- with the special setFormat "probes", all of the sampled sets are
treated more similarly to probes, with an ensemble output to raw
probed format.
This is of course less useful when the number of sampled points
becomes very large.
- in v2112 the functionObject results were only delivering values from
the last set listed (ie, overwritten).
Now that the values are properly scoped by the name of the set itself
Eg, `average(lines,p)` for the average for 'lines' set, existing
workflows will break.
It thus makes reasonble sense to also handle results without a
qualifier as ensemble values.
average(p) // Ensemble average of all listed sets
- the very old 'writer' class was fully stateless and always templated
on an particular output type.
This is now replaced with a 'coordSetWriter' with similar concepts
as previously introduced for surface writers (#1206).
- writers change from being a generic state-less set of routines to
more properly conforming to the normal notion of a writer.
- Parallel data is done *outside* of the writers, since they are used
in a wide variety of contexts and the caller is currently still in
a better position for deciding how to combine parallel data.
ENH: update sampleSets to sample on per-field basis (#2347)
- sample/write a field in a single step.
- support for 'sampleOnExecute' to obtain values at execution
intervals without writing.
- support 'sets' input as a dictionary entry (as well as a list),
which is similar to the changes for sampled-surface and permits use
of changeDictionary to modify content.
- globalIndex for gather to reduce parallel communication, less code
- qualify the sampleSet results (properties) with the name of the set.
The sample results were previously without a qualifier, which meant
that only the last property value was actually saved (previous ones
overwritten).
For example,
```
sample1
{
scalar
{
average(line,T) 349.96521;
min(line,T) 349.9544281;
max(line,T) 350;
average(cells,T) 349.9854619;
min(cells,T) 349.6589286;
max(cells,T) 350.4967271;
average(line,epsilon) 0.04947733869;
min(line,epsilon) 0.04449639927;
max(line,epsilon) 0.06452856475;
}
label
{
size(line,T) 79;
size(cells,T) 1720;
size(line,epsilon) 79;
}
}
```
ENH: update particleTracks application
- use globalIndex to manage original parcel addressing and
for gathering. Simplify code by introducing a helper class,
storing intermediate fields in hash tables instead of
separate lists.
ADDITIONAL NOTES:
- the regionSizeDistribution largely retains separate writers since
the utility of placing sum/dev/count for all fields into a single file
is questionable.
- the streamline writing remains a "soft" upgrade, which means that
scalar and vector fields are still collected a priori and not
on-the-fly. This is due to how the streamline infrastructure is
currently handled (should be upgraded in the future).
- PstreamBuffers nProcs() and allProcs() methods to recover the rank
information consistent with the communicator used for construction
- allowClearRecv() methods for more control over buffer reuse
For example,
pBufs.allowClearRecv(false);
forAll(particles, particlei)
{
pBufs.clear();
fill...
read via IPstream(..., pBufs);
}
This preserves the receive buffers memory allocation between calls.
- finishedNeighbourSends() method as compact wrapper for
finishedSends() when send/recv ranks are identically
(eg, neighbours)
- hasSendData()/hasRecvData() methods for PstreamBuffers.
Can be useful for some situations to skip reading entirely.
For example,
pBufs.finishedNeighbourSends(neighProcs);
if (!returnReduce(pBufs.hasRecvData(), orOp<bool>()))
{
// Nothing to do
continue;
}
...
On an individual basis:
for (const int proci : pBufs.allProcs())
{
if (pBufs.hasRecvData(proci))
{
...
}
}
Also conceivable to do the following instead (nonBlocking only):
if (!returnReduce(pBufs.hasSendData(), orOp<bool>()))
{
// Nothing to do
pBufs.clear();
continue;
}
pBufs.finishedNeighbourSends(neighProcs);
...
- supports sampling/probing of values to obtain min/max/average/size
at execution intervals without writing any output or generating
output directories.
- 'verbose' option for additional output
- min, max, average and sample size results now stored in
functionObjectProperties similar to sampledSets, e.g. for field p
- min(p)
- max(p)
- average(p)
- size(p)
ENH: provide fieldTypes::surface names (as per fieldTypes::volume)
ENH: reduce number of files for surface fields
- combine face and point field declarations/definitions,
simplify typeName definitions
- using the proximityRegions filter when there is no enclosing surface
to segregate domains causes a surface of zero-faces to be created.
In most cases, this means that a simpler proximityFaces filter would
have been more appropriate. To increase overall robustness, revert
to the simpler proximityFaces filter logic when the proximityRegions
would otherwise result in zero faces (globally seen).
- helps avoid the creation of small face cuts (near corners, edges)
that result in zero-size faces on output.
CONFIG: make default iso-surface topo regularisation less aggressive
- The full (diagcell) regularisation no longer includes cleaning of
non-manifold surfaces by removing open edges.
This can be selected by the 'clean' regularisation option instead.
ie, 'clean' = 'full' + erode open edges
ENH: additional debug modes for iso-surface topo
- with (debug & 8) dumps out a VTK file of the tets to be cut and the
calculated open edges.
- combines region-based and proximity-based filtering
proxityRegions (post-filter):
Checks the distance of the resulting faces against the original
search surface. Filters based on the area-weighted distance
of each topologically connected region.
If the area-weighted distance of a region is greater than
\c absProximity, the entire region is rejected.
STYLE: 'proxityFaces' as newer synonym for 'proximity' filter
- additional rcEdge(), rcEdges() methods for reverse order walk
- accept generic edge() method as alternative to faceEdge() for
single edge retrieval.
- edge() method with points -> returns the vector
- reduce the number of operations in edgeDirection methods
DEFEATURE: remove longestEdge global function
- deprecated and replaced by face::longestEdge() method (2017-04)
- additional dummy template parameter to assist with supporting
derived classes. Currently just used for string types, but can be
extended.
- provide hash specialization for various integer types.
Removes the need for any forwarding.
- change default hasher for HashSet/HashTable from 'string::hash'
to `Hash<Key>`. This avoids questionable hashing calls and/or
avoids compiler resolution problems.
For example,
HashSet<label>::hasher and labelHashSet::hasher now both properly
map to Hash<label> whereas previously HashSet<label> would have
persistently mapped to string::hash, which was incorrect.
- standardize internal hashing functors.
Functor name is 'hasher', as per STL set/map and the OpenFOAM
HashSet/HashTable definitions.
Older code had a local templated name, which added unnecessary
clutter and the template parameter was always defaulted.
For example,
Old: `FixedList<label, 3>::Hash<>()`
New: `FixedList<label, 3>::hasher()`
Unchanged: `labelHashSet::hasher()`
Existing `Hash<>` functor namings are still supported,
but deprecated.
- define hasher and Hash specialization for bitSet and PackedList
- add symmetric hasher for 'face'.
Starts with lowest vertex value and walks in the direction
of the next lowest value. This ensures that the hash code is
independent of face orientation and face rotation.
NB:
- some of keys for multiphase handling (eg, phasePairKey)
still use yet another function naming: `hash` and `symmHash`.
This will be targeted for alignment in the future.
- wrap command-line retrieval of fileName with an implicit validate.
Instead of this:
fileName input(args[1]);
fileName other(args["someopt"]);
Now use this:
auto input = args.get<fileName>(1);
auto other = args.get<fileName>("someopt");
which adds a fileName::validate on the inputs
Because of how it is implemented, it will automatically also apply
to argList getOrDefault<fileName>, readIfPresent<fileName> etc.
- adjust fileName::validate and clean to handle backslash conversion.
This makes it easier to ensure that path names arising from MS-Windows
are consistently handled internally.
- dictionarySearch: now check for initial '/' directly instead of
relying on fileName isAbsolute(), which now does more things
BREAKING: remove fileName::clean() const method
- relying on const/non-const to control the behaviour (inplace change
or return a copy) is too fragile and the const version was
almost never used.
Replace:
fileName sanitized = constPath.clean();
With:
fileName sanitized(constPath);
sanitized.clean());
STYLE: test empty() instead of comparing with fileName::null
- improves interface and data consistency.
Older signatures are still active (via the Foam_IOstream_extras
define).
- refine internals for IOstreamOption streamFormat, versionNumber
ENH: improve data alignment for IOstream and IOobject
- fit sizeof label/scalar into unsigned char
STYLE: remove dead code
- eliminates a potentially invalid code branch.
Since it essentially had the same internals as std::swap anyhow,
make that more evident.
ENH: use std::swap for basic types
- makes it clearer that they do not rely on any special semantics
- ensure surface writing is time-step and nFields aware.
This avoids overwriting (ignoring) previous output fields.
- allow sampled surfaces to be used for weight fields as well.
Not sure why this restriction was still there.
- remove old compatibility reading of orientedFields.
Last used in v1612, now removed.
- only use face sampling. For surfaceFieldValue we can only do
something meaningful with face values.
ENH: modify interface methods for surfaceWriter
- replace direct modification of values with setter methods.
Eg,
old: writer.isPointData() = true;
new: writer.isPointData(true);
This makes it possible to add internal hooks to catch state changes.
ENH: allow post-construction change to sampledSurface interpolation
- rename interpolate() method to isPointData() for consistency with
other classes and to indicate that it is a query.
- additional isPointData(bool) setter method to change the expected
representation type after construction
- remove 'interpolate' restriction on isoSurfacePoint which was
previously flagged as an error but within sampledSurfaces can use
sampleScheme cellPoint and obtain representative samples.
Relax this restriction since this particular iso-surface algorithm
is slated for removal in the foreseeable future.
- adds topology-based segmentation of the surfaces generated with
distance surfaces. This can occur when the surface terminates
close to a thin wall gap in the mesh; resulting in a cuts that
extend into the next region.
The cutting algorithm does not normally distinguish between these
types of "ragged" cuts, and legitimate ones (eg, cutting multiple
pipes). The additional segmentation controls provide for two common
scenarios:
largestRegion (pre-filter):
- The cut cells are checked for topological connectivity and the
region with the most number of cut cells is retained.
This handles the "ragged" edge problem.
nearestPoints (pre-filter):
- The cut cells split into regions, the regions closest to the
user-defined points are retained.
Uses maxDistance for additional control.
proximity (post-filter):
- Checks the resulting faces against the original search surface
and rejects faces with a distance greater than absProximity.
ENH: restructure distance surface geometric filtering
- prefilter cells, which can be used to adjust the distance
calculation in the far field to the real distance
(not the normal distance).
This can also be used to artificially sharpen the transition
between near/far regions, if required in the future.
- generic isoSurfaceBase. Provides simpler cell-cut detection and
various functions that can be used for iso-surfaces or when
preparing prefiltered input for iso-surfaces.
- rudimentary runtime selection
ENH: isoSurface Cell/Topo uses the isoSurfaceBase infrastructure
- simpler cell cut detection, common routines
- ensure that tetMatcher is only called once per cell
ENH: use indirect patch during edge erosion
- lower overhead, allows backtracking (future) if needed