:
fixedValueFvPatchField<Type>(p, iF),
meanValue_(pTraits<Type>::zero)
{}
template<class Type>
fixedMeanFvPatchField<Type>::fixedMeanFvPatchField
(
const fixedMeanFvPatchField<Type>& ptf,
const fvPatch& p,
const DimensionedField<Type, volMesh>& iF,
const fvPatchFieldMapper& mapper
)
:
fixedValueFvPatchField<Type>(ptf, p, iF, mapper),
meanValue_(ptf.meanValue_)
{}
template<class Type>
fixedMeanFvPatchField<Type>::fixedMeanFvPatchField
(
const fvPatch& p,
const DimensionedField<Type, volMesh>& iF,
const dictionary& dict
)
:
fixedValueFvPatchField<Type>(p, iF, dict),
meanValue_(pTraits<Type>(dict.lookup("meanValue")))
{}
template<class Type>
fixedMeanFvPatchField<Type>::fixedMeanFvPatchField
(
const fixedMeanFvPatchField<Type>& ptf
)
:
fixedValueFvPatchField<Type>(ptf),
meanValue_(ptf.meanValue_)
{}
template<class Type>
fixedMeanFvPatchField<Type>::fixedMeanFvPatchField
(
const fixedMeanFvPatchField<Type>& ptf,
const DimensionedField<Type, volMesh>& iF
)
:
fixedValueFvPatchField<Type>(ptf, iF),
meanValue_(ptf.meanValue_)
{}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
template<class Type>
void fixedMeanFvPatchField<Type>::updateCoeffs()
{
if (this->updated())
{
return;
}
Field<Type> newValues(this->patchInternalField());
Type meanValuePsi =
gSum(this->patch().magSf()*newValues)
/gSum(this->patch().magSf());
if (mag(meanValue_) > SMALL && mag(meanValuePsi)/mag(meanValue_) > 0.5)
{
newValues *= mag(meanValue_)/mag(meanValuePsi);
}
else
{
newValues += (meanValue_ - meanValuePsi);
}
this->operator==(newValues);
fixedValueFvPatchField<Type>::updateCoeffs();
}
template<class Type>
void fixedMeanFvPatchField<Type>::write(Ostream& os) const
{
fvPatchField<Type>::write(os);
os.writeKeyword("meanValue") << meanValue_ << token::END_STATEMENT << nl;
this->writeEntry("value", os);
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// ************************************************************************* //

View File

@ -0,0 +1,158 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2012 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Class
Foam::fixedMeanFvPatchField
Description
Extrapolates field to the patch using the near-cell values and adjusts
the distribution to match the specified meanValue.
SourceFiles
fixedMeanFvPatchField.C
\*---------------------------------------------------------------------------*/
#ifndef fixedMeanFvPatchField_H
#define fixedMeanFvPatchField_H
#include "fixedValueFvPatchFields.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
/*---------------------------------------------------------------------------*\
Class fixedMeanFvPatch Declaration
\*---------------------------------------------------------------------------*/
template<class Type>
class fixedMeanFvPatchField
:
public fixedValueFvPatchField<Type>
{
protected:
// Protected data
//- MeanValue value the field is adjusted to maintain
Type meanValue_;
public:
//- Runtime type information
TypeName("fixedMean");
// Constructors
//- Construct from patch and internal field
fixedMeanFvPatchField
(
const fvPatch&,
const DimensionedField<Type, volMesh>&
);
//- Construct from patch, internal field and dictionary
fixedMeanFvPatchField
(
const fvPatch&,
const DimensionedField<Type, volMesh>&,
const dictionary&
);
//- Construct by mapping given fixedMeanFvPatchField
// onto a new patch
fixedMeanFvPatchField
(
const fixedMeanFvPatchField<Type>&,
const fvPatch&,
const DimensionedField<Type, volMesh>&,
const fvPatchFieldMapper&
);
//- Construct as copy
fixedMeanFvPatchField
(
const fixedMeanFvPatchField<Type>&
);
//- Construct and return a clone
virtual tmp<fvPatchField<Type> > clone() const
{
return tmp<fvPatchField<Type> >
(
new fixedMeanFvPatchField<Type>(*this)
);
}
//- Construct as copy setting internal field reference
fixedMeanFvPatchField
(
const fixedMeanFvPatchField<Type>&,
const DimensionedField<Type, volMesh>&
);
//- Construct and return a clone setting internal field reference
virtual tmp<fvPatchField<Type> > clone
(
const DimensionedField<Type, volMesh>& iF
) const
{
return tmp<fvPatchField<Type> >
(
new fixedMeanFvPatchField<Type>(*this, iF)
);
}
// Member functions
// Evaluation functions
//- Update the coefficients associated with the patch field
virtual void updateCoeffs();
//- Write
virtual void write(Ostream&) const;
};
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#ifdef NoRepository
# include "fixedMeanFvPatchField.C"
#endif
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#endif
// ************************************************************************* //

View File

@ -0,0 +1,43 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2012 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "fixedMeanFvPatchFields.H"
#include "volMesh.H"
#include "addToRunTimeSelectionTable.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
makePatchFields(fixedMean);
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// ************************************************************************* //

View File

@ -0,0 +1,49 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2012 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#ifndef fixedMeanFvPatchFields_H
#define fixedMeanFvPatchFields_H
#include "fixedMeanFvPatchField.H"
#include "fieldTypes.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
makePatchTypeFieldTypedefs(fixedMean);
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#endif
// ************************************************************************* //

View File

@ -23,67 +23,28 @@ License
\*---------------------------------------------------------------------------*/ \*---------------------------------------------------------------------------*/
#include "buildCGALPolyhedron.H" #ifndef fixedMeanFvPatchFieldsFwd_H
#define fixedMeanFvPatchFieldsFwd_H
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * // #include "fieldTypes.H"
Foam::buildCGALPolyhedron::buildCGALPolyhedron // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
(
const Foam::triSurface& surf
)
:
CGAL::Modifier_base<HalfedgeDS>(),
surf_(surf)
{}
namespace Foam
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
Foam::buildCGALPolyhedron::~buildCGALPolyhedron()
{}
// * * * * * * * * * * * * * * Member Operators * * * * * * * * * * * * * * //
void Foam::buildCGALPolyhedron::operator()
(
HalfedgeDS& hds
)
{ {
typedef HalfedgeDS::Traits Traits;
typedef Traits::Point_3 Point;
// Postcondition: `hds' is a valid polyhedral surface. // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
CGAL::Polyhedron_incremental_builder_3<HalfedgeDS> B(hds, false);
B.begin_surface template<class Type> class fixedMeanFvPatchField;
(
surf_.points().size(), // n points
surf_.size(), // n facets
2*surf_.edges().size() // n halfedges
);
forAll(surf_.points(), pI) makePatchTypeFieldTypedefs(fixedMean);
{
const Foam::point& p = surf_.points()[pI];
B.add_vertex(Point(p.x(), p.y(), p.z())); // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
}
forAll(surf_, fI) } // End namespace Foam
{
B.begin_facet();
B.add_vertex_to_facet(surf_[fI][0]); // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
B.add_vertex_to_facet(surf_[fI][1]);
B.add_vertex_to_facet(surf_[fI][2]);
B.end_facet();
}
B.end_surface();
}
#endif
// ************************************************************************* // // ************************************************************************* //

View File

@ -33,11 +33,15 @@ License
#include "OFstream.H" #include "OFstream.H"
#include "IFstream.H" #include "IFstream.H"
#include "unitConversion.H" #include "unitConversion.H"
#include "EdgeMap.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * // // * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
defineTypeNameAndDebug(Foam::surfaceFeatures, 0); defineTypeNameAndDebug(Foam::surfaceFeatures, 0);
const Foam::scalar Foam::surfaceFeatures::parallelTolerance =
sin(degToRad(1.0));
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * // // * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
@ -170,7 +174,10 @@ void Foam::surfaceFeatures::setFromStatus(const List<edgeStatus>& edgeStat)
//construct feature points where more than 2 feature edges meet //construct feature points where more than 2 feature edges meet
void Foam::surfaceFeatures::calcFeatPoints(const List<edgeStatus>& edgeStat) void Foam::surfaceFeatures::calcFeatPoints
(
const List<edgeStatus>& edgeStat
)
{ {
DynamicList<label> featurePoints(surf_.nPoints()/1000); DynamicList<label> featurePoints(surf_.nPoints()/1000);
@ -200,6 +207,60 @@ void Foam::surfaceFeatures::calcFeatPoints(const List<edgeStatus>& edgeStat)
} }
void Foam::surfaceFeatures::classifyFeatureAngles
(
const labelListList& edgeFaces,
List<edgeStatus>& edgeStat,
const scalar minCos
) const
{
const vectorField& faceNormals = surf_.faceNormals();
const pointField& points = surf_.points();
forAll(edgeFaces, edgeI)
{
const labelList& eFaces = edgeFaces[edgeI];
if (eFaces.size() != 2)
{
// Non-manifold. What to do here? Is region edge? external edge?
edgeStat[edgeI] = REGION;
}
else
{
label face0 = eFaces[0];
label face1 = eFaces[1];
if (surf_[face0].region() != surf_[face1].region())
{
edgeStat[edgeI] = REGION;
}
else
{
if ((faceNormals[face0] & faceNormals[face1]) < minCos)
{
// Check if convex or concave by looking at angle
// between face centres and normal
vector f0Tof1 =
surf_[face1].centre(points)
- surf_[face0].centre(points);
if ((f0Tof1 & faceNormals[face0]) > 0.0)
{
edgeStat[edgeI] = INTERNAL;
}
else
{
edgeStat[edgeI] = EXTERNAL;
}
}
}
}
}
}
// Returns next feature edge connected to pointI with correct value. // Returns next feature edge connected to pointI with correct value.
Foam::label Foam::surfaceFeatures::nextFeatEdge Foam::label Foam::surfaceFeatures::nextFeatEdge
( (
@ -436,6 +497,80 @@ Foam::surfaceFeatures::surfaceFeatures
} }
Foam::surfaceFeatures::surfaceFeatures
(
const triSurface& surf,
const pointField& points,
const edgeList& edges,
const scalar mergeTol
)
:
surf_(surf),
featurePoints_(0),
featureEdges_(0),
externalStart_(0),
internalStart_(0)
{
// Match edge mesh edges with the triSurface edges
const labelListList& surfEdgeFaces = surf_.edgeFaces();
const edgeList& surfEdges = surf_.edges();
scalar mergeTolSqr = sqr(mergeTol);
EdgeMap<label> dynFeatEdges(2*edges.size());
DynamicList<labelList> dynFeatureEdgeFaces(edges.size());
labelList edgeLabel;
nearestFeatEdge
(
edges,
points,
mergeTolSqr,
edgeLabel // label of surface edge or -1
);
label count = 0;
forAll(edgeLabel, sEdgeI)
{
const label sEdge = edgeLabel[sEdgeI];
if (sEdge == -1)
{
continue;
}
dynFeatEdges.insert(surfEdges[sEdge], count++);
dynFeatureEdgeFaces.append(surfEdgeFaces[sEdge]);
}
// Find whether an edge is external or internal
List<edgeStatus> edgeStat(dynFeatEdges.size(), NONE);
classifyFeatureAngles(dynFeatureEdgeFaces, edgeStat, GREAT);
// Transfer the edge status to a list encompassing all edges in the surface
// so that calcFeatPoints can be used.
List<edgeStatus> allEdgeStat(surf_.nEdges(), NONE);
forAll(allEdgeStat, eI)
{
EdgeMap<label>::const_iterator iter = dynFeatEdges.find(surfEdges[eI]);
if (iter != dynFeatEdges.end())
{
allEdgeStat[eI] = edgeStat[iter()];
}
}
edgeStat.clear();
dynFeatEdges.clear();
setFromStatus(allEdgeStat);
}
//- Construct as copy //- Construct as copy
Foam::surfaceFeatures::surfaceFeatures(const surfaceFeatures& sf) Foam::surfaceFeatures::surfaceFeatures(const surfaceFeatures& sf)
: :
@ -496,54 +631,10 @@ void Foam::surfaceFeatures::findFeatures(const scalar includedAngle)
{ {
scalar minCos = Foam::cos(degToRad(180.0 - includedAngle)); scalar minCos = Foam::cos(degToRad(180.0 - includedAngle));
const labelListList& edgeFaces = surf_.edgeFaces();
const vectorField& faceNormals = surf_.faceNormals();
const pointField& points = surf_.points();
// Per edge whether is feature edge. // Per edge whether is feature edge.
List<edgeStatus> edgeStat(surf_.nEdges(), NONE); List<edgeStatus> edgeStat(surf_.nEdges(), NONE);
forAll(edgeFaces, edgeI) classifyFeatureAngles(surf_.edgeFaces(), edgeStat, minCos);
{
const labelList& eFaces = edgeFaces[edgeI];
if (eFaces.size() != 2)
{
// Non-manifold. What to do here? Is region edge? external edge?
edgeStat[edgeI] = REGION;
}
else
{
label face0 = eFaces[0];
label face1 = eFaces[1];
if (surf_[face0].region() != surf_[face1].region())
{
edgeStat[edgeI] = REGION;
}
else
{
if ((faceNormals[face0] & faceNormals[face1]) < minCos)
{
// Check if convex or concave by looking at angle
// between face centres and normal
vector f0Tof1 =
surf_[face1].centre(points)
- surf_[face0].centre(points);
if ((f0Tof1 & faceNormals[face0]) > 0.0)
{
edgeStat[edgeI] = INTERNAL;
}
else
{
edgeStat[edgeI] = EXTERNAL;
}
}
}
}
}
setFromStatus(edgeStat); setFromStatus(edgeStat);
} }
@ -1147,6 +1238,9 @@ void Foam::surfaceFeatures::nearestSurfEdge
const pointField& localPoints = surf_.localPoints(); const pointField& localPoints = surf_.localPoints();
treeBoundBox searchDomain(localPoints);
searchDomain.inflate(0.1);
indexedOctree<treeDataEdge> ppTree indexedOctree<treeDataEdge> ppTree
( (
treeDataEdge treeDataEdge
@ -1156,7 +1250,7 @@ void Foam::surfaceFeatures::nearestSurfEdge
localPoints, localPoints,
selectedEdges selectedEdges
), // all information needed to do geometric checks ), // all information needed to do geometric checks
treeBoundBox(localPoints), // overall search domain searchDomain, // overall search domain
8, // maxLevel 8, // maxLevel
10, // leafsize 10, // leafsize
3.0 // duplicity 3.0 // duplicity
@ -1216,6 +1310,8 @@ void Foam::surfaceFeatures::nearestSurfEdge
pointOnEdge.setSize(selectedSampleEdges.size()); pointOnEdge.setSize(selectedSampleEdges.size());
pointOnFeature.setSize(selectedSampleEdges.size()); pointOnFeature.setSize(selectedSampleEdges.size());
treeBoundBox searchDomain(surf_.localPoints());
indexedOctree<treeDataEdge> ppTree indexedOctree<treeDataEdge> ppTree
( (
treeDataEdge treeDataEdge
@ -1225,7 +1321,7 @@ void Foam::surfaceFeatures::nearestSurfEdge
surf_.localPoints(), surf_.localPoints(),
selectedEdges selectedEdges
), // all information needed to do geometric checks ), // all information needed to do geometric checks
treeBoundBox(surf_.localPoints()), // overall search domain searchDomain, // overall search domain
8, // maxLevel 8, // maxLevel
10, // leafsize 10, // leafsize
3.0 // duplicity 3.0 // duplicity
@ -1262,6 +1358,67 @@ void Foam::surfaceFeatures::nearestSurfEdge
} }
void Foam::surfaceFeatures::nearestFeatEdge
(
const edgeList& edges,
const pointField& points,
scalar searchSpanSqr, // Search span
labelList& edgeLabel
) const
{
edgeLabel = labelList(surf_.nEdges(), -1);
treeBoundBox searchDomain(points);
searchDomain.inflate(0.1);
indexedOctree<treeDataEdge> ppTree
(
treeDataEdge
(
false,
edges,
points,
identity(edges.size())
), // all information needed to do geometric checks
searchDomain, // overall search domain
8, // maxLevel
10, // leafsize
3.0 // duplicity
);
const edgeList& surfEdges = surf_.edges();
const pointField& surfLocalPoints = surf_.localPoints();
forAll(surfEdges, edgeI)
{
const edge& sample = surfEdges[edgeI];
const point& startPoint = surfLocalPoints[sample.start()];
const point& midPoint = sample.centre(surfLocalPoints);
pointIndexHit infoMid = ppTree.findNearest
(
midPoint,
searchSpanSqr
);
if (infoMid.hit())
{
const vector surfEdgeDir = midPoint - startPoint;
const edge& featEdge = edges[infoMid.index()];
const vector featEdgeDir = featEdge.vec(points);
// Check that the edges are nearly parallel
if (mag(surfEdgeDir ^ featEdgeDir) < parallelTolerance)
{
edgeLabel[edgeI] = edgeI;
}
}
}
}
// * * * * * * * * * * * * * * * Member Operators * * * * * * * * * * * * * // // * * * * * * * * * * * * * * * Member Operators * * * * * * * * * * * * * //
void Foam::surfaceFeatures::operator=(const surfaceFeatures& rhs) void Foam::surfaceFeatures::operator=(const surfaceFeatures& rhs)

View File

@ -95,6 +95,11 @@ private:
{} {}
}; };
// Static data
//- Tolerance for determining whether two vectors are parallel
static const scalar parallelTolerance;
// Private data // Private data
@ -130,6 +135,14 @@ private:
//- Construct feature points where more than 2 feature edges meet //- Construct feature points where more than 2 feature edges meet
void calcFeatPoints(const List<edgeStatus>&); void calcFeatPoints(const List<edgeStatus>&);
//- Classify the angles of the feature edges
void classifyFeatureAngles
(
const labelListList& edgeFaces,
List<edgeStatus>& edgeStat,
const scalar minCos
) const;
//- Choose next unset feature edge. //- Choose next unset feature edge.
label nextFeatEdge label nextFeatEdge
( (
@ -186,6 +199,15 @@ public:
//- Construct from file //- Construct from file
surfaceFeatures(const triSurface&, const fileName& fName); surfaceFeatures(const triSurface&, const fileName& fName);
//- Construct from pointField and edgeList (edgeMesh)
surfaceFeatures
(
const triSurface&,
const pointField& points,
const edgeList& edges,
const scalar mergeTol = 1e-6
);
//- Construct as copy //- Construct as copy
surfaceFeatures(const surfaceFeatures&); surfaceFeatures(const surfaceFeatures&);
@ -327,7 +349,6 @@ public:
pointField& edgePoint pointField& edgePoint
) const; ) const;
//- Find nearest surface edge (out of selectedEdges) for each //- Find nearest surface edge (out of selectedEdges) for each
// sample edge. // sample edge.
// Sets: // Sets:
@ -347,6 +368,16 @@ public:
pointField& pointOnFeature // point on sample edge pointField& pointOnFeature // point on sample edge
) const; ) const;
//- Find nearest feature edge to each surface edge. Uses the
// mid-point of the surface edges.
void nearestFeatEdge
(
const edgeList& edges,
const pointField& points,
scalar searchSpanSqr,
labelList& edgeLabel
) const;
// Write // Write