Calculates the acoustic power due to the volume of isotropic turbulence
using Proudman's formula
The acoustic power \f$ P_A \f$ [W/m3] in terms of turbulence \f$ k \f$
and \f$ \epsilon \f$ is given as:
\f[
P_A = alpha_\epsilon \rho \epsilon M_t^5
\f]
where \f$ alpha_\epsilon \f$ is a constant (0.1) and
\f[
M_t = \frac{\sqrt{2 k}}{a_0}
\f]
with \f$ a_0 \f$ the speed of sound. The acoustic power is also output in
dB using:
\f[
L_P = 10 \log \frac{P_A}{P_ref}
\f]
where \f$ P_ref \f$ is a constant (1e-12 W/m3)
Usage
Example of function object specification to calculate the Proudman acoustic
power
proudmanAcousticPower1
{
type proudmanAcousticPower;
libs ("libfieldFunctionObjects.so");
...
// Required additional entries for incompressible calculations
rhoInf 1.225;
aRef 340;
}
Where the entries comprise:
Property | Description | Required | Default value
type | type name: proudmanAcousticPower | yes |
rhoInf | Freestream density for incompressible cases | no |
aRef | Reference spped of sound for incompressible cases | no |
alphaEps | Model coefficient | no | 0.1
Note
- The freestream density and reference speed of sound are only necessary
when a thermodynamics package is unavailable, typically for incompressible
cases.
- when using VTK from ParaView sources it can better to tag them as
such, but simultaneously not mask the ParaView with hardware
rendering.
The additional ParaView_MESA_DIR variable allows this.
The balance of library and path setup is unaffected by this.
DOC: update doc/BuildIssues
Limits fields to user-specified min and max bounds
Usage
Example of function object specification:
limitFields1
{
type limitFields;
libs ("libfieldFunctionObjects.so");
...
fields (U);
limit max;
max 100;
}
Where the entries comprise:
Property | Description | Required | Default
type | type name: limitFields | yes |
fields | list of fields to process | yes |
limit | bound to limit - see below | yes |
min | min limit value | partly |
max | max limit value | partly |
The "limit" entry can take the value:
- min : specify a minimum value
- max : specify a maximum value
- both : specify a minimum value and a maximum value
- silently deprecate 'startsWith', 'endsWith' methods
(added in 2016: 2b14360662), in favour of
'starts_with', 'ends_with' methods, corresponding to C++20 and
allowing us to cull then in a few years.
- handle single character versions of starts_with, ends_with.
- add single character version of removeEnd and silently deprecate
removeTrailing which did the same thing.
- drop the const versions of removeRepeated, removeTrailing.
Unused and with potential confusion.
STYLE: use shrink_to_fit(), erase()
Example - create p-rgh from p:
pressure-p-rgh
{
type pressure;
libs (fieldFunctionObjects);
writeControl writeTime;
mode static;
rho rhoInf;
rhoInf 1;
hydrostaticMode subtract;
g (0 -9.81 0);
hRef 0;
}
- the hydrostaticMode entry is optional - setting is shown during construction
- g and/or hRef values are retrieved from the database if not specified
- drop plugin support for Qt4 (old paraview)
- handle upcoming changes in VTK version naming in CMake files
* VTK_MAJOR_VERSION becomes VTK_VERSION_MAJOR etc.
- change contiguous from a series of global functions to separate
templated traits classes:
- is_contiguous
- is_contiguous_label
- is_contiguous_scalar
The static constexpr 'value' and a constexpr conversion operator
allow use in template expressions. The change also makes it much
easier to define general traits and to inherit from them.
The is_contiguous_label and is_contiguous_scalar are special traits
for handling data of homogeneous components of the respective types.
- a top-level cloud::nParcels() virtual, which is overloaded by the
first level of Cloud inheritance. This permits quick determination of
cloud sizes, even when retrieved from registry with the base level.
Eg,
cloud* cldPtr = mesh.cfindObject<cloud>("myCloud");
label nParcels = (cldPtr ? cldPtr->nParcels() : 0);
- make writeLagrangianPositions on by default unless explicitly
disabled in the InfoSwitches.
Flag output errors (where neither coordinates nor positions are
written) with Fatal.
- additional IOField helper functions in cloud
STYLE: simplify iterator inheritance
- An identity is often useful when generating connectivity and offset
information.
- The optional repeat value for vtk::write() allows it to also be used
as a fill method.