- use allocator class to wrap the stream pointers instead of passing
them into ISstream, OSstream and using a dynamic cast to delete
then. This is especially important if we will have a bidirectional
stream (can't delete twice!).
STYLE:
- file stream constructors with std::string (C++11)
- for rewind, explicit about in|out direction. This is not currently
important, but avoids surprises with any future bidirectional access.
- combined string streams in StringStream.H header.
Similar to <sstream> include that has both input and output string
streams.
- STLpoint.H
- isoAdvection.C
- checkMesh/writeFields.C
STYLE: drop construct STLpoint(Istream&), since it doesn't make much sense
- No use case for reading via an OpenFOAM stream and tokenizer.
Should always be parsing ASCII or reading binary directly.
- this shifts responsibility away from caller to the individual writers
for knowing which file formats are supported and which file ending is
appropriate. When the writer receives the output format request,
it can elect to downgrade or otherwise adjust it to what it can
actually manage (eg, legacy vs xml vs xml-append).
But currently still just with legacy format backends.
Adds overset discretisation to selected physics:
- diffusion : overLaplacianDyMFoam
- incompressible steady : overSimpleFoam
- incompressible transient : overPimpleDyMFoam
- compressible transient: overRhoPimpleDyMFoam
- two-phase VOF: overInterDyMFoam
The overset method chosen is a parallel, fully implicit implementation
whereby the interpolation (from donor to acceptor) is inserted as an
adapted discretisation on the donor cells, such that the resulting matrix
can be solved using the standard linear solvers.
Above solvers come with a set of tutorials, showing how to create and set-up
simple simulations from scratch.
- Constructor for bounding box of a single point.
- add(boundBox), add(point) ...
-> Extend box to enclose the second box or point(s).
Eg,
bb.add(pt);
vs.
bb.min() = Foam::min(bb.min(), pt);
bb.max() = Foam::max(bb.max(), pt);
Also works with other bounding boxes.
Eg,
bb.add(bb2);
// OR
bb += bb2;
vs.
bb.min() = Foam::min(bb.min(), bb2.min());
bb.max() = Foam::max(bb.max(), bb2.max());
'+=' operator allows the reduction to be used in parallel
gather/scatter operations.
A global '+' operator is not currently needed.
Note: may be useful in the future to have a 'clear()' method
that resets to a zero-sized (inverted) box.
STYLE: make many bounding box constructors explicit
reduce()
- parallel reduction of min/max values.
Reduces coding for the callers.
Eg,
bb.reduce();
instead of the previous method:
reduce(bb.min(), minOp<point>());
reduce(bb.max(), maxOp<point>());
STYLE:
- use initializer list for creating static content
- use point::min/point::max when defining standard boxes
cellZones and pointZones can now be created in one action without the
need to first create a cellSet or pointSet and converting that to the
corresponding zone, e.g.
actions
(
// Example: create cellZone from a box region
{
name c0;
type cellZoneSet;
action new;
source boxToCell;
sourceInfo
{
box (0.04 0 0)(0.06 100 100);
}
}
);