Merge branch 'master' into particleInteractions

Conflicts:
	src/parallel/decompose/decompositionMethods/Make/options
This commit is contained in:
graham
2010-03-23 11:18:53 +00:00
115 changed files with 5324 additions and 2119 deletions

View File

@ -0,0 +1,4 @@
rhoPorousMRFPimpleFoam.C
EXE = $(FOAM_APPBIN)/rhoPorousMRFPimpleFoam

View File

@ -0,0 +1,15 @@
EXE_INC = \
-I../rhoPimpleFoam \
-I$(LIB_SRC)/thermophysicalModels/basic/lnInclude \
-I$(LIB_SRC)/turbulenceModels/compressible/turbulenceModel \
-I$(LIB_SRC)/finiteVolume/cfdTools \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude
EXE_LIBS = \
-lbasicThermophysicalModels \
-lspecie \
-lcompressibleRASModels \
-lcompressibleLESModels \
-lfiniteVolume \
-lmeshTools

View File

@ -0,0 +1,39 @@
// Solve the Momentum equation
tmp<fvVectorMatrix> UEqn
(
pZones.ddt(rho, U)
+ fvm::div(phi, U)
+ turbulence->divDevRhoReff(U)
);
if (oCorr == nOuterCorr-1)
{
UEqn().relax(1);
}
else
{
UEqn().relax();
}
mrfZones.addCoriolis(rho, UEqn());
pZones.addResistance(UEqn());
volScalarField rUA = 1.0/UEqn().A();
if (momentumPredictor)
{
if (oCorr == nOuterCorr-1)
{
solve(UEqn() == -fvc::grad(p), mesh.solver("UFinal"));
}
else
{
solve(UEqn() == -fvc::grad(p));
}
}
else
{
U = rUA*(UEqn().H() - fvc::grad(p));
U.correctBoundaryConditions();
}

View File

@ -0,0 +1,70 @@
Info<< "Reading thermophysical properties\n" << endl;
autoPtr<basicPsiThermo> pThermo
(
basicPsiThermo::New(mesh)
);
basicPsiThermo& thermo = pThermo();
volScalarField& p = thermo.p();
volScalarField& h = thermo.h();
const volScalarField& psi = thermo.psi();
volScalarField rho
(
IOobject
(
"rho",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
thermo.rho()
);
Info<< "Reading field U\n" << endl;
volVectorField U
(
IOobject
(
"U",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
#include "compressibleCreatePhi.H"
dimensionedScalar pMin
(
mesh.solutionDict().subDict("PIMPLE").lookup("pMin")
);
Info<< "Creating turbulence model\n" << endl;
autoPtr<compressible::turbulenceModel> turbulence
(
compressible::turbulenceModel::New
(
rho,
U,
phi,
thermo
)
);
//dimensionedScalar initialMass = fvc::domainIntegrate(rho);
Info<< "Creating field DpDt\n" << endl;
volScalarField DpDt =
fvc::DDt(surfaceScalarField("phiU", phi/fvc::interpolate(rho)), p);
MRFZones mrfZones(mesh);
mrfZones.correctBoundaryVelocity(U);
porousZones pZones(mesh);
Switch pressureImplicitPorosity(false);

View File

@ -0,0 +1,123 @@
rho = thermo.rho();
volScalarField rUA = 1.0/UEqn().A();
U = rUA*UEqn().H();
if (nCorr <= 1)
{
UEqn.clear();
}
if (transonic)
{
surfaceScalarField phid
(
"phid",
fvc::interpolate(psi)
*(
(fvc::interpolate(U) & mesh.Sf())
+ fvc::ddtPhiCorr(rUA, rho, U, phi)
)
);
mrfZones.relativeFlux(fvc::interpolate(psi), phid);
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
{
fvScalarMatrix pEqn
(
fvm::ddt(psi, p)
+ fvm::div(phid, p)
- fvm::laplacian(rho*rUA, p)
);
if
(
oCorr == nOuterCorr-1
&& corr == nCorr-1
&& nonOrth == nNonOrthCorr
)
{
pEqn.solve(mesh.solver("pFinal"));
}
else
{
pEqn.solve();
}
if (nonOrth == nNonOrthCorr)
{
phi == pEqn.flux();
}
}
}
else
{
phi =
fvc::interpolate(rho)*
(
(fvc::interpolate(U) & mesh.Sf())
//+ fvc::ddtPhiCorr(rUA, rho, U, phi)
);
mrfZones.relativeFlux(fvc::interpolate(rho), phi);
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
{
// Pressure corrector
fvScalarMatrix pEqn
(
fvm::ddt(psi, p)
+ fvc::div(phi)
- fvm::laplacian(rho*rUA, p)
);
if
(
oCorr == nOuterCorr-1
&& corr == nCorr-1
&& nonOrth == nNonOrthCorr
)
{
pEqn.solve(mesh.solver("pFinal"));
}
else
{
pEqn.solve();
}
if (nonOrth == nNonOrthCorr)
{
phi += pEqn.flux();
}
}
}
#include "rhoEqn.H"
#include "compressibleContinuityErrs.H"
//if (oCorr != nOuterCorr-1)
{
// Explicitly relax pressure for momentum corrector
p.relax();
rho = thermo.rho();
rho.relax();
Info<< "rho max/min : " << max(rho).value()
<< " " << min(rho).value() << endl;
}
U -= rUA*fvc::grad(p);
U.correctBoundaryConditions();
DpDt = fvc::DDt(surfaceScalarField("phiU", phi/fvc::interpolate(rho)), p);
bound(p, pMin);
// For closed-volume cases adjust the pressure and density levels
// to obey overall mass continuity
/*
if (closedVolume)
{
p += (initialMass - fvc::domainIntegrate(psi*p))
/fvc::domainIntegrate(psi);
}
*/

View File

@ -0,0 +1,105 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 1991-2010 OpenCFD Ltd.
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Application
rhoPorousMRFPimpleFoam
Description
Transient solver for laminar or turbulent flow of compressible fluids
with support for porous media and MRF for HVAC and similar applications.
Uses the flexible PIMPLE (PISO-SIMPLE) solution for time-resolved and
pseudo-transient simulations.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "basicPsiThermo.H"
#include "turbulenceModel.H"
#include "bound.H"
#include "MRFZones.H"
#include "porousZones.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
#include "setRootCase.H"
#include "createTime.H"
#include "createMesh.H"
#include "createFields.H"
#include "initContinuityErrs.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
while (runTime.run())
{
#include "readTimeControls.H"
#include "readPIMPLEControls.H"
#include "compressibleCourantNo.H"
#include "setDeltaT.H"
runTime++;
Info<< "Time = " << runTime.timeName() << nl << endl;
if (nOuterCorr != 1)
{
p.storePrevIter();
rho.storePrevIter();
}
#include "rhoEqn.H"
// --- Pressure-velocity PIMPLE corrector loop
for (int oCorr=0; oCorr<nOuterCorr; oCorr++)
{
#include "UEqn.H"
#include "hEqn.H"
// --- PISO loop
for (int corr=0; corr<nCorr; corr++)
{
#include "pEqn.H"
}
turbulence->correct();
}
runTime.write();
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //

View File

@ -59,7 +59,17 @@
alpharScheme
);
MULES::explicitSolve(oneField(), alpha1, phi, phiAlpha1, Sp, Su, 1, 0);
MULES::explicitSolve
(
geometricOneField(),
alpha1,
phi,
phiAlpha1,
Sp,
Su,
1,
0
);
surfaceScalarField rho1f = fvc::interpolate(rho1);
surfaceScalarField rho2f = fvc::interpolate(rho2);

View File

@ -59,7 +59,7 @@
alpharScheme
);
MULES::explicitSolve(oneField(), alpha1, phi, phiAlpha1, Sp, Su, 1, 0);
MULES::explicitSolve(geometricOneField(), alpha1, phi, phiAlpha1, Sp, Su, 1, 0);
surfaceScalarField rho1f = fvc::interpolate(rho1);
surfaceScalarField rho2f = fvc::interpolate(rho2);

View File

@ -70,12 +70,12 @@
MULES::limiter
(
allLambda,
oneField(),
geometricOneField(),
alpha1,
phiAlpha1BD,
phiAlpha1,
zeroField(),
zeroField(),
zero(),
zero(),
1,
0,
3
@ -107,12 +107,12 @@
MULES::limiter
(
allLambda,
oneField(),
geometricOneField(),
alpha2,
phiAlpha2BD,
phiAlpha2,
zeroField(),
zeroField(),
zero(),
zero(),
1,
0,
3

View File

@ -51,8 +51,8 @@
);
//MULES::explicitSolve(alpha1, phi, phiAlpha, 1, 0);
//MULES::explicitSolve(oneField(), alpha1, phi, phiAlpha, Sp, Su, 1, 0);
MULES::implicitSolve(oneField(), alpha1, phi, phiAlpha, Sp, Su, 1, 0);
//MULES::explicitSolve(geometricOneField(), alpha1, phi, phiAlpha, Sp, Su, 1, 0);
MULES::implicitSolve(geometricOneField(), alpha1, phi, phiAlpha, Sp, Su, 1, 0);
rhoPhi +=
(runTime.deltaT()/totalDeltaT)